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Motivation: Scattered Data Interpolation in Rd What are multivariate scattered data?

Univariate Functions
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Start from Calculus:

f : x 7→ f (x), x ∈ [a,b], f (x) ∈ R

Example, [a,b] = [0,1]:

f (x) =
3
4

e−((9x−2)2)/4

+
3
4

e−((9x+1)2/49)

+
1
2

e−((9x−7)2)/4

−1
5

e−((9x−4)2)
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Motivation: Scattered Data Interpolation in Rd What are multivariate scattered data?

Multivariate Functions
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From multivariable Calculus:

f : x 7→ f (x), x ∈ Ω ⊆ Rd , f (x) ∈ R

Example, Ω = [0,1]2, x = (x , y):

f (x) =
3
4

e−((9x−2)2+(9y−2)2)/4

+
3
4

e−((9x+1)2/49+(9y+1)2/10)

+
1
2

e−((9x−7)2+(9y−3)2)/4

−1
5

e−((9x−4)2+(9y−7)2)
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Motivation: Scattered Data Interpolation in Rd What are multivariate scattered data?

More Multivariate Functions
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Example, Ω = [0,1]3, x = (x , y , z):

f (x) =
3
4

e−((9x−2)2+(9y−2)2+(9z−2)2)/4

+
3
4

e−((9x+1)2)/49−((9y+1)2)/10−((9z+1)2)/25

+
1
2

e−((9x−7)2+(9y−3)2+(9z−5)2)/4

−1
5

e−((9x−4)2+(9y−7)2+(9z−5)2)
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Motivation: Scattered Data Interpolation in Rd What are multivariate scattered data?

More Multivariate Functions
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Example, Ω = [0,1]3, x = (x , y , z):

f (x) = 64x(1− x)y(1− y)z(1− z)

Slice plot Isosurface plot
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Motivation: Scattered Data Interpolation in Rd What are multivariate scattered data?

289 uniformly gridded data sites in 2D
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Motivation: Scattered Data Interpolation in Rd What are multivariate scattered data?

289 Chebyshev data sites in 2D
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Motivation: Scattered Data Interpolation in Rd What are multivariate scattered data?

289 Halton data sites in 2D

fasshauer@iit.edu MATH 590 – Chapter 1 10

http://math.iit.edu/~fass


Motivation: Scattered Data Interpolation in Rd What are multivariate scattered data?

1368 track data sites in 2D
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Motivation: Scattered Data Interpolation in Rd What are multivariate scattered data?

8345 glacier data sites in 2D
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Motivation: Scattered Data Interpolation in Rd What are multivariate scattered data?

2663 Beethoven data sites in 2D
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Motivation: Scattered Data Interpolation in Rd What are multivariate scattered data?

1000 “optimal” data sites in 2D
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Motivation: Scattered Data Interpolation in Rd What are multivariate scattered data?

4913 uniformly gridded data sites in 3D
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Motivation: Scattered Data Interpolation in Rd What are multivariate scattered data?

Point Cloud Data
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Stanford bunny (simplified): 8171 point cloud data in 3D
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Motivation: Scattered Data Interpolation in Rd What are multivariate scattered data?

Traditional Methods use Meshes
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N = 289, Delaunay triangulation
for bivariate splines, FEMs

N = 27, Delaunay tetrahedra
for trivariate splines, FEMs
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Motivation: Scattered Data Interpolation in Rd The Scattered Data Interpolation Problem

Scattered Data Fitting

Scattered data fitting is a fundamental problem in approximation
theory, statistics and data modeling in general.
It generalizes the simple (polynomial) interpolation and
approximation methods you are familiar with from a basic course
in numerical analysis.
Mathematical challenge: we want a well-posed problem
formulation that works

for arbitrary space dimensions d and
for arbitrary number and location of data points.

This will naturally lead to distance matrices.
Later we generalize to radial basis functions or positive definite
kernels
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Motivation: Scattered Data Interpolation in Rd The Scattered Data Interpolation Problem

The problem in “plain English”

Given a set of data (measurements, and locations at which these
measurements were obtained), we want to find a rule which allows
us to deduce information about the process we are studying also
at locations different from those at which we obtained our
measurements.

Example
1D data: a series of measurements taken over a certain time
period
2D data: produce some sort of weather map based on data
collected at weather stations
3D data: temperature distribution inside some solid body
high-D data: often from computer experiments, in finance,
optimization, economics, statistics, learning theory.
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Motivation: Scattered Data Interpolation in Rd The Scattered Data Interpolation Problem

The problem in “plain English” (cont.)

We want to find a function s which is a “good” fit to the given data.
Such a function is often referred to as

surrogate model,
simulation metamodel,
response surface.

What do we mean by “good”?
We may want the function s to exactly match the given
measurements at the corresponding locations
−→ (scattered data) interpolation
We may want the function s to approximately match the given
measurements at the corresponding locations
−→ (scattered data) approximation such as least squares (with
and without noise)

We will mostly concentrate on the no-noise, interpolation setting.
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Mathematical Description of Scattered Data Fitting

Mathematical description

Assume we are given
measurement locations (data sites):
X = {x i , i = 1, . . . ,N} ⊂ Ω ⊂ Rd

corresponding measurements (data values): yi ∈ R
Later we often assume the data are obtained by sampling some
(unknown) function f at the data sites, i.e., yi = f (x i), i = 1, . . . ,N.
Notation1 for interpolating function: s

Problem (Scattered Data Interpolation)

Given data (x i , yi), i = 1, . . . ,N, with x i ∈ Rd , yi ∈ R, find a
(continuous) function s such that s(x i) = yi , i = 1, . . . ,N.

1Note that this is different from the notation used in [Fas07]. It is in line with [FM15].
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Mathematical Description of Scattered Data Fitting

Scattered Data Interpolation
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Mathematical Description of Scattered Data Fitting

Standard setup

A convenient and common approach:
Assume s is a linear combination of certain basis functions Bj , i.e.,

s(x) =
N∑

j=1

cjBj(x), x ∈ Rd . (1)

Solving the interpolation problem under this assumption leads to a
system of linear equations of the form

Bc = y ,

where the entries of the interpolation matrix B are given by
Bij = Bj(x i), i , j = 1, . . . ,N, c = [c1, . . . , cN ]T , and y = [y1, . . . , yN ]T .
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Mathematical Description of Scattered Data Fitting

Standard setup (cont.)

The scattered data fitting problem will be well-posed, i.e.,
a solution to the problem will exist and be unique,

if and only if the matrix B is non-singular.
In 1D it is well known that one can interpolate to arbitrary data at N
distinct data sites using a polynomial of degree N − 1.
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Mathematical Description of Scattered Data Fitting

If the dimension is higher, there is the following negative result (see
[Haa18, Mai56, Cur59]).

Theorem (Haar–Mairhuber–Curtis)

If Ω ⊂ Rd , d ≥ 2, contains an interior point, then there exist no Haar
spaces of continuous functions except for trivial ones, i.e., spaces
spanned by a single function.
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Mathematical Description of Scattered Data Fitting

In order to understand this theorem we need

Definition

Let the finite-dimensional linear function space B ⊆ C(Ω) have a basis
{B1, . . . ,BN}. Then B is a Haar space on Ω if

det B 6= 0

for any set of distinct x1, . . . ,xN in Ω. Here B is the square matrix with
entries Bij = Bj(x i), i , j = 1, . . . ,N.

Existence of a Haar space guarantees invertibility of the interpolation
matrix B, i.e., existence and uniqueness of an interpolant of the form
(1) to data specified at x1, . . . ,xN from the space B.

Example
Univariate polynomials of degree N − 1 form an N-dimensional Haar
space for data given at x1, . . . , xN .
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Mathematical Description of Scattered Data Fitting

Interpretation of Haar-Mairhuber-Curtis

The HMC theorem tells us that if we want to have a well-posed
multivariate scattered data interpolation problem we can no longer fix
in advance the set of basis functions we plan to use for interpolation of
arbitrary scattered data.

Instead, the basis should depend on the data locations.

Example
It is in general not clear how to perform unique interpolation with
(multivariate) polynomials of degree N to data given at arbitrary
locations in R2.
One prescription for obtaining such a unique polynomial is given by the
de Boor–Ron least polynomial interpolant (see
[BR90, BR92b, BR92a, NX12]).
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Mathematical Description of Scattered Data Fitting

Proof of Haar–Mairhuber–Curtis

Proof.
Let d ≥ 2 and assume that B is a Haar space with basis {B1, . . . ,BN}
with N ≥ 2.
We need to show that this leads to a contradiction.
By the definition of a Haar space

det
(
Bj(x i)

)
6= 0 (2)

for any distinct x1, . . . ,xN .

Haar–Mairhuber–Curtis CDF

Since the determinant is a continuous function of x1 and x2 we must
have had det B = 0 at some point along the path. This contradicts
(2).
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Example: Interpolation with Distance Matrices

We want to work with a data dependent approximation space as
suggested by the Haar-Mairhuber-Curtis theorem.
“Test function”

fd (x) = 4d
d∏

`=1

x`(1− x`), x = (x1, . . . , xd ) ∈ [0,1]d
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Example: Interpolation with Distance Matrices

MATLAB code for test function

Program (testfunction.m)

% tf = testfunction(d,points)
% Evaluates testfunction
% prod_{l=1}^d x_l*(1-x_l) (normalized so that max=1)
% at d-dimensional points
function tf = testfunction(d,points)
tf = 4^d*prod(points.*(1-points),2);
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Example: Interpolation with Distance Matrices

Sample the testfunction fd at scattered data sites in the unit cube.
We use Halton points (could also use random, Sobol′ or some other
space filling design).

We can generate Halton points using haltonset from MATLAB’s
Statistics Toolbox.
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Example: Interpolation with Distance Matrices Halton Points

Halton Points

Halton points (see [Hal60, WLH97]) are created from van der Corput
sequences.
Construction of a van der Corput sequence:
Start with unique decomposition of an arbitrary n ∈ N0 with respect to
a prime base p, i.e.,

n =
k∑

i=0

aipi ,

where each coefficient ai is an integer such that 0 ≤ ai < p.

Example
Let n = 10 and p = 3. Then

10 = 1 · 30 + 0 · 31 + 1 · 32,

so that k = 2 and a0 = a2 = 1 and a1 = 0.
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Example: Interpolation with Distance Matrices Halton Points

Next, define hp : N0 → [0,1) via

hp(n) =
k∑

i=0

ai

pi+1

Example

h3(10) =
1
3

+
1
33 =

10
27

hp,N = {hp(n) : n = 0,1,2, . . . ,N} is called van der Corput sequence

Example

h3,15 = {0, 1
3 ,

2
3 ,

1
9 ,

4
9 ,

7
9 ,

2
9 ,

5
9 ,

8
9 ,

1
27 ,

10
27 ,

19
27 ,

4
27 ,

13
27 ,

22
27 ,

7
27}
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Example: Interpolation with Distance Matrices Halton Points

Generation of Halton point set in [0,1)d :

take d (usually distinct) primes p1, . . . ,pd

determine corresponding van der Corput sequences
hp1,N , . . . ,hpd ,N

form d-dimensional Halton points by taking van der Corput
sequences as coordinates:

Hd ,N = {(hp1(n), . . . ,hpd (n)) : n = 0,1, . . . ,N}

set of N + 1 Halton points
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Example: Interpolation with Distance Matrices Halton Points

Some properties of Halton points

Halton points are nested point sets, i.e., Hd ,M ⊂ Hd ,N for M < N
Can even be constructed sequentially
In low space dimensions, the multi-dimensional Halton sequence
quickly “fills up” the unit cube in a well-distributed pattern
For higher dimensions (d ≈ 40) Halton points are well distributed
only if N is large enough
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Example: Interpolation with Distance Matrices Back to Distance Matrix Interpolation

We want to construct a (continuous) function s that interpolates the
samples obtained from fd at the set Hd ,N of Halton points, i.e., want

s(x j) = fd (x j), x j ∈ Hd ,N

Assume for now that d = 1.
For small N one can use univariate polynomials
If N is relatively large it’s better to use splines
Simplest approach: C0 piecewise linear splines (“connect the
dots”)

Basis for space of piecewise linear interpolating splines:

{Bj = | · −xj | : j = 1, . . . ,N}
So

s(x) =
N∑

j=1

cj |x − xj |, x ∈ [0,1]

and cj determined by interpolation conditions

s(xi) = f1(xi), i = 1, . . . ,N
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Example: Interpolation with Distance Matrices Back to Distance Matrix Interpolation

Clearly, the basis functions Bj = | · −xj | are dependent on the data
sites xj as suggested by Haar–Mairhuber–Curtis

Haar–Mairhuber–Curtis CDF

B(x) = |x | is called basic function
K (x , z) = |x − z| would be the kernel
The points xj to which the basic function is shifted to form the
basis functions are usually referred to as centers or knots.
Technically, one could choose these centers different from the
data sites. However, usually centers coincide with the data sites.
This simplifies the analysis of the method, and is sufficient for
many applications.
In fact, relatively little is known about the case when centers and
data sites differ.
Bj are (radially) symmetric about their centers xj
−→ radial basis function
Formal introduction of radial functions later
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Example: Interpolation with Distance Matrices Back to Distance Matrix Interpolation

Now the coefficients cj in the scattered data interpolation problem are
found by solving the linear system

|x1 − x1| |x1 − x2| . . . |x1 − xN |
|x2 − x1| |x2 − x2| . . . |x2 − xN |

...
...

. . .
...

|xN − x1| |xN − x2| . . . |xN − xN |




c1
c2
...

cN

 =


f1(x1)
f1(x2)

...
f1(xN)

 (3)

The matrix in (3) is a distance matrix
Distance matrices have been studied in geometry and analysis in
the context of isometric embeddings of metric spaces for a long
time (see, e.g., [Bax91, Blu38, Boc41, Mic86, Sch38, WW76]).
It is known that the distance matrix based on the Euclidean
distance between a set of distinct points in Rd is always
non-singular (more details later).
Therefore, our scattered data interpolation problem is well-posed.

fasshauer@iit.edu MATH 590 – Chapter 1 40

http://math.iit.edu/~fass


Example: Interpolation with Distance Matrices Back to Distance Matrix Interpolation

Since distance matrices are non-singular for Euclidean distances in
any space dimension d we have an immediate generalization:
For the scattered data interpolation problem on [0,1]d we can take

s(x) =
N∑

j=1

cj‖x − x j‖2, x ∈ [0,1]d , (4)

and find the cj by solving
‖x1 − x1‖2 ‖x1 − x2‖2 . . . ‖x1 − xN‖2
‖x2 − x1‖2 ‖x2 − x2‖2 . . . ‖x2 − xN‖2

...
...

. . .
...

‖xN − x1‖2 ‖xN − x2‖2 . . . ‖xN − xN‖2




c1
c2
...

cN

 =


fd (x1)
fd (x2)

...
fd (xN)

 .

Note that the basis is again data dependent
For d > 1 span{‖ · −x j‖2, j = 1, . . . ,N} is not piecewise linear
Piecewise linear splines in higher space dimensions are usually
constructed differently (via a cardinal basis on an underlying
computational mesh)
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Example: Interpolation with Distance Matrices Back to Distance Matrix Interpolation

Norm RBF

A typical basis function for the Euclidean distance matrix fit,
Bj(x) = ‖x − x j‖2 with x j = 0 and d = 2.
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Example: Interpolation with Distance Matrices Back to Distance Matrix Interpolation
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One of our main MATLAB subroutines

Forms the matrix of pairwise Euclidean distances of two (possibly
different) sets of points in Rd (dsites and ctrs).

1 function DM = DistanceMatrixBook(dsites,ctrs)
2 [M,d] = size(dsites); [N,d] = size(ctrs);
3 DM = zeros(M,N);
4 for l=1:d
5 [dr,cc] = ndgrid(dsites(:,l),ctrs(:,l));
6 DM = DM + (dr-cc).^2;
7 end
8 DM = sqrt(DM);

Works for any space dimension!
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Example: Interpolation with Distance Matrices Back to Distance Matrix Interpolation

Alternate forms of DistanceMatrix.m

Program (DistanceMatrixRepmat.m)

1 function DM = DistanceMatrixRepmat(dsites,ctrs)
2 [M,d] = size(dsites); [N,d] = size(ctrs);
3 DM = zeros(M,N);
4 for l=1:d
5a DM = DM + (repmat(dsites(:,l),1,N) - ...
5b repmat(ctrs(:,l)’,M,1)).^2;
6 end
7 DM = sqrt(DM);

Note: This is more efficient (memory and speed) than the
ndgrid-based version

fasshauer@iit.edu MATH 590 – Chapter 1 44

http://math.iit.edu/~fass


Example: Interpolation with Distance Matrices Back to Distance Matrix Interpolation

Alternate forms of DistanceMatrix.m (cont.)

Program (DistanceMatrixA.m)

1 function DM = DistanceMatrixA(dsites,ctrs)
2 M = size(dsites,1); N = size(ctrs,1);
3 T1 = sum(dsites.*dsites,2);
3 T2 = -2*dsites*ctrs’;
5 T3 = (sum(ctrs.*ctrs,2))’;
6 DM = sqrt(T1(:,ones(N,1)) + T2 + T3(ones(M,1),:));

Note: suggested by a former student of MATH 590 – even faster since
no for-loop used
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Example: Interpolation with Distance Matrices Back to Distance Matrix Interpolation

Alternate forms of DistanceMatrix.m (cont.)

Program (DistanceMatrix.m)

1 function DM = DistanceMatrix(dsites,ctrs)
2 M = size(dsites,1); N = size(ctrs,1);
3 DM = repmat(sum(dsites.*dsites,2),1,N) - ...
4 2*dsites*ctrs’ + ...
5 repmat((sum(ctrs.*ctrs,2))’,M,1);
6 DM = sqrt(DM);

Note: repmat version of previous code (possibly the fastest and most
memory efficient)
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Example: Interpolation with Distance Matrices Back to Distance Matrix Interpolation

Remark
Note that the first two subroutines can easily be modified to
produce a p-norm distance matrix by making the obvious changes
to the code.
The first two subroutines can also be used in a straightforward
way to create more general interpolation matrices for non-radial
kernels such as K (x , z) = min(x , z)− xz.
We will now use this subroutine to perform distance matrix
interpolation.
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Using Different Designs

Depending on the type of application we are dealing with, we may or
may not be able to select where the data is collected, i.e., the location
of the data sites or design.
Standard choices in low space dimensions include

tensor products of equally spaced points
tensor products of Chebyshev points
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Using Different Designs

In higher space dimensions it is important to have space-filling (or
low-discrepancy) quasi-random point sets. Examples include

Halton points
Sobol′ points
lattice designs
Latin hypercube designs
and quite a few others (digital nets, Faure, Niederreiter, etc.)
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Using Different Designs

The difference between the standard (tensor product) designs and the
quasi-random designs shows especially in higher space dimensions:
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Using Different Designs

Program (DistanceMatrixFit.m)

1 d = 3;
2 k = 2; N = (2^k+1)^d;
3 neval = 10; M = neval^d;
4 dsites = CreatePoints(N,d,’h’);
5 ctrs = dsites;
6 epoints = CreatePoints(M,d,’u’);
7 rhs = testfunctionsD(d,dsites);
8 IM = DistanceMatrix(dsites,ctrs);
9 EM = DistanceMatrix(epoints,ctrs);

10 s = EM * (IM\rhs);
11 exact = testfunctionsD(d,epoints);
12 maxerr = norm(s-exact,inf)
13 rms_err = norm(s-exact)/sqrt(M)

Note the simultaneous evaluation of the interpolant at the entire set of
evaluation points on line 10.
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Using Different Designs

Root-mean-square error:

RMS-error =

√√√√ 1
M

M∑
i=1

[s(ξi)− f (ξi)]2 =
1√
M
‖s − f‖2, (5)

where the ξi , j = 1, . . . ,M are the evaluation points.

Remark
The basic MATLAB code for the solution of any kind of RBF
interpolation problem will be very similar to DistanceMatrixFit.
Moreover, the data used — even for the distance matrix interpolation
considered here — can also be “real” data. Just replace lines 4 and 7
by code that generates the data sites and data values for the
right-hand side.
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Using Different Designs

CreatePoints.m (instead of reading points from files as in the book)

function [points, N] = CreatePoints(N,d,gridtype)
% Computes a set of N points in [0,1]^d
% Note: could add variable interval later
% Inputs:
% N: number of interpolation points
% d: space dimension
% gridtype: ’c’=Chebyshev, ’f’=fence(rank-1 lattice),
% ’h’=Halton, ’l’=latin hypercube, ’r’=random uniform,
% ’s’=Sobol, ’u’=uniform grid
% Outputs:
% points: an Nxd matrix (each row contains one d-D point)
% N: might be slightly less than original N for
% Chebyshev and gridded uniform points
% Calls on: chebsamp,lattice,haltonseq,lhsamp,gridsamp
% Also needs: fdnodes,gaussj
% Requires Statistics Toolbox for haltonset and sobolset.
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Using Different Designs

The tables and figures below show some examples computed with
DistanceMatrixFit.

The number M of evaluation points for d = 1,2, . . . ,6, was 1000, 1600,
1000, 256, 1024, and 4096, respectively (i.e., neval = 1000, 40, 10, 4,
4, and 4, respectively).

Note that, as the space dimension d increases, more and more of the
(uniformly gridded) evaluation points lie on the boundary of the
domain, while the data sites (which are given as Halton points) are
located in the interior of the domain.

The value k listed in the tables is the same as the k in line 2 of
DistanceMatrixFit.
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1D 2D 3D

k N RMS-error N RMS-error N RMS-error

1 3 5.896957e-001 9 1.937341e-001 27 9.721476e-002
2 5 3.638027e-001 25 6.336315e-002 125 6.277141e-002
3 9 1.158328e-001 81 2.349093e-002 729 2.759452e-002
4 17 3.981270e-002 289 1.045010e-002
5 33 1.406188e-002 1089 4.326940e-003
6 65 5.068541e-003 4225 1.797430e-003
7 129 1.877013e-003
8 257 7.264159e-004
9 513 3.016376e-004
10 1025 1.381896e-004
11 2049 6.907386e-005
12 4097 3.453179e-005
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4D 5D 6D

k N RMS-error N RMS-error N RMS-error

1 81 1.339581e-001 243 9.558350e-002 729 5.097600e-002
2 625 6.817424e-002 3125 3.118905e-002
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Using Different Designs

Left: distance matrix fit for d = 1 with 5 Halton points for f1
Right: corresponding error

Remark
Note the piecewise linear nature of the interpolant. If we use more
points then the fit becomes more accurate (see table) but then we
can’t recognize the piecewise linear nature of the interpolant.
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Left: distance matrix fit for d = 2 with 289 Halton points for f2
Right: corresponding error
Interpolant is false-colored according to absolute error
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Left: distance matrix fit for d = 3 with 729 Halton points for f3 (colors
represent function values)
Right: corresponding error
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Remark
We can see clearly that most of the error is concentrated near the
boundary of the domain.

In fact, the absolute error is about one order of magnitude larger near
the boundary than it is in the interior of the domain.

This is no surprise since the data sites are located in the interior.

Even for uniformly spaced data sites (including points on the
boundary) the main error in radial basis function interpolation is usually
located near the boundary.
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Observations

From this first simple example we can observe a number of other
features. Most of them are characteristic for radial basis function
interpolants.

The basis functions Bj = ‖ · −x j‖2 are radially symmetric.
As the MATLAB scripts show, the method is extremely simple to
implement for any space dimension d .

No underlying computational mesh is required to compute the
interpolant. The process of mesh generation is a major factor when
working in higher space dimensions with polynomial-based
methods such as splines or finite elements.
All that is required for our method is the pairwise distance between
the data sites. Therefore, we have what is known as a meshfree (or
meshless) method.
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Observations (cont.)

The accuracy of the method improves if we add more data sites.
It seems that the RMS-error in the tables above are reduced by a
factor of about two from one row to the next.
Since we use (2k + 1)d uniformly distributed random data points in
row k this indicates a convergence rate of roughly O(h), where h
can be viewed as something like the average distance or meshsize
of the set X of data sites.

The interpolant used here (as well as many other radial basis
function interpolants used later) requires the solution of a system
of linear equations with a dense N × N matrix. This makes it very
costly to apply the method in its simple form to large data sets.
Moreover, as we will see later, these matrices also tend to be
rather ill-conditioned.
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Goals
present alternatives to this basic interpolation method that
address the problems mentioned above such as

limitation to small data sets,
ill-conditioning,
limited accuracy and
limited smoothness of the interpolant.
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