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Simple Methods for Choosing a “Good” Shape Parameter

Up until now we have not discussed how to systematically choose a
“good” value of the shape parameter ε present in many kernels.

Some typical observations we have made earlier are that, for
decreasing values of ε,

the kernels become wider, or “flatter”,
the condition number of the matrix K increases,
the interpolant s resembles the test function f more accurately.

This indicates both the benefits and challenges associated with the
choice of a “good” shape parameter.

We will mostly limit our discussion to finding a single “optimal” shape
parameter (i.e., no anisotropic kernels, or kernels with multiple
parameters).
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Simple Methods for Choosing a “Good” Shape Parameter Ad hoc methods

Trial and Error

The simplest strategy is to perform a series of interpolation
experiments with varying shape parameter, and then to pick the “best”
one.

This strategy can be used with confidence only if we know the function
f that generated the data, and therefore can calculate some sort of
error for the interpolant.

Of course, if we already know f , then the exercise of finding an
interpolant s may be mostly pointless.

However, this is the strategy we used for the “academic” examples
earlier in this class.

This is still a very popular – and subjective – approach to picking a
“good” value of ε.
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Simple Methods for Choosing a “Good” Shape Parameter Ad hoc methods

Other ad hoc methods
In one of the earliest RBF papers on (inverse) multiquadric RBF
interpolation in R2 [Har71] suggests using

ε = 1/(0.815δ),

where δ = 1
N
∑N

i=1 δi , and δi is the distance from the data point x i
to its nearest neighbor.
[Fra82] recommends using

ε =
0.8
√

N
D

,

for 2D problems, where D is the diameter of the smallest circle
containing all data points.
[Fas02] has been quoted by some, implying that ε = 2

√
N is a

good choice for 2D problems.
While these strategies indeed may work reasonably well for very
specific examples, they certainly cannot be taken as general
guidelines.
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Simple Methods for Choosing a “Good” Shape Parameter Some first systematic methods

In order to come up with a systematic approach will have to make sure
that

we specify what our criteria for “good” are,
we estimate a value for the shape parameter from the data alone,
i.e., without knowing the solution to the problem (as was always
the case in our earlier ε plots),
the estimation can be performed efficiently and accurately.
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Simple Methods for Choosing a “Good” Shape Parameter Some first systematic methods

If we do not have any knowledge of f , then it becomes rather difficult to
decide what “best” means.

One (non-optimal) criterion used in [Fas07, Chapter 2] is based on the
trade-off principle, i.e., the fact that for small ε the error improves while
the condition number grows.

“Best”: smallest ε for which MATLAB does not issue a
near-singular warning.

Remark
Note that this criterion only makes sense if we limit ourselves to using
the standard basis.

fasshauer@iit.edu MATH 590 8

http://math.iit.edu/~fass


Simple Methods for Choosing a “Good” Shape Parameter Some first systematic methods

The Power Function as Indicator for a “Good” Shape
Parameter

Another strategy is suggested by the standard RKHS error analysis of
Chapter 8. We showed there that

|f (x)− s(x)| ≤ PK ,X (x)‖f‖HK (Ω),

where PK ,X denotes the power function.

This estimate decouples the interpolation error into
a component independent of the data function f
and one depending on f .

fasshauer@iit.edu MATH 590 9

http://math.iit.edu/~fass


Simple Methods for Choosing a “Good” Shape Parameter Some first systematic methods

Once we have decided on a kernel K and a data set X we can use the
power function based on scaled versions of K to optimize the error
component that is independent of f .

Advantage: objective and does not depend on any knowledge of the
data function

Disadvantage: will not be optimal since the second component of the
error bound also depends on the kernel via the native
space norm (which changes when K is scaled).

We will improve on this method later.
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Simple Methods for Choosing a “Good” Shape Parameter Some first systematic methods

The power function can be computed via

PK ,X (x) =
√

K (x ,x)− k(x)T K−1k(x),

where K is the interpolation matrix and k = [K (·,x1), . . . ,K (·,xN)]T .

This formula is implemented on lines 11–14 in the MATLAB program
Powerfunction2D.m.
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Simple Methods for Choosing a “Good” Shape Parameter Some first systematic methods

Program (Powerfunction2D.m)
1 rbf = @(e,r) exp(-(e*r).^2); mine = 0.1; maxe = 20;
2 ne = 500; ep = linspace(mine,maxe,ne);
3 N = 81; gridtype = ’u’;
4 dsites = CreatePoints(N,2,gridtype); ctrs = dsites;
5 neval = 20; M = neval^2;
6 epoints = CreatePoints(M,2,’u’);
7 DM_k = DistanceMatrix(ctrs,epoints);
8 DM_data = DistanceMatrix(dsites,ctrs);
9 for i=1:length(ep)

10 IM = rbf(ep(i),DM_data); Mk = rbf(ep(i),DM_k);
11 invIM = pinv(IM); phi0 = rbf(ep(i),0);
12 for j=1:M
13 PF(j)=real(sqrt(phi0-Mk(:,j)’*invIM*Mk(:,j)));
14 end
15 maxPF(i) = max(PF);
16 end
17 fprintf(’Smallest maximum norm: %e\n’, min(maxPF))
18 fprintf(’at epsilon = %f\n’,ep(maxPF==min(maxPF)))
19 figure; semilogy(ep,maxPF,’b’);
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Simple Methods for Choosing a “Good” Shape Parameter Some first systematic methods

Remark
We compute the inverse of K using the function pinv which is
based on the singular value decomposition of K and therefore
guarantees greater stability.

Due to roundoff some of the arguments of the sqrt function on
line 18 come out negative. This explains the use of the real
command.

The vectors k(x) are just columns of the evaluation matrix Mk if x
is taken from the grid of evaluation points we used earlier for error
computations and plotting purposes.

Except for the loop over the shape parameter ε (lines 9–16) the
rest of the program is similar to earlier code.

fasshauer@iit.edu MATH 590 13

http://math.iit.edu/~fass


Simple Methods for Choosing a “Good” Shape Parameter Some first systematic methods

Figure: Optimal ε curves based on power functions for Gaussians in 1D (left) and 2D
(right) for various choices of N uniform points.

Remark
Clearly, even for the small data sets considered here, the numerical
instability, i.e., large condition number of the interpolation matrix K,
plays a significant role.
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Simple Methods for Choosing a “Good” Shape Parameter Some first systematic methods

1D 2D
N εopt cond(K) N εopt cond(K)

3 0.04 1.8749e+007 9 0.16 5.3534e+009
5 0.44 5.7658e+007 25 0.84 1.0211e+011
9 1.72 6.5682e+008 81 0.04 2.0734e+019
17 4.48 6.1306e+009 289 0.56 1.2194e+020
33 9.60 5.4579e+010
65 19.52 1.2440e+011

Table: Optimal ε values based on power functions for Gaussians in 1D and 2D for
various choices of N uniform points.
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Simple Methods for Choosing a “Good” Shape Parameter Some first systematic methods

Alternatively, the power function can be computed via

PK ,X (x) =
√

K (x ,x)− k(x)T K−1k(x)

=

√
K (x ,x)− k(x)T ?

u(x),

where k and K are as before and
?
u(x) is the vector of cardinal

functions.

This formula is implemented on line 12 in the MATLAB program
Powerfunction2Dnew.m.
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Simple Methods for Choosing a “Good” Shape Parameter Some first systematic methods

Program (Powerfunction2Dnew.m)
1 rbf = @(e,r) exp(-(e*r).^2); mine = 0.1; maxe = 20;
2 ne = 500; ep = linspace(mine,maxe,ne);
3 N = 81; gridtype = ’u’;
4 dsites = CreatePoints(N,2,gridtype); ctrs = dsites;
5 neval = 20; M = neval^2;
6 epoints = CreatePoints(M,2,’u’);
7 DM_k = DistanceMatrix(ctrs,epoints);
8 DM_data = DistanceMatrix(dsites,ctrs);
9 for i=1:length(ep)

10 IM = rbf(ep(i),DM_data); Mk = rbf(ep(i),DM_k);
11 phi0 = rbf(ep(i),0); cardfuns = IM\Mk;
12 PF = real(sqrt(phi0-sum(Mk.*cardfuns,1)));
13 maxPF(i) = max(PF);
14 end
15 fprintf(’Smallest maximum norm: %e\n’, min(maxPF))
16 fprintf(’at epsilon = %f\n’,ep(maxPF==min(maxPF)))
17 figure; semilogy(ep,maxPF,’b’);
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Simple Methods for Choosing a “Good” Shape Parameter Some first systematic methods

Figure: Optimal ε curves based on alternative implementation of power functions for
Gaussians in 1D (left) and 2D (right) for various choices of N uniform points.

Remark
The results now are less affected by numerical instability, and we see
pretty clearly that the power function used as an optimal shape
parameter criterion always favors small values of ε. From our previous
experiments we know that this is certainly not always the case.
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Simple Methods for Choosing a “Good” Shape Parameter Some first systematic methods

1D 2D
N εopt cond(K) N εopt cond(K)

3 0.04 1.8749e+007 9 0.04 3.5195e+014
5 0.04 1.1671e+016 25 0.12 1.5675e+018
9 0.40 5.3461e+016 81 0.48 6.0182e+018
17 1.48 2.5020e+017 289 2.16 4.7005e+019
33 5.60 4.6681e+017
65 14.76 4.8623e+017

Table: Optimal ε values based on alternate implementation of power functions for
Gaussians in 1D and 2D for various choices of N uniform points.

fasshauer@iit.edu MATH 590 19

http://math.iit.edu/~fass


Simple Methods for Choosing a “Good” Shape Parameter Some first systematic methods

Systematic – Statistics-based – Approaches

Much more systematic approaches have been suggested in the
statistics literature for a long time (see, e.g., [Wah90] and many other
references).

In the radial basis community one can find papers such as
[FZ07, HH99, Rip99, Sch11] that employ some of the methods we are
about to explain.

We repeat some of the discussion on “good” shape parameter
selection from [Fas07]. However, several other criteria – such as
generalized cross validation and maximum likelihood estimation – have
been investigated and/or proposed in our meshfree seminar over the
past couple of years.

We therefore also add some more recent insights based on
[Fas08, Hic09, Mon11, MF14].
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Choosing a Good Shape Parameter via LOOCV

Leave-One-Out Cross-Validation (LOOCV)
A strategy for finding an “optimal” shape parameter is to use a cross
validation approach which originated in the statistics literature.

Proposed by
[All74] as PRESS (Prediction Sum of Squares) for ridge regression
[CW79, GHW79]) for smoothing splines

to find optimal smoothing parameter µ

(K + µI)c = y

Fundamental assumption: noisy data that require smoothed fit
[Rip99] addressed optimization of the shape parameter of RBF
interpolation systems

Kεc = y ,

where
Kε,ij = Kε(x i ,x j) = κ(ε‖x i − x j‖)

Fundamental assumption: exact data that require exact fit
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Choosing a Good Shape Parameter via LOOCV

In this algorithm an “optimal” value of ε is selected by minimizing the
(least squares) error for a fit to the data based on an interpolant for
which one of the centers was “left out”.

Advantage: dependence of the error on the data function is also taken
into account.

Remark
Therefore, the predicted “optimal” shape parameter is closer to the
one we found via the trial and error approach (for which we had to
assume knowledge of the exact solution).
A similar strategy was proposed earlier in [GCK96] for the solution
of elliptic partial differential equations via the dual reciprocity
method based on multiquadric interpolation.
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Choosing a Good Shape Parameter via LOOCV

LOOCV: How it works

Let s[k ] be the kernel interpolant to the training data
{y1, . . . , yk−1, yk+1, . . . , yN}, i.e.,

s[k ](x) =
N∑

j=1
j 6=k

c[k ]
j K (x ,x j),

such that

s[k ](x i) = yi , i = 1, . . . , k − 1, k + 1, . . . ,N,

and let ek (ε) be the error

ek (ε) = yk − s[k ](xk )

at the one validation point xk not used to determine the interpolant.
Find

εopt = argmin
ε
‖e(ε)‖, e = (e1, . . . ,eN)T
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Choosing a Good Shape Parameter via LOOCV

In [Rip99] the author presented examples based on use of the `1 and
`2 norms.

We will mostly use the maximum norm (see line 15 in the code below).

By adding a loop over ε we can compare the error norms for different
values of the shape parameter, and choose that value of ε that yields
the minimal error norm as the optimal one.

Problem
This naive implementation of the leave-one-out algorithm is rather
expensive (on the order of N4 operations)
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Choosing a Good Shape Parameter via LOOCV

LOOCV Done Efficiently
We now derive an efficient formula for LOOCV as explained in [Hic09].
We use the following sets of centers (and coinciding data points):

X = {x1, . . . ,xN}, T = X \ {xk}, and V = {xk}.

Then we partition

K =

[
Ktt Ktv
KT

tv Kvv

]
, A = K−1 =

[
Att Atv
AT

tv Avv

]
, y =

[
y t
yv

]
, c =

[
ct
cv

]
.

Here the subscript t corresponds to the training points in T and v
corresponds to the validation point in V1, e.g., the block Ktv is
generated using training points to evaluate and the validation point as
center. For the matrix A we can’t make such a direct connection. Only
the sizes of the blocks match the cardinality of the sets T and V.

1Note that there is nothing here that forces us to use only a single validation point
xk , but that’s how we’ll think about this to keep the connection to LOOCV.
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Choosing a Good Shape Parameter via LOOCV

To compute the partial interpolant s[k ] we need to solve the
(N − 1)× (N − 1) linear system

Kttct = y t =⇒ ct = (Ktt )
−1 y t .

Note that
(Ktt )

−1 6= Att ⇐⇒ (Ktt )
−1 6=

(
K−1

)
tt

as mentioned on the previous slide.

In order to get an approximation for yv (= f (xk )) we use the evaluation
matrix KT

tv , i.e., evaluate the partial interpolant at the point(s) in V:

yv ≈ KT
tv ct = KT

tv (Ktt )
−1 y t .

This produces the (inefficient) error formula

ek (ε) = yv − KT
tv (Ktt )

−1 y t ,

where the inverse is of size (N − 1)× (N − 1).
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Choosing a Good Shape Parameter via LOOCV

From the “full” interpolation system Kc = y we know that
c = K−1y = Ay so that[

ct
cv

]
=

[
Atty t + Atv yv
AT

tv y t + Avv yv

]
.

In particular,
cv = AT

tv y t + Avv yv . (1)
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Choosing a Good Shape Parameter via LOOCV

We also know that AK = I, i.e.,[
Att Atv
AT

tv Avv

] [
Ktt Ktv
KT

tv Kvv

]
=

[
Itt 0tv
0T

tv Ivv

]
,

which yields in particular

AT
tv Ktt + Avv KT

tv = 0T
tv or AT

tv = −Avv KT
tv (Ktt )

−1 . (2)

Taking (1) and (2) together we get

cv = −Avv KT
tv (Ktt )

−1 y t + Avv yv ,

and this is equivalent to

(Avv )−1 cv = yv − KT
tv (Ktt )

−1 y t = ek (ε).

For LOOCV the “matrix” Avv is just a scalar and we get

ek (ε) =
cv

Avv
=

cv(
K−1

)
vv

.
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Choosing a Good Shape Parameter via LOOCV

The efficient formula for the LOOCV criterion just derived, i.e.,

ek (ε) =
ck

K−1
kk

, k = 1, . . . ,N, (3)

with
ck : k th coefficient of full interpolant s

K−1
kk : k th diagonal element of inverse of corresponding

interpolation matrix
was given by [Rip99] (and also [Wah90]).

Remark

Since both ck and K−1 need to be computed only once for each
value of ε this results in O(N3) computational complexity.
All entries in the error vector e can be computed in a single
statement in MATLAB if we vectorize the component formula (3):

errorvector = (invK*y)./diag(invK);
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Choosing a Good Shape Parameter via LOOCV

Program (LOOCV2D.m)
1 K = @(e,r) exp(-(e*r).^2);
2 mine = 0; maxe = 20; ne = 500;
3 ep = linspace(mine,maxe,ne);
4 N = 81; gridtype = ’u’;
5 dsites = CreatePoints(N,2,gridtype); ctrs = dsites;
6 neval = 20; M = neval^2;
7 epoints = CreatePoints(M,2,’u’);
8 testfunction = @(x,y) sinc(x).*sinc(y);
9 y = testfunction(dsites(:,1),dsites(:,2));

10 DM = DistanceMatrix(dsites,ctrs);
11 for i=1:length(ep)
12 KM = K(ep(i),DM);
13 invK = pinv(KM);
14 EF = (invK*y)./diag(invK);
15 maxEF(i) = norm(EF(:),inf);
16 end
17 fprintf(’Smallest maximum norm: %e\n’, min(maxEF))
18 fprintf(’at epsilon = %f\n’,ep(maxEF==min(maxEF)))
19 figure; semilogy(ep,maxEF,’b’);
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Choosing a Good Shape Parameter via LOOCV

The sinc function used on line 8 is not a standard MATLAB function (it
is part of the Signal Processing Toolbox). Therefore we provide some
code for it:

Program (sinc.m)
1 function f = sinc(x)
2 f = ones(size(x));
3 nz = find(x~=0);
4 f(nz) = sin(pi*x(nz))./(pi*x(nz));
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Choosing a Good Shape Parameter via LOOCV

Figure: Optimal ε curves based on leave-one-out cross validation for interpolation to
the sinc function with Gaussians in 1D (left) and 2D (right) for various choices of N
uniform points.
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Choosing a Good Shape Parameter via LOOCV

1D 2D
N εopt N εopt

3 0.96 9 0.96
5 1.00 25 1.00
9 0.80 81 1.48

17 0.92 289 1.60
33 1.92
65 1.76

Table: Optimal ε values based on leave-one-out cross validation for interpolation to
the sinc function with Gaussians in 1D and 2D for various choices of N uniform points.
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Choosing a Good Shape Parameter via LOOCV

Remark
We will later see that the shape of LOOCV error curves is often quite
similar to that of the true error curves. Thus, LOOCV can be
recommended as a good method for selecting an “optimal” shape
parameter ε since for this method no knowledge of the exact error is
needed.

Similar conclusions hold in general, i.e., for

other kernels,

other test functions,

other data distributions, and

other space dimensions.
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Choosing a Good Shape Parameter via LOOCV

Figure: Optimal ε curves based on leave-one-out cross validation for interpolation to
1D Franke’s function with Wendland’s function ϕ3,1(r) = (1 − εr)4

+(4εr + 1) for various
choices of N uniform points (left) and Chebyshev points (right).

Remark
All computations are stable, and the optimal scale parameter is quite
small, i.e., the support radius of the compactly supported basic
function is chosen to be very large. The best results for compactly
supported functions are obtained with dense matrices.
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Choosing a Good Shape Parameter via LOOCV

If we are not interested in the ε-curves displayed above, but only want
to find a good value of the shape parameter as quickly as possible,
then we can use the MATLAB function fminbnd to find the minimum of
the cost function for ε as shown in LOOCV2Dmin.m.

Program (CostEpsilon.m)

1 function ceps = CostEpsilon(ep,r,K,y)
2 KM = K(ep,r);
3 invK = pinv(K);
4 EF = (invK*y)./diag(invK);
5 ceps = norm(EF(:),inf);
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Choosing a Good Shape Parameter via LOOCV

Program (LOOCV2Dmin.m)

1 K = @(e,r) exp(-(e*r).^2);
2 mine = 0; maxe = 20;
3 N = 81; gridtype = ’u’;
4 dsites = CreatePoints(N,2,gridtype);
5 ctrs = dsites;
6 testfunction = @(x,y) sinc(x).*sinc(y);
7 y = testfunction(dsites(:,1),dsites(:,2));
8 DM = DistanceMatrix(dsites,ctrs);
9a [ep,f]=fminbnd(@(ep) CostEpsilon(ep,DM,K,y),...
9b mine,maxe);

10 fprintf(’Smallest maximum norm: %e\n’, f)
11 fprintf(’at epsilon = %f\n’, ep)
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Generalizations of LOOCV Leave Half/Third Out CV

Leave Half/Third Out Cross-Validation

If our training set is chosen to be much smaller than for LOOCV, then
we can do cross-validation with

leave half out:

T = one half of X , V = other half of X .

In MATLAB this can, e.g., be accomplished with
h1 = 1:2:N;
h2 = setdiff(1:N,h1);
x_train = x(h1);
y_train = f(x_train);
x_valid = x(h2);
y_valid = f(x_valid);

and then swapping the index sets.
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Generalizations of LOOCV Leave Half/Third Out CV

Leave Half/Third Out Cross-Validation

Leave third out:

T = two thirds of X , V = remaining third of X .

In MATLAB this can, e.g., be accomplished with
t1 = 1:3:N;
t2 = 2:3:N;
t3 = setdiff(1:N,[t1,t2]);
x_train = x([t1,t2]);
y_train = f(x_train);
x_valid = x(t3);
y_valid = f(x_valid);

and then permuting the indices.
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Generalizations of LOOCV Leave Half/Third Out CV

Example (Using GaussQR)

Determine the optimal ε for Gaussian interpolation using N = 18
evenly spaced samples from f (x) = cos 2πx in [−1,1].
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Generalizations of LOOCV Leave Half/Third Out CV

Example (cont.)
Since the LOOCV criterion requires the inverse of K (which may be
very ill-conditioned), we use the Hilbert-Schmidt SVD

K = ΨΛ1ΦT
1 ,

accurate to within machine precision (i.e., truncation length M > N).
Then

K−1 = Φ−T
1 Λ−1

1 Ψ−1.

The matrices Ψ and Φ1 are usually “well-behaved”.
But Λ1 by itself still contains the basic ill-conditioning, i.e.,
potentially very small eigenvalues.
We therefore use the pseudoinverse Λ†1 instead of Λ−1

1 , i.e., we
drop some of the smallest eigenvalues of the kernel K .

Remark
Note that truncating the Hilbert-Schmidt SVD is fundamentally different
from performing a standard SVD of K and then truncating that.
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Generalizations of LOOCV Leave Half/Third Out CV

Example (cont.)
We use the functions gqr_solveprep and gqr_phi from the
GaussQR library to do the calculations needed for the LOOCV ε-curve:

1 for ep=epvec
2 GQR = gqr_solveprep(0,x,ep,alpha);
3 Phi = gqr_phi(GQR,x);
4 Phi1 = Phi(:,1:N);
5 Psi = Phi*[eye(N);GQR.Rbar];
6 invPsi = pinv(Psi);
7 invPhi1 = pinv(Phi1’);
8 nu = (2*ep/alpha)^2;
9 Lambda1 = diag((nu/(2+nu+2*sqrt(1+nu))).^(1:N));

10 invLambda1 = pinv(Lambda1);
11 invK = invPhi1*invLambda1*invPsi;
12 EF = (invK*y)./diag(invK);
13 loocvvec(k) = norm(EF,1); k=k+1;
14 end
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Generalizations of LOOCV Leave Half/Third Out CV

Alternatively, we can directly apply the Hilbert–Schmidt SVD in the
derivation of the CV criterion. Then one can show that

CV (ε;V) =
∑

xv∈V

∥∥∥B−1
vv bv

∥∥∥ =
∑

xv∈V

∥∥∥(Ψvv −Ψvt Ψ
−1
tt Ψtv )−1bv

∥∥∥ ,
which is almost certainly more stable to compute.

Here the matrix Bvv is related to the HS-SVD via B = Ψ−1, i.e.,(
Ψtt Ψtv
Ψvt Ψvv

)(
bt
bv

)
=

(
y t
yv

)
⇐⇒

(
bt
bv

)
=

(
Btt Btv
Bvt Bvv

)(
y t
yv

)

Remark
Unfortunately, this formula is not as computationally efficient as the
standard LOOCV formula since the matrix B−1

vv still depends on the
training and validation sets.
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Generalization of Cross-Validation

Instead of the LOOCV cost function

LOOCV(ε) = ‖e(ε)‖2 =

√√√√ N∑
k=1

(
ck

K−1
kk

)2

we use the average of the diagonal elements of K−1, i.e.,

GCV(ε) = =

√√√√ N∑
k=1

(
ck

1
N
∑N

j=1 K−1
jj

)2

=
N‖c‖2

trace(K−1)

=
√

yT K−2y µh (λ(K))

Here we introduced µh, the harmonic mean.
Note that ‖c‖2 =

√
yT K−2y follows immediately from the interpolation

system Kc = y .
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Generalizations of LOOCV Generalization of Cross-Validation

LOOCV via Weighted Harmonic Means

We know

LOOCV(ε) =

√√√√ N∑
k=1

(
ck

K−1
kk

)2

Using an (orthogonal) eigenvalue decomposition K−1 = UΛ−1UT

N∑
k=1

(
ck

K−1
kk

)2

=
N∑

k=1

 ck∑N
j=1

U2
kj
λj


2

=
N∑

k=1

c2
k

 ∑N
j=1 U2

kj∑N
j=1 U2

kj
1
λj

2

=
N∑

k=1

c2
kµ

2
h,uk

(λ(K))

µh,uk : uk -weighted harmonic mean, uk is k th row of U with ‖uk‖2 = 1

Note:

√√√√ N∑
k=1

c2
kµ

2
h,1(λ(K)) = ‖c‖2µh(λ(K)) = GCV(ε)
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Generalizations of LOOCV Generalization of Cross-Validation

A Few Claims For and Against CV

In [CW79] it is shown that for large N, the expected mean square error
using the GCV-optimal parameter for smoothing splines tends to the
minimum expected mean square error. One should not expect good
results for small N.

[Wah90] warns that ill-conditioning may be a problem for CV.

While [Wah90] states that the GCV criterion is an “amazingly good
estimate” of the minimum expected mean square error, [Sto77] warns
that CV may sometimes be far off the mark.

While [Wah90] suggests that the GMLE estimate may not be as robust
as GCV, [Neu98] proclaims the GMLE criterion to be “the clear winner”.

In a more careful study, [Ste90] shows that GCV has twice the
asymptotic variance of GMLE for piecewise linear smoothing splines
(and worse for higher-order smoothing splines). This conclusion
assumes that the stochastic model is correctly specified.
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A Look at MLE

Generalized Maximum Likelihood [Ste99, Wah90]

Consider f as an instance of a Gaussian process with covariance
kernel K and data (x i , yi), i.e., Kij = K (x i ,x j) (see Chapter 4).
The likelihood function is

`(ε) =
exp

(
−1

2yT K−1y
)√

(2π)N det(K)

Maximization of log-likelihood is equivalent to minimization of
˜̀(ε) = yT K−1y + log (det(K))

Remark
This does not yet have any similarity with our other criteria in
terms of means of eigenvalues.
Moreover, statisticians like to allow a vertical scaling of K , i.e.,
K̃ = σ2K , which corresponds to the process variance (see, e.g.,
[Sch11] and Chapter 4). The likelihood above therefore
corresponds to σ2 = 1.
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A Look at MLE

We now try to make the criterion (with K replaced by K̃ = σ2K )

˜̀(ε) = yT K̃−1y + log
(

det(K̃)
)

invariant under a vertical scaling of K . Then

˜̀(ε, σ2) =
1
σ2 yT K−1y + N log(σ2) + log (det(K)) .

For fixed ε, we can easily minimize this with respect to σ2 since

∂ ˜̀

∂σ2 = 0 =⇒ − 1
σ4 yT K−1y + N

1
σ2 = 0 =⇒ ?

σ2 =
yT K−1y

N
.

Therefore, with this optimal value of ?
σ2, the criterion ˜̀(ε) becomes

˜̀(ε,
?
σ2) = N − N log(N) + N log(yT K−1y) + log (det(K)) .
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A Look at MLE

Since

˜̀(ε,
?
σ2) = N − N log(N) + N log(yT K−1y) + log (det(K))

is only modified by a constant if we replace K by K̃ we can consider
only

˜̀̃(ε) = log
(

yT K−1y
)

+
1
N

log (det(K)) ,

which is essentially the so-called profile log-likelihood or concentrated
log-likelihood.
Therefore we use

GMLE(ε) =
(

yT K−1y
)

N
√

det(K) =
(

yT K−1y
)
µg (λ(K))

where µg denotes the geometric mean.

fasshauer@iit.edu MATH 590 52

http://math.iit.edu/~fass


A Look at MLE

How the Hilbert–Schmidt SVD helps with MLE [MF14]

In order to stably compute log (det(K)) we can use K = ΨΛ1ΦT
1 to get

log (det(K)) = log det Ψ + log det Λ1 + log det ΦT
1 .

The very small eigenvalues can be handled safely by taking their
logarithms (since Λ1 is diagonal).
ΦT

1 gets inverted while forming the stable basis, and
Ψ gets inverted while computing an interpolant, so the cost of
computing log(det(K)) is negligible.
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A Look at MLE

To compute the term yT K−1y stably we recall (using Ψb = y)

yT K−1y = (Ψb)T (ΨΛ1ΦT
1 )−1Ψb = bT ΨT Φ−T

1 Λ−1
1 b.

Since

Ψ =
(
Φ1 Φ2

)( IN
Λ2ΦT

2 Φ−T
1 Λ−1

1

)
we can write ΨT = ΦT

1 + Λ−1
1 Φ−1

1 Φ2Λ2ΦT
2 , and so

yT K−1y = bT ΨT Φ−T
1 Λ−1

1 b

= bT Λ−1
1 b + bT Λ−1

1 Φ−1
1 Φ2Λ2ΦT

2 Φ−T
1 Λ−1

1 b.

Remark
The second term above can be computed efficiently via

bT Λ−1
1 Φ−1

1 Φ2Λ2ΦT
2 Φ−T

1 Λ−1
1 b =

∥∥∥Λ
−1/2
2 (Λ2ΦT

2 Φ−T
1 Λ−1

1 )b
∥∥∥2

2
.
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A Look at MLE

Example

N = 24 evenly spaced samples from f (x) = cos(3πx) in [−1,1].

MLE direct loses accuracy for ε < 3 and completely breaks down for
ε < 1 due to ill-conditioning.
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A Look at MLE

Hölder Means

We can view GCV and GMLE as being at two ends of the spectrum in
terms of the eigenvalues of K:

GCV uses their harmonic mean,
GMLE the geometric mean.

Using so-called Hölder means of the eigenvalues and p-type norms of
the coefficient vector we can further generalize GCV and GMLE to a
two-parameter family of shape parameter criteria:

Critp,q(ε) =
(

yT K−py
)1/p

(
1
N

N∑
k=1

λq
k (K)

)1/q

with GCV = Crit2,−1 and GMLE = Crit1,0.
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A Look at MLE

Remark
We note that

large eigenvalues are penalized for positive values of q
and small eigenvalues are penalized for q < 0.

In particular,(
1
N

N∑
k=1

λq
k (K)

)1/q

corresponds to

{
max (λ(K)) for q =∞
min (λ(K)) for q = −∞
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An Error Bound Criterion

Error Bound Criterion

Remember the standard error bound for kernel interpolation from
Chapter 8.
Using the representation

?
u(x) = K−1k(x) of the cardinal functions we

have for any x ∈ Ω

|f (x)− s(x)| =

∣∣∣∣∣∣f (x)−
N∑

j=1

f (x j )
?
uj (x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣〈f ,K (·, x)〉HK (Ω) −
N∑

j=1

〈f ,K (·, x j )〉HK (Ω)
?
uj (x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣〈f ,K (·, x)−
N∑

j=1

K (·, x j )
?
uj (x)〉HK (Ω)

∣∣∣∣∣∣ =
∣∣∣〈f ,K (·, x)− kT (·)K−1k(x)〉HK (Ω)

∣∣∣
≤ ‖f‖HK (Ω)

∥∥∥K (·, x)− kT (·)K−1k(x)
∥∥∥
HK (Ω)

= ‖f‖HK (Ω)PK ,X (x),

with k(·) = (K (·,x1), . . . ,K (·,xN))T , and power function

PK ,X (x) =
√

K (x ,x)− k(x)T K−1k(x).
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An Error Bound Criterion

The standard error bound

|f (x)− s(x)| ≤ ‖f‖HK (Ω)PK ,X (x)

can be improved (see [GW59]) to

|f (x)− s(x)| ≤ ‖f − s‖HK (Ω)PK ,X (x)

since f − s is orthogonal (in the Hilbert space inner product) to s, i.e.,

‖f‖2 = ‖f − s + s‖2 = 〈(f − s) + s, (f − s) + s〉
= ‖f − s‖2 + 2 〈f − s, s〉︸ ︷︷ ︸

=0

+‖s‖2.

This tighter error bound does not seem to play a significant role in the
RBF literature.
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An Error Bound Criterion

Since ‖f‖HK (Ω) usually is not computable (remember, we do not even know f ,
but want to reconstruct it from the data) the standard error bound is not very
useful for practical situations.
On the other hand, if we assume that our approximation s is not too bad, i.e.,

‖f − s‖HK (Ω) ≤ δ‖s‖HK (Ω)

for some not too large constant δ, then the Golomb-Weinberger improved
error bound yields a computable error bound

|f (x)− s(x)| ≤ δ‖s‖HK (Ω)PK ,X (x)

This is indeed computable since ‖s‖HK (Ω) =
√

yT K−1y :

‖s‖2
HK (Ω) = 〈yT ?

u(·),yT ?

u(·)〉HK (Ω) = 〈yT K−1k(·),yT K−1k(·)〉HK (Ω)

= yT K−1〈k(·),k(·)〉HK (Ω)K−1y = yT K−1KK−1y .

Therefore we have
EB(ε) =

√
yT K−1y‖PK ,X ‖∞,

where we compute the max-norm of the power function on a discrete
evaluation grid with high resolution.
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An Error Bound Criterion

Connection to Kriging Variance

Earlier we concluded that the power function (or kriging variance) by
itself is not a good criterion for finding an optimal shape parameter.
However, if we include the process variance in the discussion of the
power function/kriging variance, i.e., if we replace K by K̃ = σ2K , then
we get

P2
K̃ ,X (x) = K̃ (x ,x)− k̃(x)T K̃−1k̃(x)

= σ2K (x ,x)− σ2k(x)T (σ2K)−1σ2k(x)

= σ2
(

K (x ,x)− k(x)T K−1k(x)
)

= σ2P2
K ,X (x).

If we now replace σ2 by the optimal value ?
σ2 obtained for the MLE, then

P2
K̃ ,X ;

?
σ2(x) =

yT K−1y
N

P2
K ,X (x).

Note that this is almost identical to the error bound criterion EB(ε).
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Summary

LOOCV

√√√√ N∑
k=1

(
ck

K−1
kk

)2

EB
√

yT K−1y
∥∥∥√K (·, ·)− kT (·)K−1k(·)

∥∥∥
∞

GCV N‖c‖2
trace(K−1)

=
√

yT K−2y µh(λ(K))

GMLE
(
yT K−1y

)
N
√

det(K) =
(
yT K−1y

)
µg(λ(K))

Critp,q
(

yT K−py
)1/p

(
1
N

N∑
k=1

λq
k (K)

)1/q

Note: GCV = Crit2,−1, GMLE = Crit1,0
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Summary

Implementation of Criteria

all criteria require computation of K−1

some require computation of eigenvalues of K
MLE requires computing log (det(K))

Challenge: K may be very ill-conditioned for small values of ε

Remedy: Need stable (approximate) factorization of K
Here discussed with SVD
also example using Riley’s algorithm [Ril55]
RBF-QR not yet implemented for all criteria
A special algorithm to compute log (det(K)) is developed in
[MF14].
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function [c1 c2 c3 c4] = CostFuns(ep,r,rbf,rhs,DM_k)
K = rbf(ep,r);
[U,S,V] = svd(K);
lambda = diag(S); n = length(lambda);
lambda((lambda<10*eps)) = []; nt = length(lambda);
z = zeros(1,n-nt);
invK = V*diag([1./lambda; z’])*U’;
newrhs = U(:,1:nt)’*rhs;
approxNSnorm = (newrhs’*diag(1./lambda)*newrhs);
c1 = norm((invK*rhs)./diag(invK)); % LOOCV
c2 = n*(norm(invK*rhs))/(trace(invK)); % GCV
c3 = prod(nthroot(lambda,n)) * approxNSnorm; % MLE
Mk = rbf(ep,DM_k); % Now compute power function
K0 = rbf(ep,0); cardfuns = invK*Mk;
powfun = real(sqrt(K0-sum(Mk.*cardfuns,1)));
c4 = max(max(powfun)) * sqrt(approxNSnorm); % EB

MATLAB code for all criteria.
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Summary

Parameters to play with:
different values of p and q along with other criteria
different kernels, e.g.,

Gaussian e−(εr)2

C2 Matérn (1 + εr)e−εr

different space dimensions
different test functions, e.g.,

Franke
borehole

different data locations, e.g.,
uniformly gridded
gridded Chebyshev
low-discrepancy (Halton, Sobol, digital nets, etc.)

different sizes of data sets (density of data)
different solution algorithms, e.g., SVD, Riley, RBF-QR

Investigating this carefully is a high-dimensional approximation
problem!
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Summary

Example using SVD and Riley
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Summary

Example using SVD and Riley
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Summary

Remark
The figure suggests that – at least for this example – all but the
Crit2,0 criterion perform equally well.
They all locate the value of ε for which the actual error (black
curve) is minimized quite accurately.
Further investigations of shape parameter and kernel selection
are reported in [MF14, Mon11].
Related criteria (“sequential CV”, “geometry weighted CV” and
“partial MLE”) are derived in [Sch11].
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