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Native Spaces for Positive Definite Kernels

In this section we will show that every positive definite kernel can
indeed be associated with a reproducing kernel Hilbert space

— its
native space.

First, we note that the definition of an RKHS tells us that HK (Ω)
contains all functions of the form

f =
N∑

j=1

cjK (·,x j)

provided x j ∈ Ω.
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Native Spaces for Positive Definite Kernels

Using the properties of RKHSs established earlier along with the form
of f just mentioned we have that

‖f‖2HK (Ω) = 〈f , f 〉HK (Ω) =

〈
N∑

i=1

ciK (·,x i),
N∑

j=1

cjK (·,x j)

〉
HK (Ω)

=
N∑

i=1

N∑
j=1

cicj〈K (·,x i),K (·,x j)〉HK (Ω)

=
N∑

i=1

N∑
j=1

cicjK (x i ,x j) = cT Kc.

So — for these special types of f — we can easily calculate the Hilbert
space norm of f .
In particular, if f = s is a kernel-based interpolant, i.e., c = K−1y , then
we also have

‖s‖2HK (Ω) = yT K−T KK−1y = yT K−1y .
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Native Spaces for Positive Definite Kernels

Therefore, we define the (possibly infinite-dimensional) space of all
linear combinations

HK (Ω) = span{K (·, z) : z ∈ Ω} (1)

with an associated bilinear form 〈·, ·〉K given by〈
N∑

i=1

ciK (·,x i),
M∑

j=1

djK (·, z j)

〉
K

=
N∑

i=1

M∑
j=1

cidjK (x i , z j) = cT Kd .

Remark
Note that this definition implies that a general element in HK (Ω) has
the form (where N =∞ is allowed)

f =
N∑

j=1

cjK (·,x j).

However, not only the coefficients cj , but also the specific value of N
and choice of points x j will vary with f .
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Native Spaces for Positive Definite Kernels

Theorem

If K : Ω× Ω→ R is a symmetric strictly positive definite kernel, then
the bilinear form 〈·, ·〉K defines an inner product on HK (Ω).

Furthermore, HK (Ω) is a pre-Hilbert space with reproducing kernel K .

Remark
A pre-Hilbert space is an inner product space whose completion is a
Hilbert space.
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Native Spaces for Positive Definite Kernels

Proof.
〈·, ·〉K is obviously bilinear and symmetric.

We just need to show that 〈f , f 〉K > 0 for nonzero f ∈ HK (Ω).
Any such f can be written in the form

f =
N∑

j=1

cjK (·,x j), x j ∈ Ω.

Then

〈f , f 〉K =
N∑

i=1

N∑
j=1

cicjK (x i ,x j) > 0

since K is strictly positive definite.
The reproducing property follows from

〈f ,K (·,x)〉K =
N∑

j=1

cjK (x ,x j) = f (x).
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Native Spaces for Positive Definite Kernels

Since we just showed that HK (Ω) is a pre-Hilbert space, i.e., need not
be complete, we now first form the completion H̃K (Ω) of HK (Ω) with
respect to the K -norm ‖ · ‖K ensuring that

‖f‖K = ‖f‖H̃K (Ω)
for all f ∈ HK (Ω).

In general, this completion will consist of equivalence classes of
Cauchy sequences in HK (Ω), so that we can obtain the native space
NK (Ω) of K as a space of continuous functions with the help of the
point evaluation functional (which extends continuously from HK (Ω) to
H̃K (Ω)), i.e., the (values of the) continuous functions in NK (Ω) are
given via the right-hand side of

δx (f ) = 〈f ,K (·,x)〉K , f ∈ H̃K (Ω).

Remark
The technical details concerned with this construction are discussed in
[Wen05].
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Native Spaces for Positive Definite Kernels

In summary, we now know that the native space NK (Ω) is given by
(continuous functions in) the completion of

HK (Ω) = span{K (·, z) : z ∈ Ω}

— a not very intuitive definition of a function space.

In the special case when we are dealing with strictly positive definite
(translation invariant) functions Φ(x − z) = K (x , z) and when Ω = Rd

we get a characterization of native spaces in terms of Fourier
transforms.

We present the following theorem without proof (for details see
[Wen05]).
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Native Spaces for Positive Definite Kernels

Theorem

Suppose Φ ∈ C(Rd ) ∩ L1(Rd ) is a real-valued strictly positive definite
function. Define

G = {f ∈ L2(Rd ) ∩ C(Rd ) :
f̂√
Φ̂
∈ L2(Rd )}

and equip this space with the bilinear form

〈f ,g〉G =
1√

(2π)d
〈 f̂√

Φ̂
,

ĝ√
Φ̂
〉L2(Rd ) =

1√
(2π)d

∫
Rd

f̂ (ω)ĝ(ω)

Φ̂(ω)
dω.

Then G is a real Hilbert space with inner product 〈·, ·〉G and
reproducing kernel Φ(· − ·). Hence, G is the native space of Φ on Rd ,
i.e., G = NΦ(Rd ) and both inner products coincide.
In particular, every f ∈ NΦ(Rd ) can be recovered from its Fourier
transform f̂ ∈ L1(Rd ) ∩ L2(Rd ).
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Native Spaces for Positive Definite Kernels

Mercer’s theorem allows us to construct the native space/RKHS
HK (Ω) for any continuous positive definite kernel K by representing
the functions in HK as infinite linear combinations of the
eigenfunctions ϕn of the Hilbert–Schmidt integral operator K, i.e.,

HK =

{
f : f =

∞∑
n=1

cnϕn

}
.

Thus the eigenfunctions {ϕn}∞n=1 of K provide an alternative basis for
HK (Ω) instead of the standard {K (·, z) : z ∈ Ω}.
For any fixed x , the corresponding “basis transformation” is given by
the Mercer series

K (·, z) =
∞∑

n=1

λnϕnϕn(z).

This shows that indeed K (·, z) ∈ HK (Ω).
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Native Spaces for Positive Definite Kernels

The inner product for HK (Ω) can now be written as

〈f ,g〉HK (Ω) =

〈 ∞∑
m=1

cmϕm,

∞∑
n=1

dnϕn

〉
HK (Ω)

=
∞∑

n=1

cndn

λn
,

where we used the fact that the eigenfunctions are not only
L2-orthonormal, but also orthogonal in HK (Ω), i.e.,

〈ϕm, ϕn〉HK (Ω) =
δmn√
λm
√
λn
.
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Native Spaces for Positive Definite Kernels

We can also verify that K is indeed the reproducing kernel of HK since
the Mercer series of K and the orthogonality of the eigenfunctions
imply

〈f ,K (·,x)〉HK (Ω) =

〈 ∞∑
m=1

cmϕm,

∞∑
n=1

λnϕnϕn(x)

〉
HK (Ω)

=
∞∑

n=1

cnλnϕn(x)

λn

=
∞∑

n=1

cnϕn(x)

= f (x).
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Native Spaces for Positive Definite Kernels

Finally (cf. [Wen05]), we can also describe the RKHS HK as

HK (Ω) =

{
f ∈ L2(Ω) :

∞∑
n=1

1
λn
|〈f , ϕn〉L2(Ω)|2 <∞

}

with inner product

〈f ,g〉HK (Ω) =
∞∑

n=1

1
λn
〈f , ϕn〉L2(Ω)〈g, ϕn〉L2(Ω), f ,g ∈ HK (Ω).

Remark
Since HK (Ω) is a subspace of L2(Ω) this latter interpretation
corresponds to the identification of the coefficients in the eigenfunction
expansion of an f ∈ HK (Ω) with the generalized Fourier coefficients of
f , i.e., cn = 〈f , ϕn〉L2(Ω).
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Finally (cf. [Wen05]), we can also describe the RKHS HK as

HK (Ω) =

{
f ∈ L2(Ω) :

∞∑
n=1

1
λn
|〈f , ϕn〉L2(Ω)|2 <∞

}

with inner product

〈f ,g〉HK (Ω) =
∞∑

n=1

1
λn
〈f , ϕn〉L2(Ω)〈g, ϕn〉L2(Ω), f ,g ∈ HK (Ω).

Remark
Since HK (Ω) is a subspace of L2(Ω) this latter interpretation
corresponds to the identification of the coefficients in the eigenfunction
expansion of an f ∈ HK (Ω) with the generalized Fourier coefficients of
f , i.e., cn = 〈f , ϕn〉L2(Ω).
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Examples of Native Spaces for Popular RBFs

The theorem characterizing the native spaces of translation invariant
functions on all of Rd shows that these spaces can be viewed as a
generalization of standard Sobolev spaces.

For m > d/2 the Sobolev space W m
2 can be defined as (see, e.g.,

[AF03])

W m
2 (Rd ) = {f ∈ L2(Rd ) ∩ C(Rd ) : f̂ (·)(1 + ‖ · ‖22)m/2 ∈ L2(Rd )}. (2)

Remark
One also frequently sees the definition

W m
2 (Ω) = {f ∈ L2(Ω) ∩ C(Ω) : Dαf ∈ L2(Ω) for all |α| ≤ m, α ∈ Nd},

(3)
which applies whenever Ω ⊂ Rd is a bounded domain.
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Examples of Native Spaces for Popular RBFs

Example

Using the notation r = ‖x‖ and modified Bessel functions of the
second kind Kd/2−β, the Matérn kernels

κβ(r) =
Kd/2−β(r)

rd/2−β , β >
d
2
,

have Fourier transform

κ̂β(‖ω‖) =
(

1 + ‖ω‖2
)−β

.

So it can immediately be seen that their native space is

NK (Rd ) = W β
2 (Rd ) with β > d/2,

which is why some people refer to the Matérn kernels as Sobolev
splines.
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Examples of Native Spaces for Popular RBFs

The native spaces for Gaussians is rather small.

Example
According to the Fourier transform characterization of the native space,
for Gaussians the Fourier transform of f ∈ NΦ(Ω) must decay faster
than the Fourier transform of the Gaussian (which is itself a Gaussian).

The native space of Gaussians was recently characterized in [FY11] in
terms of an (infinite) vector of differential operators. In fact, the native
space of Gaussians is contained in the Sobolev space W m

2 (Rd ) for any
m.

It is known that, even though the native space of Gaussians is small, it
contains the important class of so-called band-limited functions, i.e.,
functions whose Fourier transform is compactly supported.

Band-limited functions play an important role in sampling theory.
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