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Introduction

Until now

Given data
{(x i , yi)}Ni=1, x i ∈ Ω ⊂ Rd , yi ∈ R,

find a function s that predicts, for a previously unobserved x value,

s(x) ≈ y .

Scattered data interpolation: Construct s as a linear combination of
“shifts” of kernels such that ‖s − y‖ = 0, where
y = (y1, . . . , yN)T and s = (s(x1), . . . , s(xN))T .

Kriging: Construct s such that s(x) =
M
yx = E[Yx |Y = y ], where

the data is realized by a Gaussian random field Y with
specified covariance K .

Truncated Mercer series: Construct s as a linear combination of only
M < N eigenfunctions such that mins ‖s − y‖.
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Introduction

We now consider ill-posed problems

A problem may be ill-posed if, e.g.,
we don’t have enough data to capture the complexity of the model,
we don’t have enough complexity in our model to match the data,
we don’t want to match all the complexity of the data because
some of it might be due to measurement errors.

In such cases our earlier approaches need to be modified and one
typically solves the data fitting problem via a regularization approach.
We now

give a overview to such a general regularization strategy to fitting
data,
look at RBF network regression,
support vector machine (SVM) classification and
SVM regression.
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Introduction

Each of our algorithms will involve its own particular
loss function
coupled with an appropriate regularization term with the help of a
regularization parameter µ > 0.

The discussion below is quite brief.

Many more details can be found in specialized books or survey papers
on machine learning or statistical learning such as, e.g.,
[EPP00, HTF09, RW06, SS02, STC04, SC08].
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Introduction

Loss function

A typical loss function L depends on
an input measurement x ,
its associated value y
and a value s(x) predicted by the learning algorithm.

The goal of the training phase of the machine learning algorithm is to
determine the predictor s such that the empirical risk

RL =
1
N

N∑
i=1

L (yi , s(x i))

is minimized.
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Introduction

Regularization

The regularization functional frequently measures the smoothness of
the predictor of s.

Remark
The regularization term can also be interpreted as a measure of the
complexity of the model (think of an eigenfunction expansion of a
smooth function s with rapidly decaying eigenvalues so that
high-frequency eigenfunctions contribute very little to s, i.e., s is not
very complex).

Example

The quadratic loss L (y ,s) = ‖y − s‖2 coupled with a quadratic
regularization functional leads to spline smoothing or penalized least
squares.
This is also what we use for learning via RBF networks.
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Introduction

Regularization Theory in RKHSs

If HK (Ω) is a RPHS with reproducing kernel K we can consider cT Kc,
the square of the native space norm of s, as the associated
regularization term.

Theorem (Representer Theorem [KW71])

The optimal predictor s in HK (Ω) characterized by

min
c

[
L (y ,Kc) + µcT Kc

]
,

can be expressed as a linear combination of kernel functions, i.e.,

s(x) =
N∑

j=1

cjK (x ,x j).

Here K is our usual kernel matrix and y = (y1, . . . , yN)T .
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Introduction

Remark
For general L the optimal predictor characterized in the
representer theorem requires the solution of a non-trivial nonlinear
optimization problem.

If L is squared loss and we have a square system matrix K then
the optimal solution is obtained by simply solving the linear
system Kc = y , i.e., the empirical risk is zero and the native space
norm of s is automatically minimized (see also [Fas07,
Chapter 19], or the discussion below).
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Introduction

Remark
Question: Why are we willing to solve an optimization problem

rather than a simple interpolation/regression problem?

Answer: Machine learning applications generally deal with data
contaminated by significant errors (perhaps on the order
of 10% error). This often means that the observed data
look rough, as though generated by a nonsmooth
function.

A common assumption is that the data were generated by a smooth
function, but that the observations were corrupted by a nonsmooth
error term.
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Introduction

Remark
This suggests we should use smooth basis functions for the
approximation, but should also do some balancing to avoid fitting the
nonsmooth errors.

Choosing µ > 0 forces c to not grow too large (and so prevents
the wild oscillations which would be needed to exactly fit data from
a nonsmooth function).

A larger µ will demand smaller ci values and care less about fitting
the data.
A smaller µ will more closely fit the observed data at the cost of an
approximation which is more susceptible to errors in the
observations, i.e., overfitting.
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Radial Basis Function Networks

Machine learning networks follow a supervised learning strategy
according to which the algorithm learns patterns that exist in a given
set of inputs/outputs {(x i , yi)}Ni=1.

In its simplest form, the pattern is approximated by a linear
combination of basis functions.

Common choices of basis functions include the Gaussian,
trigonometric functions and sigmoids, which have an “on/off” behavior
and are used to reflect the behavior of neurons in a human brain
[HTF09, Orr96].

We will consider only so-called single layer learning algorithms using
shifts of the Gaussian kernel (often called the RBF-kernel in the
learning literature).
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Radial Basis Function Networks

We construct s using a linear combination of basis functions
analogously to our earlier approaches:

If M ≤ N copies of K are used with centers at locations {z j}Mj=1
then

s(x) =
M∑

j=1

cjK (x , z j).

If M = N and z i = x i for 1 ≤ i ≤ N then s is an interpolant.
Otherwise s is an approximation/regression (or smoothing spline
in statistics).

Either way, the coefficients c are defined as the vector which
minimizes ‖Kc − y‖ or a regularized version.

In the interpolation setting this is zero for c = K−1y .
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Radial Basis Function Networks

We commonly find c by solving a minimization problem with squared
loss of the form

c = argmin
c∈RM

N∑
i=1

yi −
M∑

j=1

cjK (x i , z j)

2

+ µ

M∑
j=1

c2
j

= argmin
c∈RM

‖y − Kc‖2 + µ‖c‖2,

where we specify the kernel K and regularization parameter µ
beforehand.

Remark
Since this is a convex minimization problem, the necessary condition
obtained by the standard strategy of differentiating and setting the
result equal to zero is also sufficient.
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Radial Basis Function Networks

We see that

∇c

[
(y − Kc)T (y − Kc) + µcT c

]
= 0

⇐⇒ ∇c

[
yT y − cT KT y − yT Kc + cT KT Kc + µcT c

]
= 0

⇐⇒ 0− KT y − KT y + 2KT Kc + 2µc = 0,

where we’ve used yT Kc = cT KT y since it is just a scalar.

Thus we can solve the optimization problem by solving the linear
system

(KT K + µIM)c = KT y , (1)

which is guaranteed to be well-defined (i.e., the inverse exists) for any
µ > 0.
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Radial Basis Function Networks

Picking an “optimal” µ via GCV

Treating µ as a free parameter gives the potential to improve the
quality of the prediciton but also the potential to cripple it, making an
appropriate choice vital as it was in Chapter 13.

Generalized cross validation (GCV) is popular in the machine learning
literature [CW79, GHW79, GVM97]. For our RBF networks it can be
computed as [AC10, Orr96]

CGCV = yT P2y
N

(trace P)2 , P = IN − K(KT K + µIM)−1KT .

Remark
CGCV is not an error in the true sense, though it is related to the
residual:

Py = y − Kc, i.e., yT P2y = ‖y − Kc‖22.
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Radial Basis Function Networks Numerical experiments for regression with RBF networks

Example: Effects of µ

We take N = 50 data sampled randomly on [−1,1] from the function

f (x) = (1− 4x + 32x2)e−16x2

with added normally distributed noise with zero mean and standard
deviation 0.2.
MATLAB code for this example is provided in RBFNetwork1.m.
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Radial Basis Function Networks Numerical experiments for regression with RBF networks

We form an RBF network using Gaussian kernels with ε = 8 centered
at M = 15 evenly spaced points in [−1,1].
To smooth out the noise, we consider regularization parameters µ in
[10−10,105].

The RMS relative error is computed at 300 evenly spaced points in
[−1,1].
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“Optimal” µ from the error plot: µ ≈ 0.56
“Optimal” µ from GCV: µ ≈ 0.22

Remark
The network based on a larger µ oscillates less than the one produced
with smaller µ.
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Remark
The smoothing parameter µ can affect the quality of the prediction
in an understandable (larger µ yields less oscillation) but
unpredictable (the optimal amount of oscillation is unknown a
priori) way, much as the shape parameter ε works in unpredictable
ways.

Due to the ill-conditioning of KT K as ε→ 0, for small ε values, µ
may actually improve the condition of the solution.

There is a complicated relationship between µ and ε. For some
kernels µ may improve the accuracy through smoothing out noise
and for others it may improve the quality by reducing
ill-conditioning.

Although µ affects the quality of the prediction s, it does not
change the native space HK (it pushes the interpolant toward a
set of functions which try to minimize ‖c‖2 rather than ‖s‖HK ). In
contrast, changing ε changes K and, therefore, HK .
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Example: Effects of stable basis

We use the same data as before, but now “flat” Gaussian kernels with
ε = 0.01 so that KT K is severely ill-conditioned.

We compare three alternative approaches:
use of standard kernel basis {K (·, zj)}, zj evenly spaced in [−1,1],
use of stable basis {ψj(·)}, zj evenly spaced in [−1,1],
use of eigenfunctions {ϕn(·)}.

MATLAB code for this example is provided in RBFNetwork2.m.
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Error compared across various regularization values µ.
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Predictions for “optimal” µ values.
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Remark
The stable basis outperforms the standard basis for most µ values.

Eigenfunctions and the stable basis essentially overlap.

For large µ values, the prediction is dominated by the
regularization component (cf. the overlap near µ ≈ 104).

The similarity between the stable basis and eigenfunctions is due
to the fact that the correction term in the HS-SVD decreases in
magnitude as ε decreases.

Even a tiny value of µ has a remarkable stabilization effect in this
example.
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Example: Combined effects of µ and ε

Again, same data as before, but now we look at the effect of allowing
both ε and µ to change.

Only the eigenfunction basis is considered.

The errors for µ ∈ [10−10,105] and ε ∈ [10−2,101], along with GCV
plots are shown below.

MATLAB code for this example is provided in RBFNetwork3.m.
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An optimal error exists at µ ≈ 0.011 and ε ≈ 2.8, but is not predicted
by GCV (“optimal” µ ≈ 0.0017, ε ≈ 3.7).
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We now discuss the two main applications of support vector machines
(SVMs) in the context of supervised machine learning:

classification and
regression.

Both of these applications can be formulated within the regularization
framework outlined at the beginning of this chapter.
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Standard (binary) classification

Given: a set of training data {(x i , yi) : i = 1, . . . ,N} with
measurements x i ∈ Rd and
data values in the form of labels yi ∈ {−1,+1}.

Find: a predictor s that will allow us to assign an appropriate label,
either −1 or +1, to a future measurement x .
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Example
A predictor might be

s(x) = sign (h(x)) ,

where h denotes a hyperplane separating the given measurements.

A typical loss function is given by the hinge loss (or soft margin loss)

L (y ,h(x)) = max (1− yh(x),0)

since
L (y ,h(x)) = 0 ⇐⇒ yh(x) ≥ 1,

i.e., y and h(x) have the same sign and |h(x)| ≥ 1 so that we have
enough confidence in our prediction (see, e.g., [SS02, Chapter 3]).

An appropriate regularization term will be given by some norm of h
(see below for more details).
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Regression

We estimate continuous numeric values as discussed in the previous
section.
As for RBF networks, we can use the squared loss

L (y , s(x)) = (y − s(x))2 .

Alternatively, the so-called ε-insensitive loss

L (y , s(x)) = max (|y − s(x)| − ε,0)

is used as a symmetric analogue of the hinge loss.

Remark
According to the ε-insensitive loss function, deviations of the predicted
value s(x) from the correct value y are only penalized if they exceed ε,
and therefore it will be possible to obtain sparse representations using
only a subset of the data referred to as support vectors (more details
below).
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Linear Classification

The simplest predictor is given by

s(x) = sign (h(x)) ,

where h denotes a hyperplane — directly in input space — of the form

h(x) = xT w + b = 0, x ∈ Rd ,

that separates the measurements with label −1 from those with a +1.

The weights w (which serve as the unit normal vector to the
hyperplane) and the bias b can be determined by maximizing the
margin or gap to both sides of this hyperplane (see, e.g., [HTF09,
Chapter 12]).
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Unconstrained minimization

Since the size of the margin is 1
‖w‖ , and we want to maximize this

margin, a natural regularization functional is:

minimize ‖w‖ (norm of the coefficients of h).

Using the hinge loss function and h(x) = xT w + b, we get the
unconstrained minimization problem

min
w ,b

[
1
N

N∑
i=1

max (1− yih(x i),0) + µ
1
2

wT w

]
,

where µ is an appropriately chosen regularization parameter.
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Constrained optimization

The following constrained optimization with slack variables ξi is more
common since it also allows us to deal with the case where the given
measurements are not perfectly separable by h:

min
w ,b,ξ

[
1
2

wT w + C
N∑

i=1

ξi

]
subject to yih(x i) ≥ 1− ξi , i = 1, . . . ,N,

ξi ≥ 0,

where the regularization parameter µ is transformed into C = 1
Nµ .

Remark
This formulation is known in the SVM literature as the primal problem
(and — ironically — as the dual problem in the optimization literature).
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SVM dual problem

The SVM dual problem can be derived via Lagrange multipliers αi
(see, e.g., [HTF09, Chapter 12]) and is of the form

max
α

 N∑
i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjyiyjxT
i x j


subject to

N∑
i=1

αiyi = 0,

0 ≤ αi ≤ C,

where C is known as a box constraint and w =
∑N

i=1 αiyix i (which
follows from setting the w -gradient of the primal Lagrange multiplier
functional equal to zero).
The bias b is given by b = yi − xT

i w for any i such that the optimal
αi > 0.
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Remark
For stability purposes we compute the bias by considering all
qualifying indices and find b using the mean.

The box constraint C is a free parameter which needs to be either
set by the user or determined by an additional parameter
optimization methods such as cross validation.
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Kernel classification

Feature maps (see Chapter 2) allow us to view kernel values K (x , z)
as the dot product of the transformed data in feature space, i.e., given
x and z in input space and a feature map Φ we have

K (x , z) = Φ(x)T Φ(z).

Since the objective function the SVM dual problem is expressed in
terms of dot products in input space we can now use the concept of
feature maps and related kernels to talk about separating hyperplanes
in feature space.
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Remark
The feature space is potentially infinite-dimensional (as, e.g., in
the case of the Gaussian kernel) and therefore offers much more
flexibility for separating the data than the finite-dimensional input
space.

Cover’s theorem [Cov65] provides a theoretical foundation for this.
It ensures that data which can not be separated by a hyperplane
in input space most likely will be linearly separable after being
transformed to feature space by a suitable feature map.

Thus, support vector machines — and kernel machines, in
particular — are a good tool to use in order to tackle difficult data
classification problems.
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Algorithms for kernel classification are essentially the same as before;
simply replace the measurements x i in input space by their
transformation Φ(x i) into feature space.

The separating hyperplane now is

h(x) = Φ(x)T w + b = 0, x ∈ Rd ,

and the SVM dual problem using the transformed input data is given by

max
α

 N∑
i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjyiyjΦ(x i)
T Φ(x j)


subject to

N∑
i=1

αiyi = 0,

0 ≤ αi ≤ C.
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Since we have the kernel decomposition K (x , z) = Φ(x)T Φ(z) we
don’t have to compute (possibly infinite) dot products in feature space,
but instead just fill the kernel matrix and solve

max
α

 N∑
i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjyiyjK (x i ,x j)

 (2)

subject to
N∑

i=1

αiyi = 0,

0 ≤ αi ≤ C,

where, as before, C is the box constraint (which can be viewed as a
tuning parameter) and w =

∑N
i=1 αiyiΦ(x i).
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The classifier is now given by

s(x) = sign (h(x))

= sign
(

Φ(x)T w + b
)

= sign

Φ(x)T
N∑

j=1

αjyjΦ(x j) + b


= sign

 N∑
j=1

αjyjK (x ,x j) + b

 ,

where b is obtained as before, i.e., b = yi −
∑N

j=1 αjyjK (x i ,x j) with i
denoting the index of an αi which is strictly between 0 and C.
For stability purposes we can again average over all such candidates.
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What does the separating hyperplane in this case look like?

The hyperplane will be linear only in feature space (which we
usually have no concrete knowledge of). In the input space the
data will be separated by a nonlinear manifold.

The representation of this manifold is sparse in the sense that not
all basis functions are needed to specify it.

Only those centers x j whose corresponding αj are nonzero define
meaningful basis functions.
These special centers are referred to as support vectors.
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Remark
Since the decision boundary can be expressed in terms of a
limited number of support vectors, i.e., it has a sparse
representation, learning is possible in very high-dimensional input
spaces [SC08].

SVMs are
robust against several types of model violations and outliers,
computationally efficient, e.g., by using sequential minimal
optimization (SMO) [Pla99] to perform the quadratic optimization
task required for classification as well as regression.

Another way to make SVMs perform more efficiently is to consider
a low-rank representation for the kernel [FS02]. Below we test our
own version based on eigenfunctions.
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Remark
For positive definite kernels one can formulate the separating
hyperplane without the bias term b. In that case the equality
constraint

∑N
i=1 αiyi = 0 (which may be somewhat of a nuisance

during the optimization process) can be omitted [PMR+01].

The primal and dual formulations each have their advantages.
The primal formulation (in input space) is good for large amounts of
rather low-dimensional data.
The dual formulation (with kernels in feature space) is good for
high-dimensional data (since only the number of support vectors
matter).
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Remark
In our numerical experiments we use Gaussian kernels.

Linear SVM uses the dot product kernel K (x , z) = xT z .

Other popular kernels are
polynomial kernels of degree β in the form K (x , z) = (1 + xT z)β ,
the sigmoid kernel (or multilayer perceptron)
K (x , z) = tanh(1 + εxT z).

Kernels may be defined via the feature map (instead of in closed
form), and this feature map can be picked depending on the
specific application (e.g., as a string kernel for text mining).
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Example: Simple kernel classification

This example is from [HTF09, Section 2.3] (see also help for SVMs in
MATLAB’s Statistics Toolbox).

We attempt to learn/classify data coming from two different
populations:

population 1, normally distributed with center at (1,0) (filled red
circle) and identity covariance
population 2, normally distributed with center at (0,1) (filled green
square) and identity covariance

Use Gaussian kernels with varying shape parameter ε and box
constraint C.

MATLAB code for this example is provided in SVM1.m which uses
SVM_Setup.m and gqr_fitsvm.m.
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100 training (×, +) and 10 test points (©, �)
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Separating hyperplane, C = 1, ε = 1

fasshauer@iit.edu MATH 590 51

http://math.iit.edu/~fass


Classification with Support Vector Machines — Practice Numerical experiments for classification with kernel SVMs

Separating hyperplane, C = 1, ε = 5
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Separating hyperplane, C = 1, ε = 0.2
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Separating hyperplane, C = 10000, ε = 5
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Separating hyperplane, C = 0.01, ε = 5
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Remark
For a fixed C, larger ε produces a more localized/detailed
separator
For a fixed ε, larger C produces a more localized/detailed
separator
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Effects of margin and number of support vectors

We compare the number of missed classifications (out of 20 total tests)
with the margin 1/‖w‖ and the required number of support vectors.

We look at three experiments:
fix C = 10000 and ε = 0.01,
fix C = .6 and vary ε,
fix ε = 1 and vary C.

MATLAB code for this example is provided in SVM2.m which uses
SVM_Setup.m and gqr_fitsvm.m.
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Support vectors marked with ◦, misclassifications with©, �.
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C = 0.6, variable ε

The margin does not appear to be useful in determining optimal ε
value (it grows unboundedly as ε→ 0).
Minimizing the number of support vectors seems to suggest an
optimal region for ε and it helps with computational efficiency.

fasshauer@iit.edu MATH 590 59

http://math.iit.edu/~fass


Classification with Support Vector Machines — Practice Numerical experiments for classification with kernel SVMs

ε = 1, variable C

All C values produce decent results.
Large C values require fewer support vectors for evaluation (but
more time in the optimization solution because a larger search
space is used).
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Use of 10-fold CV to estimate C and ε

MATLAB code for this example is provided in SVM3.m which uses
SVM_Setup.m, gqr_svmcv.m and gqr_fitsvm.m.
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Remark
The example just discussed uses a linearly separable pattern since the
population centers (0,1) and (1,0) are linearly separable.

Because the ε→ 0 limit of Gaussians is a polynomial, it is reasonable
to conclude that, with infinitely much data drawn from those
populations, the optimal SVM would have ε→ 0 to produce a line.

We therefore next consider a different pattern which is not linearly
separable.
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Pattern that is not linearly separable

We want to classify data as coming from one of two populations:
population 1 (denoted by© and ×) with centers at
{(0,0), (1,1), (2,0)} (filled©), and
population 2 (denoted by � and +), with centers at
{(0,1), (1,0), (2,1)} (filled �).

Test points (large ×, +) and training points (small ×, +) are shown in
the figure.

MATLAB code for this example is provided in SVM4.m which uses
SVM_Setup.m, gqr_svmcv.m and gqr_fitsvm.m.
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Note that small ε can no longer produce the optimal CV residual.
Smaller ε causes an increase in the CV residual, likely because
the tendency towards polynomial behavior as ε→ 0 is not
desirable when learning this pattern.
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Computational consideration for classification with
kernel SVMs

SVMs are generally more popular than RBF networks.
On the one hand, SVMs may require many fewer kernel centers
for evaluation, i.e., they have a spare representation (only the
nonzero coefficients must be included).

However, solving the quadratic program (2) is more expensive
than solving the linear system (1).

We now
look at that cost as a function of ε and C, and
present a strategy for exploiting the low rank eigenfunction
representation for small ε to decrease cost.
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Remark
We use the quadprog solver with the algorithm
interior-point-convex from MATLAB’s Optimization Toolbox
with initial guess C/2 times a vector of ones.

As always for iterative solvers, a good initial guess helps speed up
convergence.
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Dependence of training cost of ε and C

We consider the linearly separable example from above, but now use
400 training points.

MATLAB code for this example is provided in SVM4.m which uses
gqr_fitsvm.m.
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Remark
The solution time for the quadratic program clearly depends on ε and
C.

Very large ε and very small C seem to be solved quickly:
large ε because the alertkernel is very localized,
and small C because the solution domain is very small and quickly
searched.

Larger values of C seem to always take longer, likely because the
search space is increasing.
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Low-rank approximations via kernel eigenfunctions

Earlier we used the Hilbert–Schmidt SVD to avoid ill-conditioning of
the kernel matrix K.

However, this does not help here because the inverse of the kernel
matrix is not needed during the quadratic program solution.

Instead, we may use the eigenfunction expansion

K = ΦΛΦT

to produce a low-rank approximation of K and exploit this structure to
decrease the cost of the quadratic program.

Given N input points and a small ε, only a very low number M of
eigenfunctions may be needed to accurately approximate K.
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The quadratic program (2) can be written in matrix form as

min
α

1
2
αT DyKDyα− eTα (3)

subject to yTα = 0,

α ∈ [0,C]N ,

where Dy is a diagonal matrix with y on the diagonal, and e is a vector
of all ones.

Using K ≈ (Λ1/2Φ)T (Λ1/2Φ), we can rephrase this problem as
[FS02, ZTK08]

min
η,α

1
2
(
ηT αT

)(IM 0
0 0

)(
η
α

)
−
(
0 eT

)(η
α

)
(4)

subject to
(

0 yT

−IM Λ1/2ΦT Dy

)(
η
α

)
= 0,

α ∈ [0,C]N , η ∈ RM .
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Remark
Although this system is of size N + M (and the original system was
only size N), the cost of solving this system may be much lower
because of the extremely simple structure of the Hessian.

This sparsity, in comparison to H which may be fully dense, allows for
cheap matrix-vector products and decompositions, both of which may
all for a faster quadratic program solve.

Note that the η values are inconsequential in making predictions with
the SVM.
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Low-rank vs. full-rank approximation

We use the same setup as before (given in SVM5.m).

We study the cost of solving the quadratic program and training the
SVM. Minimizing this cost is an important topic in machine learning
(see, e.g., [YDD04, FL02, LLZ+11]).

Increasingly large sets of input points are considered and the cost of
solving the full rank problem (3) is compared to solving the low rank
problem (4).

The kernel is parameterized with ε = .01 and C = 1 and the
eigenfunctions of the Gaussian use α = 106.
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Linear support vector regression

As for classification, we again start with a linear approximation and
assume that

s(x) = xT w + b.

If we use the ε-insensitive loss function

L (y , s(x)) = max (|y − s(x)| − ε,0)

then the primal unconstrained minimization problem is given by

min
w ,b

[
1
N

N∑
i=1

max (|yi − s(x i)| − ε,0) + µ
1
2

wT w

]
,

where, as before, µ is an appropriately chosen regularization
parameter.
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Constrained minimization problem

Using slack variables as in the classification case we have the
analogous constrained minimization problem

min
w ,b,ξ,ξ∗

[
1
2

wT w + C
N∑

i=1

(ξi + ξ∗i )

]
subject to s(x i)− yi ≤ ε+ ξi , i = 1, . . . ,N,

yi − s(x i) ≤ ε+ ξ∗i , i = 1, . . . ,N,
ξi , ξ

∗
i ≥ 0.
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Dual problem

In the dual formulation we need to solve the constrained quadratic
programming problem

min
α,α∗

ε

N∑
i=1

(α∗i + αi)−
N∑

i=1

yi(α
∗
i − αi) +

1
2

N∑
i=1

N∑
j=1

(α∗i − αi)(α∗j − αj)xT
i x j

subject to 0 ≤ αi , α
∗
i ≤ C,

N∑
i=1

(α∗i − αi) = 0.

Once we’ve found the dual variables αi and α∗i , the SVM regression
function is given by

s(x) = xT w + b =
N∑

i=1

(α∗i − αi)xT x i + b,

i.e., w =
∑N

i=1(α∗i − αi)x i .
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ε

N∑
i=1

(α∗i + αi)−
N∑

i=1

yi(α
∗
i − αi) +

1
2

N∑
i=1

N∑
j=1

(α∗i − αi)(α∗j − αj)xT
i x j

subject to 0 ≤ αi , α
∗
i ≤ C,

N∑
i=1

(α∗i − αi) = 0.

Once we’ve found the dual variables αi and α∗i , the SVM regression
function is given by

s(x) = xT w + b =
N∑

i=1

(α∗i − αi)xT x i + b,

i.e., w =
∑N

i=1(α∗i − αi)x i .
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Remark
The computation of the bias term b follows from the KKT
conditions (for details see [SS02]) and is similar in spirit to the
classification setting, i.e.,

b = yi − xT
i w − ε for αi ∈ (0,C),

b = yi − xT
i w + ε for α∗i ∈ (0,C).

As before, any one of these will theoretically suffice, but for
stability reasons it is better to compute b via an average over all
candidates.

As in the classification setting, α∗i −αi 6= 0 only for some i, and the
corresponding measurements x i are called the support vectors.

For more details see, e.g., [HTF09, Chapter 12], [SS02,
Chapter 9].
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Nonlinear support vector regression

As for classification, we obtain a nonlinear “kernelized” regression fit if
we map the data into feature space and then use kernels.

This is straightforward and completely analogous to the classification
setting.
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The resulting dual problem is

min
α,α∗

ε

N∑
i=1

(α∗
i + αi )−

N∑
i=1

yi (α
∗
i − αi ) +

1
2

N∑
i=1

N∑
j=1

(α∗
i − αi )(α∗

j − αj )K (x i ,x j )

subject to 0 ≤ αi , α
∗
i ≤ C,

N∑
i=1

(α∗
i − αi ) = 0,

so that

s(x) = Φ(xT )w + b =
N∑

i=1

(α∗
i − αi )K (x ,x i ) + b,

i.e., w =
∑N

i=1(α∗
i − αi )Φ(x i ) and

b = yi −
N∑

j=1

(α∗
j − αj )K (x i ,x j )− ε for αi ∈ (0,C),

b = yi −
N∑

j=1

(α∗
j − αj )K (x i ,x j ) + ε for α∗

i ∈ (0,C).
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Remark
Many more details on all aspects of machine learning can be found,
e.g., in the

books [Alp09, HTF09, RW06, SS02, STC04, SC08] or
survey papers [EPP00, MMn06, Orr96].
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