
MATH 590: Meshfree Methods
Stable Computation via the Hilbert–Schmidt SVD

Greg Fasshauer

Department of Applied Mathematics
Illinois Institute of Technology

Fall 2014

fasshauer@iit.edu MATH 590 1

http://math.iit.edu/~fass

Outline

1 Introduction

2 Contour-Padé – The First Stable Algorithm

3 The Hilbert–Schmidt SVD

4 Implementation Issues in Higher Dimensions

fasshauer@iit.edu MATH 590 2

http://math.iit.edu/~fass

Introduction

As we’ve mentioned several times before, there are a number of
features that make positive definite kernels (or RBFs) so attractive to
work with:

Interpolants with “flat” kernels converge to polynomial interpolants.

Gaussians (and certain other RBFs) provide
dimension-independent, arbitrarily high, convergence rates for
sufficiently “nice” data (i.e., with low effective dimension and
coming from a smooth function).

Numerical instability of interpolation/approximation algorithms can
be overcome by using a “better” basis.

All of this together establishes (smooth) RBFs as generalized
spectral methods.

fasshauer@iit.edu MATH 590 4

http://math.iit.edu/~fass

Introduction

Using a Better Basis to Ensure Stability

This idea has been well-known in approximation theory for a long
time, e.g.,

B-splines as stable bases for piecewise polynomial splines [Sch81],
or
Chebyshev polynomials instead of monomials [Tre13].

In the RBF literature one can find this idea at least as early as the
paper [BLB01] (see also [Fas07, Ch. 34]).
The use of expansions in terms of eigenvalues and eigenfunctions
of the Hilbert–Schmidt integral operator K associated with the
kernel K to obtain stable bases for kernel spaces HK (X) is
discussed in [CFM14, Fas11a, Fas11b, FM12], and implicitly
appeared in [FP08].

Gaussian eigenvalues and eigenfunctions were presented in the
previous chapter.
iterated Brownian bridge kernels were discussed in Chapter 6.

We now explain how to use such expansions to obtain the
Hilbert–Schmidt SVD.

fasshauer@iit.edu MATH 590 5

http://math.iit.edu/~fass

Contour-Padé – The First Stable Algorithm

The Contour-Padé algorithm was the subject of Grady Wright’s Ph.D.
thesis [Wri03] and was reported in [FW04] (see also [Fas07, Ch. 17]).

The aim of the Contour-Padé algorithm is to come up with a method
that allows the computation and evaluation of RBF interpolants for
infinitely smooth basic functions when the shape parameter ε tends to
zero (including the limiting case).

The starting point is to consider evaluation of the RBF interpolant

sε(x) =
N∑

j=1

cjκ(ε‖x − x j‖)

for a fixed evaluation point x as an analytic function of ε.

fasshauer@iit.edu MATH 590 7

http://math.iit.edu/~fass

Contour-Padé – The First Stable Algorithm

The key idea is to represent sε(x) by a Laurent series in ε, and
approximate the “negative part” of the series by a Padé approximant,
i.e.,

sε(x) ≈ r(ε) +
∞∑

k=0

dkε
k ,

where r(ε) is the rational Padé approximant.

fasshauer@iit.edu MATH 590 8

http://math.iit.edu/~fass

Contour-Padé – The First Stable Algorithm

We then rewrite the interpolant in cardinal form, i.e., as

sε(x) =
N∑

j=1

cjκ(ε‖x − x j‖)

= k ε(x)T c
= k ε(x)T K−1

ε y

=
(
?
uε(x)

)T
y ,

where k ε(x)j = κ(ε‖x − x j‖), (Kε)i,j = κ(ε‖x i − x j‖),
c = (c1, . . . , cN)T , y = (y1, . . . , yN)T , and

?
uε(x) = K−1

ε k ε(x)

denotes the vector of values of the cardinal functions at x .

fasshauer@iit.edu MATH 590 9

http://math.iit.edu/~fass

Contour-Padé – The First Stable Algorithm

Goal:

To stably compute the vector
?
uε for all values of ε ≥ 0

without explicitly forming the inverse K−1
ε and

without computing the matrix vector product K−1
ε k ε.

Here the vectors
?
uε and k ε are obtained by evaluating the vector

functions
?
uε(·) and k ε(·) on an appropriate evaluation grid.

fasshauer@iit.edu MATH 590 10

http://math.iit.edu/~fass

Contour-Padé – The First Stable Algorithm

The solution proposed by Wright and Fornberg is to use Cauchy’s
integral theorem to integrate around a circle in the complex
ε-plane.
The residuals (i.e., coefficients in the Laurent expansion) are
obtained using the (inverse) fast Fourier transform.
The terms with negative powers of ε are then approximated using
a rational Padé approximant.
The integration contour (usually a circle) has to lie between the
region of instability near ε = 0 and possible branch point
singularities that lie somewhere in the complex plane depending
on the choice of κ.
Details of the method can be found in [FW04].

fasshauer@iit.edu MATH 590 11

http://math.iit.edu/~fass

Contour-Padé – The First Stable Algorithm

from [FW04]

fasshauer@iit.edu MATH 590 12

http://math.iit.edu/~fass

Contour-Padé – The First Stable Algorithm

Figure: Optimal ε curves based on Contour-Padé (left) and Hilbert–Schmidt SVD
(right) for interpolation to the sinc function with Gaussians in 1D for various choices of
N uniform points.

Remark
The two methods perform roughly the same for small values of N.
Hilbert–Schmidt SVD performs much better for N = 17.

fasshauer@iit.edu MATH 590 13

http://math.iit.edu/~fass

Contour-Padé – The First Stable Algorithm

Figure: Optimal ε curves based on Contour-Padé (left) and Hilbert–Schmidt SVD
(right) for interpolation to the 2D sinc function with Gaussians in for various choices of
N Halton points.

Remark
Again, both methods perform equally well for small N, but
Hilbert–Schmidt SVD is much more accurate for N = 81.

fasshauer@iit.edu MATH 590 14

http://math.iit.edu/~fass

Contour-Padé – The First Stable Algorithm

Remark
The main drawback of the Contour-Padé algorithm is the fact that if N
becomes too large then the region of ill-conditioning around the origin
in the complex ε-plane and the branch point singularities will overlap.

This implies that the method can only be used with limited success.

Moreover, as the examples above show, the value of N that has to be
considered “large” is unfortunately rather small. For the
one-dimensional case the results for N = 17 already are affected by
instabilities, and in the two-dimensional experiment N = 81 causes
problems.

We now want to work our way toward the Hilbert–Schmidt SVD
(Gauss-QR) method of [FM12].

fasshauer@iit.edu MATH 590 15

http://math.iit.edu/~fass

The Hilbert–Schmidt SVD General Framework

The following discussion is based mainly on [FM12], which developed
a stable algorithm specifically for the Gaussian kernel.
That algorithm was referred to as Gauss-QR algorithm, but it is a
special case of the Hilbert–Schmidt SVD. Similar algorithms are also
known as RBF-QR algorithms.

The general framework applies to any kernel that has a
Hilbert–Schmidt (or Mercer) series

K (x , z) =
∞∑

n=1

λnϕn(x)ϕn(z).

We now discuss the general framework and later look at
kernel-specific issues that are important for the implementation.

fasshauer@iit.edu MATH 590 17

http://math.iit.edu/~fass

The Hilbert–Schmidt SVD General Framework

But we can’t compute with an infinite matrix, so we choose a truncation
value M (aided by λn → 0 as n→∞) and rewrite

K =

K (x1,x1) . . . K (x1,xN)
...

...
K (xN ,x1) . . . K (xN ,xN)

=

ϕ1(x1) . . . ϕM(x1)
...

...
ϕ1(xN) . . . ϕM(xN)

︸ ︷︷ ︸

=Φ

λ1

. . .
λM

︸ ︷︷ ︸

=Λ

ϕ1(x1) . . . ϕ1(xN)
...

...
ϕM(x1) . . . ϕM(xN)

︸ ︷︷ ︸

=ΦT

Since

K (x i ,x j) =
∞∑

n=1

λnϕn(x i)ϕn(x j) ≈
M∑

n=1

λnϕn(x i)ϕn(x j)

accurate reconstruction of all entries of K will likely require M > N.
We already looked at truncation lengths for iterated Brownian bridge
kernels in Chapter 6 and HW 2.

fasshauer@iit.edu MATH 590 18

http://math.iit.edu/~fass

The Hilbert–Schmidt SVD General Framework

Remark
A careful analysis of truncation lengths for general kernels given in
series form (which includes our truncated Mercer series kernels)
is presented in [GRZ13].
There it is shown that the truncation length M should needs to
depend on N and the smallest eigenvalue of K. In fact, one should
have

∞∑
n=M+1

λn .
λmin(K)

N
,

where . encodes a dependence on the size of the eigenfunctions.
If M is chosen in this way then interpolation error with the
truncated kernel will be on the same order as with the full kernel.
This criterion has only limited practical applicability — especially if
we have a very ill-conditioned matrix K and we want to use the
truncated kernel to obtain a stable basis.

fasshauer@iit.edu MATH 590 19

http://math.iit.edu/~fass

The Hilbert–Schmidt SVD General Framework

We now assume that M > N, so that Φ is “short and fat”.
The key is to first partition the matrix Φ into two blocks Φ1 and Φ2
according toϕ1(x1) . . . ϕN(x1) ϕN+1(x1) . . . ϕM(x1)

...
...

...
...

ϕ1(xN) . . . ϕN(xN) ϕN+1(xN) . . . ϕM(xN)

 =

 Φ1︸︷︷︸
N×N

Φ2︸︷︷︸
N×(M−N)

 .

Remark
We can think of the n-th column of Φ as a sample of the n-th
eigenfunction obtained at the interpolation locations x1, . . . ,xN .
Recall that the eigenfunctions are orthogonal in both L2(Ω, ρ) and
in HK (Ω). However, this does not imply orthogonality of the
columns of Φ.
Thus, the Hilbert-Schmidt SVD does not employ orthogonal
matrices Φ1 (and later Ψ).

fasshauer@iit.edu MATH 590 20

http://math.iit.edu/~fass

The Hilbert–Schmidt SVD General Framework

By replacing ΦT with its blocks and applying an analogous block
partition to Λ we formally rewrite our eigen-decomposition of K:

K = ΦΛΦT

= Φ

(
Λ1

Λ2

)(
ΦT

1
ΦT

2

)
= Φ

(
Λ1ΦT

1
Λ2ΦT

2

)
= Φ

(
IN

Λ2ΦT
2 Φ−T

1 Λ−1
1

)
︸ ︷︷ ︸

=Ψ

Λ1ΦT
1︸ ︷︷ ︸

=M

We have now identified
a preconditioning matrix M and
matrices

Ψ and Φ1 of left and right Hilbert-Schmidt singular vectors,
respectively, and
Λ1 of Hilbert-Schmidt singular values.

fasshauer@iit.edu MATH 590 21

http://math.iit.edu/~fass

The Hilbert–Schmidt SVD General Framework

There are at least two ways to interpret the Hilbert–Schmidt SVD:

We have found an invertible M such that Ψ = KM−1 is better
conditioned than K (without forming K or computing with it).
We have diagonalized the matrix K, i.e.,

K = ΨΛ1ΦT
1

with diagonal matrix Λ1 of Hilbert-Schmidt singular values.
Here, as above, equality is only up to machine accuracy (i.e., M
has to be chosen large enough).

The matrix Ψ in the same for both interpretations, and it can be
computed stably.

Moreover, the notation above implies M = Λ1ΦT
1 .

fasshauer@iit.edu MATH 590 22

http://math.iit.edu/~fass

The Hilbert–Schmidt SVD General Framework

Remark
Note that even though the Hilbert-Schmidt SVD

K = ΨΛ1ΦT
1

looks very much like a regular SVD

K = UΣVT

the two are fundamentally different since for the Hilbert-Schmidt
SVD we never form and factor the matrix K.
Also, the matrices Ψ and Φ1 are not orthogonal matrices, but they
are generated by orthogonal functions.
Even though the notation Λ1 might suggest a regularization of the
matrix K, that is not the case. Such a regularization will occur only
for sufficiently small truncation length M (in particular M < N, see
later).

fasshauer@iit.edu MATH 590 23

http://math.iit.edu/~fass

The Hilbert–Schmidt SVD General Framework

Taking a closer look at the matrix Ψ, we see that

Ψ = (Φ1 Φ2)

(
IN

Λ2ΦT
2 Φ−T

1 Λ−1
1

)
= Φ1 + Φ2

[
Λ2ΦT

2 Φ−T
1 Λ−1

1

]
,

which we recognize as
the matrix Φ1 corresponding to samples of the first N
eigenfunctions
plus an appropriate correction matrix.

fasshauer@iit.edu MATH 590 24

http://math.iit.edu/~fass

The Hilbert–Schmidt SVD General Framework

Viewed as functions, we have a new basis

ψ(·)T = (ψ1(·), . . . , ψN(·))

for the interpolation space

span {K (·,x1), . . . ,K (·,xN)}
consisting of the appropriately corrected first N eigenfunctions:

k(x)T = φ(x)T
(

IN
Λ2ΦT

2 Φ−T
1 Λ−1

1

)
Λ1ΦT

1

=
[
(ϕ1(x), . . . , ϕN(x)) + (ϕN+1(x), . . .) Λ2ΦT

2 Φ−T
1 Λ−1

1

]
Λ1ΦT

1

= ψ(x)T Λ1ΦT
1

Remark
The data-dependence of the new basis is captured by the “correction”
term (since Φ1 and Φ2 depend on the center locations). The new basis
is more stable since we have removed Λ1.

fasshauer@iit.edu MATH 590 25

http://math.iit.edu/~fass

The Hilbert–Schmidt SVD General Framework

The particular structure of the correction term Φ2

[
Λ2ΦT

2 Φ−T
1 Λ−1

1

]
is

important for the success of the method:

Since λn → 0 as n→∞ the eigenvalues in Λ2 are smaller than
those in Λ1 and so ΦT

2 Φ−T
1 usually does not blow up.

Moreover, the multiplications by Λ2 and Λ−1
1 can be done

analytically.
This avoids stability issues associated with possible

underflow (for the Gaussian kernel, entries in Λ2 are as small as
ε2M−2) or
overflow (for the Gaussian, entries in Λ−1

1 are as large as ε−2N−2).

fasshauer@iit.edu MATH 590 26

http://math.iit.edu/~fass

The Hilbert–Schmidt SVD General Framework

Relation to RBF-QR [FP08]

Additional stability in the computation of the correction matrix[
Λ2ΦT

2 Φ−T
1 Λ−1

1

]
,

in particular, in the formation of ΦT
2 Φ−T

1 , is achieved via a QR
decomposition of Φ, i.e.,

(
Φ1 Φ2

)
= Q

(
R1︸︷︷︸

N×N

R2︸︷︷︸
N×(M−N)

)

with orthogonal N × N matrix Q and upper triangular matrix R1.
Then we have

ΦT
2 Φ−T

1 = RT
2 QT QR−T

1 = RT
2 R−T

1 .

However, we rarely find this to be necessary.

fasshauer@iit.edu MATH 590 27

http://math.iit.edu/~fass

The Hilbert–Schmidt SVD General Framework

Summary: How to use the Hilbert–Schmidt SVD

Instead of solving the “original” problem

Kc = y ,

potentially yielding inaccurate coefficients which are multiplied against
poorly conditioned basis functions, we now solve

Ψb = y

with a new basis and new set of coefficients which we evaluate via

s(x) = k(x)T K−1y

= ψ(x)T Λ1ΦT
1 Φ−T

1 Λ−1
1 Ψ−1y

= ψ(x)T Ψ−1y

so that all the ill-conditioning from Λ1 is gone.

Note

ψ(·)T Ψ−1 = k(·)T K−1 provides fresh look at cardinal functions.

fasshauer@iit.edu MATH 590 28

http://math.iit.edu/~fass

The Hilbert–Schmidt SVD Implementation for Iterated Brownian Bridge Kernels

Implementation for Iterated Brownian Bridge Kernels
The Hilbert-Schmidt series is of the form

Kβ,ε(x , z) =
∞∑

n=1

2(
n2π2 + ε2

)β sin (nπx) sin (nπz) ,

with Hilbert-Schmidt eigenvalues and eigenfunctions given by

λn =
1(

n2π2 + ε2
)β , ϕn(x) =

√
2 sin (nπx) . (1)

Clearly,
the eigenfunctions are bounded by

√
2,

and, for a fixed value of ε, the eigenvalues decay as n−2β.
Therefore, in Chapter 6 we decided to use the truncation length

M(β, ε; εmach) =

⌈
1
π

√
ε
−1/β
mach (N2π2 + ε2)− ε2

⌉
,

where dxe denotes the smallest integer greater than or equal to x (the
ceiling of x).

fasshauer@iit.edu MATH 590 29

http://math.iit.edu/~fass

The Hilbert–Schmidt SVD Implementation for Iterated Brownian Bridge Kernels

Program (MaternQRDemo.m)
N = 21; x = linspace(0,1,N)’; x = x(2:N-1);
N = N-2; xx = linspace(0,1,100)’;
f = @(x) .25^(-28)*max(x-.25,0).^14.*max(.75-x,0).^14; y = f(x);
ep = 1; beta = 7; % DO NOT use with beta < 3 !!
phifunc = @(n,x) sqrt(2)*sin(pi*x*n);
lambdafunc = @(n) ((n*pi).^2+ep^2).^(-beta);
M = max(N,ceil(1/pi*sqrt(eps^(-1/beta)*(N^2*pi^2+ep^2)-ep^2)));
Lambda = diag(lambdafunc(1:M));
Phi = phifunc(1:M,x);
K = Phi*Lambda*Phi’; c = K\y;
Phi_eval = phifunc(1:M,xx);
y_standard = Phi_eval*Lambda*Phi’*c;
Phi_1 = Phi(:,1:N); Phi_2 = Phi(:,N+1:end);
Lambda_1 = Lambda(1:N,1:N); Lambda_2 = Lambda(N+1:M,N+1:M);
Correction = Lambda_2*(Phi_1\Phi_2)’/Lambda_1;
Psi = Phi*[eye(N);Correction];
Psi_eval = Phi_eval*[eye(N);Correction];
y_HS = Psi_eval*(Psi\y);
plot(xx,y_standard,’linewidth’,2),hold on
plot(xx,y_HS,’g’,xx,f(xx),’:r’,’linewidth’,3)

fasshauer@iit.edu MATH 590 30

http://math.iit.edu/~fass

The Hilbert–Schmidt SVD Implementation for Iterated Brownian Bridge Kernels

Standard RBF vs. HS-SVD Interpolation
We use

Kβ,ε with β = 7 and ε = 1 (known only in series form)
N = 21 uniform samples of f (x) = (1− 4x)14

+ (4x − 3)14
+

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

Standard basis
HS−SVD
True solution

Note: cond(K) = 3.4× 1017

fasshauer@iit.edu MATH 590 31

http://math.iit.edu/~fass

The Hilbert–Schmidt SVD Implementation for Iterated Brownian Bridge Kernels

Figure: Comparison of different methods for iterated Brownian bridge interpolation
with K5,ε to f (x) = 30x2(1 − x)2 sin(2πx)4 at N = 10, 20, 40 Chebyshev points. The
piecewise polynomial interpolant (implemented with Bernoulli polynomials) is
ill-conditioned for N = 40.

fasshauer@iit.edu MATH 590 32

http://math.iit.edu/~fass

The Hilbert–Schmidt SVD Implementation for Gaussian Kernels

The implementation for Gaussian kernels is much more complicated.
Evaluation of the eigenfunctions

ϕn(x) =

8
√

1 +
(2ε
α

)2

√
2nn!

e
−
(√

1+(2ε
α)

2−1
)
α2x2

2 Hn

 4

√
1 +

(
2ε
α

)2

αx

requires lots of care. The different factors of the eigenfunctions
may become extremely large or extremely small.

To ensure safe computation of the product form of the
eigenfunctions they are evaluated using logarithms.
A number of asymptotic expansions are used in the GaussQR
implementation for different ranges of the argument of ϕ (see
[McC13] for details).

fasshauer@iit.edu MATH 590 33

http://math.iit.edu/~fass

The Hilbert–Schmidt SVD Implementation for Gaussian Kernels

Choice of the truncation length M is not as simple as for the
RBF-QR implementation with iterated Brownian bridge kernels
since the eigenfunctions are more complicated.
The global scale parameter α is an additional parameter that
needs to be chosen carefully. It is needed to obtain the
Hilbert-Schmidt expansion and has a significant (not yet fully
understood) effect on the practical implementation of GaussQR.

fasshauer@iit.edu MATH 590 34

http://math.iit.edu/~fass

The Hilbert–Schmidt SVD Implementation for Gaussian Kernels

Figure: The first eight Gaussian eigenfunctions with ε = 1 and α = 0.1,1,10.

Run GaussianEigenfunctions.cdf

fasshauer@iit.edu MATH 590 35

http://math.iit.edu/~fass

The Hilbert–Schmidt SVD Implementation for Gaussian Kernels

In particular, the interplay of ε, M, and α needs to be further
investigated.
For higher-dimensional applications

different values of ε and α for different coordinates, i.e., anisotropic
kernels, can be used (but haven’t been yet),
the sorting order of eigenfunctions corresponding to eigenvalues of
the same magnitude is currently done rather arbitrarily.

fasshauer@iit.edu MATH 590 36

http://math.iit.edu/~fass

The Hilbert–Schmidt SVD RBF-QR in Regression Mode

As an alternative to the RBF-QR algorithm which is designed to
reproduce all the entries of K up to machine precision we consider two
different regression approaches:

using early truncation of the Hilbert-Schmidt series, i.e., a basis
built from the first M < N eigenfunctions, and
using a truncated Hilbert-Schmidt SVD.

Remark
The first approach is much simpler, but data-independent. This
may have advantages and disadvantages.
The second approach requires all the work to create the matrix Ψ,
but has inherently the same data-dependence as the matrix K.

We now discuss both of these.

fasshauer@iit.edu MATH 590 37

http://math.iit.edu/~fass

The Hilbert–Schmidt SVD RBF-QR in Regression Mode

RBF-QRr

We want to use M < N eigenfunctions to produce a low-rank
approximation to the RBF interpolant based on N pieces of data.
The motivation is to

eliminate high-order eigenfunctions which contribute very little to
the solution, but increase computational cost.
This may reduce the sensitivity of the solution to α.
In particular, experiments have shown that the choice of an
“optimal” α depends on ε and is also more sensitive with
increasing M.

fasshauer@iit.edu MATH 590 38

http://math.iit.edu/~fass

The Hilbert–Schmidt SVD RBF-QR in Regression Mode

In order to introduce this problem in the same context as the
interpolatory RBF-QR we assume

that M ≤ N is fixed and
set all the eigenvalues λn, n = M = 1, . . . ,N to zero.

This results in an approximate decomposition of the kernel matrix

K ≈ ΦΛ̃ΦT

=

 Φ1 Φ2

(Λ1
0

) Φ1 Φ2

T

,

where
Φ1 is based on the first M eigenfunctions,
Λ1 contains the first M (and only nonzero) eigenvalues, and
Φ2 contains the remaining N −M eigenfunctions.

fasshauer@iit.edu MATH 590 39

http://math.iit.edu/~fass

The Hilbert–Schmidt SVD RBF-QR in Regression Mode

To get the new basis matrix Ψ for the RBF-QR method we had to
multiply K by M−1.

We define the matrix1 M analogously to before:

M = Λ̃ΦT .

However, since Λ̃ is not invertible we use its pseudoinverse (Φ is N ×N
and invertible, so we don’t need to use a QR decomposition here):

M† = Φ−T Λ̃† = Φ−T
(

Λ−1
1

0

)
.

This means that our new basis functions are given by

ψ(x)T = k(x)T M†.

1This would have to be called a “low-rank preconditioning” matrix.
fasshauer@iit.edu MATH 590 40

http://math.iit.edu/~fass

The Hilbert–Schmidt SVD RBF-QR in Regression Mode

We can rewrite
ψ(x)T = k(x)T M†

in terms of the eigenfunctions and get

ψ(x) = (ϕ1(x) . . . ϕN(x))ΛΦT M†

= (ϕ1(x) . . . ϕN(x))ΛΦT Φ−T Λ̃†

= (ϕ1(x) . . . ϕN(x))ΛΛ̃†

= (ϕ1(x) . . . ϕN(x))

(
IM

0

)
= (ϕ1(x) . . . ϕM(x) 0 . . . 0).

As a result we have set the last N −M eigenfunctions equal to zero.

fasshauer@iit.edu MATH 590 41

http://math.iit.edu/~fass

The Hilbert–Schmidt SVD RBF-QR in Regression Mode

Recasting the original linear system Kc = y in terms of the new basis
then gives Φ1 0

b = y .

Solving this in a least-squares sense requires solving

min
b

∥∥∥∥(Φ1 0)

(
b1
b2

)
− y

∥∥∥∥2

2
⇐⇒ min

b
‖Φ1b1 − y‖22 ,

where b1 and b2 are of length M and N −M, respectively.
Therefore the RBF-QRr regression solution is especially simple:

b1 = Φ†1y .

fasshauer@iit.edu MATH 590 42

http://math.iit.edu/~fass

The Hilbert–Schmidt SVD RBF-QR in Regression Mode

Truncated Hilbert-Schmidt SVD

In this case we obtain the decomposition of K as explained in the
HS-SVD section as

K = ΨΛ1ΦT
1 ,

where we compute the full matrix Ψ including the data-dependent
correction part based on Λ2ΦT

2 Φ−T
1 Λ−1

1 .

The truncated Hilbert-Schmidt SVD then zeros eigenvalues in Λ1.

fasshauer@iit.edu MATH 590 43

http://math.iit.edu/~fass

Implementation Issues in Higher Dimensions

If we want to move to higher dimensions, then using kernels in product
form is most advantageous.

Example
Gaussian kernel

K (x , z) = e−ε
2‖x−z‖2

2 = e
−

d∑̀
=1
ε2
`(x`−z`)2

=
d∏
`=1

e−ε
2
`(x`−z`)2

=
∑

n∈Nd

λnϕn(x)ϕn(z), x = (x1, . . . , xd) ∈ Rd ,

where

λn =
d∏
`=1

λn` , ϕn(x) =
d∏
`=1

ϕn`(x`).

Different shape parameters ε` (and different α`) for different space
dimensions are allowed (i.e., K may be anisotropic).

fasshauer@iit.edu MATH 590 45

http://math.iit.edu/~fass

Implementation Issues in Higher Dimensions

fasshauer@iit.edu MATH 590 46

http://math.iit.edu/~fass

Implementation Issues in Higher Dimensions

fasshauer@iit.edu MATH 590 47

http://math.iit.edu/~fass

Implementation Issues in Higher Dimensions

In higher dimensions there will be multiple eigenvalues of the same
order, and therefore ordering of eigenvalues and their associated
eigenfunctions may matter for the performance of the algorithm.

Using product kernels [FM12] (with uniform ε and α) eigenvalues
of the same order follow Pascal’s triangle. E.g., in three
dimensions the first eigenvalues λ1, λ2, λ3, λ4, take the form

λ0,0,0

λ1,0,0, λ0,1,0, λ0,0,1

λ2,0,0, λ1,1,0, λ1,0,1, λ0,2,0, λ0,1,1, λ0,0,2

λ3,0,0, λ2,1,0, λ2,0,1, λ1,2,0, λ1,1,1, λ1,0,2, λ0,3,0, λ0,2,1, λ0,1,2, λ0,0,3

Since we may want to use only the “first”, e.g., 12 eigenfunctions we
need to decide which two of the order three eigenvalues are most
significant.

fasshauer@iit.edu MATH 590 48

http://math.iit.edu/~fass

Implementation Issues in Higher Dimensions

Fornberg, Larsson and Flyer [FLF11] reported several other
eigenvalue patterns for their kernels:

In 2D for Gaussians, MQs, IMQs, IQs and Bessel kernels with
β > d = 2 we have multiplicities

1, 2, 3, 4, 5, 6, 7, . . .

In 2D for Bessel kernels with β = d = 2 we have multiplicities

1, 2, 2, 2, 2, 2, 2, . . .

In 3D for Gaussians (see above), MQs, IMQs and IQs we have
multiplicities

1, 3, 6, 10, 15, 21, 28, . . .

On the sphere S2 [FP08] for Gaussians, MQs, IMQs and IQs we
have multiplicities

1, 3, 5, 7, 9, 11, 13, . . .

fasshauer@iit.edu MATH 590 49

http://math.iit.edu/~fass

Appendix References

References I

[BLB01] R. K. Beatson, W. A. Light, and S. Billings, Fast solution of the radial basis
function interpolation equations: domain decomposition methods, SIAM
Journal on Scientific Computing 22 (2001), no. 5, 1717–1740.

[CFM14] Roberto Cavoretto, G. E. Fasshauer, and M. J. McCourt, An introduction to
the Hilbert-Schmidt SVD using iterated Brownian bridge kernels, Numerical
Algorithms (2014).

[Fas07] G. E. Fasshauer, Meshfree Approximation Methods with MATLAB,
Interdisciplinary Mathematical Sciences, vol. 6, World Scientific Publishing
Co., Singapore, 2007.

[Fas11a] , Green’s functions: taking another look at kernel approximation,
radial basis functions and splines, Approximation Theory XIII: San Antonio
2010 (M. Neamtu and L. L. Schumaker, eds.), Springer Proceedings in
Mathematics, vol. 13, Springer, 2011, pp. 37–63.

[Fas11b] , Positive definite kernels: past, present and future, Dolomites
Research Notes on Approximation 4 (2011), 21–63.

fasshauer@iit.edu MATH 590 50

http://math.iit.edu/~fass

Appendix References

References II

[FLF11] Bengt Fornberg, Elisabeth Larsson, and Natasha Flyer, Stable
computations with Gaussian radial basis functions, SIAM Journal on
Scientific Computing 33 (2011), no. 2, 869–892.

[FM12] G. E. Fasshauer and M. J. McCourt, Stable evaluation of Gaussian radial
basis function interpolants, SIAM J. Sci. Comput. 34 (2012), no. 2,
A737—A762.

[FP08] B. Fornberg and C. Piret, A stable algorithm for flat radial basis functions on
a sphere, SIAM J. Sci. Comput. 30 (2008), no. 1, 60–80.

[FW04] B. Fornberg and G. Wright, Stable computation of multiquadric interpolants
for all values of the shape parameter, Comput. Math. Appl. 48 (2004),
no. 5–6, 853–867.

[GRZ13] M. Griebel, C. Rieger, and B. Zwicknagl, Multiscale approximation and
reproducing kernel Hilbert space methods, 2013.

[McC13] M. McCourt, Building infrastructure for multiphysics simulations, Ph.D.
thesis, Cornell University, 2013.

fasshauer@iit.edu MATH 590 51

http://math.iit.edu/~fass

Appendix References

References III

[Sch81] L. L. Schumaker, Spline functions: Basic theory, John Wiley & Sons (New
York), 1981, reprinted by Krieger Publishing 1993.

[Tre13] Lloyd N. Trefethen, Approximation Theory and Approximation Practice,
SIAM, 2013.

[Wri03] G. B. Wright, Radial basis function interpolation: Numerical and analytical
developments, Ph.d. thesis, University of Colorado at Boulder, 2003.

fasshauer@iit.edu MATH 590 52

http://math.iit.edu/~fass

	Introduction
	Contour-Padé – The First Stable Algorithm
	The Hilbert–Schmidt SVD
	General Framework
	Implementation for Iterated Brownian Bridge Kernels
	Implementation for Gaussian Kernels
	RBF-QR in Regression Mode

	Implementation Issues in Higher Dimensions
	Appendix

