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Brief Introduction to Kriging

Kriging

The kriging approach comes from geostatistics and is named after the
South African mining engineer Danie Krige, who used this method in
his work creating gold ore distributions from a collection of ore
samples [Kri51].

The method was given a solid mathematical foundation and seen to be
an optimal linear prediction method by the French mathematician and
geostatistician Georges Matheron [Mat65].

Part of our exposition follows the paper [SWMW89] in which the kriging
method was introduced into the design of experiments context.
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Brief Introduction to Kriging

Kriging (cont.)

Main task:
Use the values y1, . . . , yN sampled at locations x1, . . . ,xN

to predict the unknown value y(x) at a location x (which is not
among the sampling locations).

This looks just like the scattered data interpolation/approximation
problem.

But now we take the stochastic point of view, i.e., we assume that the
data are observed as realizations yx i , i = 1, . . . ,N, of the random
variables Yx i belonging to a random field Y .

Thus the prediction
M
yx will also be a realization of a random variable.
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Brief Introduction to Kriging

Remark
The data might contain a random measurement error (such as the gold
ore samples in the original application of Krige), or it might not (such
as in the computer experiments of [SWMW89]).

Even though we use a stochastic framework, the method can be
applied to deterministic problems.
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Random Fields and Random Variables

Random Fields and Random Variables

The definition of a random field/stochastic process on the following
slide requires the notion of a

probability space (W,A,P),

where
W: sample space containing all possible outcomes,
A: σ-algebra containing the collection of all events, i.e., a set

of subsets ofW,
P: probability measure.

Remark
In the probability literature the sample space is usually denoted by Ω,
but we already use Ω as the domain for the spatial variables (the
“parameter space” in probability, see next slide).
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Random Fields and Random Variables

Definition (Random field)

Given a probability space (W,A,P) and an underlying parameter
space Ω, a function Y : Ω×W → R, i.e., (x , ω) 7→ Y (x , ω), is called a
random field if, for every fixed x ∈ Ω, Y is an A-measurable function of
ω ∈ W.

Remark
Stochastic process (instead of random field) is common
terminology — especially when the parameter space is viewed as
“time” or “space-time”.
In the statistics literature the parameter space is often denoted by
T , and the random variables by Xt .
We use Ω and Yx since this agrees better with our usual
(numerical analysis) notation.
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Random Fields and Random Variables

Notation:
random field: Y = {Yx}x∈Ω

random variable: Yx = Y (x , ·), where x ∈ Ω is fixed. A random
variable is a function of the random argument ω ∈ W.

sample path: y(·) = Y (·, ω), where ω ∈ W is fixed. A sample path is a
deterministic function of x ∈ Ω, also called a realization of
the random field.

Remark
A random field is just a collection of random variables.
A random field can also be viewed as a distribution over sample
paths.
It is common to omit the dependence on ω from the notation used
for the random variable Yx . Unfortunately, random fields are often
denoted using the same notation. This makes for confusing
notation.
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Random Fields and Random Variables

Remark
We can also look at a realization of a random variable, yx :

start with a random field Y
fix x to get the random variable Yx
then fix ω.

Alternatively, we can evaluate a sample path, y(x):
start with a random field Y
fix ω to obtain a deterministic function y
then fix x .

The numbers yx and y(x) are identical (provided the same x and ω
were used).
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Random Fields and Random Variables

Mean and Variance

The moments of a random field Y provide useful information.

The first moment of a random field Y , called expectation or mean, is a
function given by

µ(x) = E[Yx ] =

∫
W

Yx (ω) dP(ω) =

∫ ∞
−∞

y dFYx (y),

where FYx is the cumulative distribution function (CDF) of the random
variable Yx with respect to the probability measure P.
If FYx has a density pYx such that FYx (y) =

∫ y
−∞ pYx (z) dz then

µ(x) =

∫ ∞
−∞

ypYx (y) dy .

The second moment is called the variance and is given by

σ2(x) = E[Y 2
x ]− E[Yx ]2 = E[Y 2

x ]− µ2(x).
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Random Fields and Random Variables

Covariance Kernel

More generally, the covariance kernel K of Y is defined via

K (x , z) = Cov(Yx ,Yz) = E [(Yx − µ(x))(Yz − µ(z))]

= E [(Yx − E[Yx ])(Yz − E[Yz ])]

= E [YxYz − YxE[Yz ]− E[Yx ]Yz + E[Yx ]E[Yz ]]

= E[YxYz ]− E[Yx ]E[Yz ]− E[Yx ]E[Yz ] + E[Yx ]E[Yz ]

= E[YxYz ]− E[Yx ]E[Yz ] = E[YxYz ]− µ(x)µ(z).

Therefore, the variance

σ2(x) = E[Y 2
x ]− µ2(x)

corresponds to the “diagonal” of the covariance, i.e.,

σ2(x) = K (x ,x).
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Random Fields and Random Variables

Gaussian Random Fields

There are many different kinds of stochastic processes. We focus on
Gaussian random fields (or Gaussian processes) since they model
many natural phenomena and are relatively easy to work with. In
particular, a Gaussian random field is completely characterized by its
first two moments.

Definition
The random field Y = {Yx}x∈Ω is called a Gaussian random field if, for
any given choice of finitely many distinct points {x i}Ni=1 ⊂ Ω, the vector
of random variables Y = (Yx1 , . . . ,YxN )T has a multivariate normal
distribution with mean vector µ = E[Y ] and covariance matrix
K =

(
Cov(Yx i ,Yx j )

)N
i,j=1.

Notation:
Y ∼ N (µ,K): Y is a vector of Gaussian random variables
Y ∼ N (µ,K ): Y is a Gaussian random field
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Random Fields and Random Variables

The multivariate normal distribution has the density function

pY (y) =
1√

(2π)N det K
exp

(
−1

2
(y − µ)T K−1(y − µ)

)
,

where µ and K are defined as above.

As long as K is a strictly positive definite kernel, K will be a positive
definite matrix, and K−1 will exist.

Remark

The quadratic form (y − µ)T K−1(y − µ) is called (the square of) the
Mahalanobis distance. If µ = 0, then the kernel-based interpolanta s is
defined by the linear system Kc = y and yT K−1y = cT Kc (cf. ‖s‖2HK
computed in Chapter 2, Part 3).

aThis also holds for realizations of the kriging predictor (see later).
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RKHSs vs. Spaces Generated by Zero-Mean GRFs

HK vs. HY

We now have two different ways to view scattered data:
1 values yi = f (x i) of a deterministic function f ∈ HK , or
2 values yi = y(x i) of a sample path y(·) of a zero-mean random

field Y .

This gives rise to a duality that goes back to Parzen’s work
[Par61, Par70].

The restriction to zero-mean random fields is not necessary but it
simplifies much of the following discussion.
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RKHSs vs. Spaces Generated by Zero-Mean GRFs

Remark
To understand (and differentiate between) these two view points we
need to note that (see, e.g., [Wah90, Chapter 1])

f ∈ HK is generally a smooth function,
a sample path y(·) of a stochastic process Y is in general not
smooth.

So these are indeed different view points.

Example (Brownian motion)

HK (Ω) = H1(0,1), the standard Sobolev space of functions
whose first derivative is square integrable, i.e., f is differentiable
except on a set of measure zero.
A typical sample path is nowhere differentiable.

The process Y (as opposed to its sample paths) does have certain
smoothness properties that are tied to the smoothness of the kernel K
(see [BTA04] for more details).

fasshauer@iit.edu MATH 590 – Chapter 4 18

http://math.iit.edu/~fass


RKHSs vs. Spaces Generated by Zero-Mean GRFs

Remark
To understand (and differentiate between) these two view points we
need to note that (see, e.g., [Wah90, Chapter 1])

f ∈ HK is generally a smooth function,
a sample path y(·) of a stochastic process Y is in general not
smooth.

So these are indeed different view points.

Example (Brownian motion)

HK (Ω) = H1(0,1), the standard Sobolev space of functions
whose first derivative is square integrable, i.e., f is differentiable
except on a set of measure zero.
A typical sample path is nowhere differentiable.

The process Y (as opposed to its sample paths) does have certain
smoothness properties that are tied to the smoothness of the kernel K
(see [BTA04] for more details).

fasshauer@iit.edu MATH 590 – Chapter 4 18

http://math.iit.edu/~fass


RKHSs vs. Spaces Generated by Zero-Mean GRFs

Remark
To understand (and differentiate between) these two view points we
need to note that (see, e.g., [Wah90, Chapter 1])

f ∈ HK is generally a smooth function,
a sample path y(·) of a stochastic process Y is in general not
smooth.

So these are indeed different view points.

Example (Brownian motion)

HK (Ω) = H1(0,1), the standard Sobolev space of functions
whose first derivative is square integrable, i.e., f is differentiable
except on a set of measure zero.
A typical sample path is nowhere differentiable.

The process Y (as opposed to its sample paths) does have certain
smoothness properties that are tied to the smoothness of the kernel K
(see [BTA04] for more details).

fasshauer@iit.edu MATH 590 – Chapter 4 18

http://math.iit.edu/~fass


RKHSs vs. Spaces Generated by Zero-Mean GRFs

In Chapter 2 we saw that the RKHS HK is the set of all linear
combinations of “translates” of K together with their native space norm
limits.

Now we define a Hilbert space HY as the set of all linear combinations
of random variables Yx of the zero-mean random field Y = {Yx}x∈Ω

together with their L2(W,A,P)-limits.
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RKHSs vs. Spaces Generated by Zero-Mean GRFs

Loève’s Representation Theorem

In spite of the differences mentioned above, Loève’s representation
theorem provides an isometry between the RKHS HK and the Hilbert
space HY generated by the zero-mean Gaussian random field Y (see,
e.g., [BTA04, Chapter 2]).

It follows from this theorem that the values of the two corresponding
inner products are identical and coupled by K :

〈Yx ,Yz〉HY = E[YxYz ] = K (x , z) = 〈K (·,x),K (·, z)〉HK .
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RKHSs vs. Spaces Generated by Zero-Mean GRFs

A mapping from HK to HY is established by identifying

kj(·) = K (·,x j), x j ∈ Ω, j = 1,2, . . .

with eigenfunctions ϕn, n = 1,2, . . ., of the covariance kernel K of Y .

Using Mercer’s theorem and the KL theorem, we can use ϕn and λn to
represent both functions f ∈ HK and sample paths y ∈ HY as
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RKHSs vs. Spaces Generated by Zero-Mean GRFs

Remark
The above duality is not limited to point evaluation and can be
extended in various ways.

It can be extended to arbitrary linear functionals (see [Wah90] or
[See04])

This provides a stochastic interpretation of numerical analysis
problems such as Hermite interpolation, or collocation solution of
PDEs.
For example, [MKGL96] discusses kriging when derivative
information is available.

It can be extended to cover non-centered, non-Gaussian
processes (see [BTA04, Chapter 2]).
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Modeling and Prediction via Kriging

Outline

1 Brief Introduction to Kriging
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Modeling and Prediction via Kriging

Flavors of Kriging

Many different variants of kriging can be found in the literature, e.g.
simple kriging: for zero-mean or centered random fields Y , i.e.,

µ(x) = E[Yx ] = 0; uses positive definite covariance
kernel.

If the process/data is not centered, then one can
either center the data in a preprocessing step and
use simple kriging, or use

universal kriging: also uses a positive definite covariance kernel and
adds a deterministic polynomial term to model the trend
(or mean)

If the mean is modeled by only a constant, then the
method is called ordinary kriging.

intrinsic kriging: uses intrinsic random functions and generalized
covariance functions [Mat73] (similar to conditionally
positive definite translation-invariant kernels)

We focus on simple kriging.
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Modeling and Prediction via Kriging Kriging as best linear unbiased predictor

Kriging: a regression approach

Assume: the approximate value of a realization of a zero-mean
(Gaussian) random field is given by a linear predictor of the form

M

Yx =
N∑

j=1

Yx j wj(x) = w(x)T Y ,

where
M

Yx and Yx j are random variables, Y = (Yx1 , . . . ,YxN )T , and
w(x) = (w1(x), . . . ,wN(x))T is a vector of weight functions at x .

Since all of the Yx j have zero mean the predictor
M

Yx is automatically
unbiased.
Goal: to compute “optimal” weights

?
wj(·), j = 1, . . . ,N. To this end,

consider the mean-squared error (MSE) of the predictor, i.e.,

MSE(
M

Yx ) = E
[(

Yx −w(x)T Y
)2
]
.

We now present details (see also, e.g., [SWMW89, BTA04]).
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Modeling and Prediction via Kriging Kriging as best linear unbiased predictor

Let’s work out the MSE:

MSE(
M

Yx ) = E
[(

Yx −w(x)T Y
)2
]

= E[YxYx ]− 2E[Yxw(x)T Y ] + E[w(x)T YY T w(x)]

Now use E[YxYz ] = K (x , z) (since Y is centered):

MSE(
M

Yx ) = K (x ,x)− 2w(x)T k(x) + w(x)T Kw(x),

where
k(x) = (k1(x), . . . , kN(x))T : with kj(x) = K (x ,x j) = E[YxYx j ]

K: the covariance matrix has entries K (x i ,x j) = E[Yx i Yx j ]

Finding the minimum MSE is straightforward.1 Differentiation and
equating to zero yields

−2k(x) + 2Kw(x) = 0,

and so the optimum weight vector is
?
w(x) = K−1k(x).

1

This is a quadratic form in w(x) and thus convex.
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Modeling and Prediction via Kriging Kriging as best linear unbiased predictor

We have shown that the (simple) kriging predictor

M

Yx = k(x)T K−1Y

is the best (in the MSE sense) linear unbiased predictor (BLUP).

Since we are given the observations y as realizations of Y we can
compute the prediction

M
yx = k(x)T K−1y .

Notice that this is formally identical to the kernel interpolant!
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Modeling and Prediction via Kriging Kriging as best linear unbiased predictor

The MSE of the kriging predictor with optimal weights
?
w(·),

E
[(

Yx −
M

Yx

)2
]

= K (x ,x)− k(x)T K−1k(x),

is known as the kriging variance.

Remark
1 We will see later that the kriging variance is formally identical to

the square of the power function at x , an important quantity in
error estimates for kernel-based interpolation.

2 For Gaussian random fields the BLUP is also the best nonlinear
unbiased predictor (see, e.g., [BTA04, Chapter 2]).
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Modeling and Prediction via Kriging Kriging as best linear unbiased predictor

Remark
1 The simple kriging approach just described is precisely how Krige

introduced the method:
The unknown value to be predicted is given by a weighted average
of the observed values, where the weights depend on the prediction
location.
Usually one assigns a smaller weight to observations further away
from x .

The latter statement implies that one should be using kernels
whose associated weights decay away from x . Positive definite
translation invariant kernels have this property.

2 The more advanced kriging variants are discussed in papers such
as [SWMW89, SSS13], or books such as [Cre93, Ste99, BTA04].
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Modeling and Prediction via Kriging Bayesian Framework

Kriging: a Bayesian approach

The use of a Bayesian perspective within numerical analysis was
discussed by Persi Diaconis [Dia88], who suggests that such ideas
were already entertained by Henri Poincaré [Poi96].

Formulating Gaussian processes within a Bayesian framework is
attractive because they are hierarchical in nature and relatively easy to
implement.

Once we have done this, we can apply powerful statistical methods
such as maximum likelihood estimation, confidence intervals, and
Bayesian inference.
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Modeling and Prediction via Kriging Bayesian Framework

Bayes’ rule

The definition of conditional density allows us to express the joint
density of the predicted value

M
yx and the vector y of observations as

pYx ,Y (
M
yx ,y) = pYx |Y (

M
yx |Y = y)pY (y) = pY |Yx (y |Yx =

M
yx )pYx (

M
yx ).

This immediately gives rise to Bayes’ rule

pYx |Y (
M
yx |Y = y) =

pY |Yx (y |Yx =
M
yx )pYx (

M
yx )

pY (y)
,

where
pYx |Y (

M
yx |Y = y): posterior density for the prediction

pY |Yx (y |Yx =
M
yx ): likelihood of the prediction, also denoted by L(

M
yx ; y)

indicates how compatible the prediction
M
yx is with the data

pYx (
M
yx ): prior density which we assume to be uninformed

pY (y): evidence (on which we have no influence)
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We want to maximize the likelihood. Using the definitions of likelihood
and joint density we get

L(
M
yx ; y) = pY |Yx (y |Yx =

M
yx ) = 1

pYx (
M
yx )

pYx ,Y (
M
yx ,y) ∝ pYx ,Y (

M
yx ,y),

i.e., the likelihood is proportional to the joint probability.

Since our random field is zero-mean Gaussian we have

L(
M
yx ; y) ∝ pYx ,Y (

M
yx ,y) =

1√
(2πσ2)N det K̃

exp
(
− 1

2σ2 ỹT K̃−1ỹ
)
,

where ỹ =

( M
yx
y

)
, K̃ =

(
K (x ,x) k(x)T

k(x) K

)
and σ2 is the process

variance.
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Modeling and Prediction via Kriging Bayesian Framework

Now we want to find the prediction
M
yx that maximizes the likelihood.

It’s more convenient to minimize the negative log-likelihood, i.e., find
M
yx

such that

− log L(
M
yx ; y) =

N
2

log(2πσ2) +
1
2

log det K̃ +
ỹT K̃−1ỹ

2σ2 + const.

is minimized.

The only term that depends on
M
yx is the quadratic form

Q(ỹ) =
ỹT K̃−1ỹ

2σ2 .
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2σ2 .

fasshauer@iit.edu MATH 590 – Chapter 4 33

http://math.iit.edu/~fass


Modeling and Prediction via Kriging Bayesian Framework

We will need to use the Schur complement representation of the
inverse of a block matrix:

K̃−1 =

(
K (x ,x) k(x)T

k(x) K

)−1

=

(
A B

BT C

)
,

where

A =
1

K (x ,x)− k(x)T K−1k(x)
,

B = − k(x)T K−1

K (x ,x)− k(x)T K−1k(x)
,

C = K−1 +
K−1k(x)k(x)T K−1

K (x ,x)− k(x)T K−1k(x)
.

All blocks of K̃−1 are guaranteed to exist whenever K is a strictly
positive definite covariance kernel.
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If we substitute the Schur complement formula into the quadratic form

Q(ỹ) =
ỹT K̃−1ỹ

2σ2

we get

Q(ỹ) =
1

2σ2

(
M
y2

x A + 2
M
yxBy + yT Cy

)
.

Differentiating with respect to
M
yx and equating the result to zero yields

A
M
yx + By = 0

⇐⇒
M
yx

K (x ,x)−k(x)T K−1k(x)
− k(x)T K−1y

K (x ,x)−k(x)T K−1k(x)
= 0.

Therefore the optimal prediction is

M
yx = k(x)T K−1y ,

just as we derived earlier with the regression approach.
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Modeling and Prediction via Kriging Bayesian Framework

Remark
The process variance dropped out when we obtained the optimal
prediction. However, the process variance does play a role in
determining optimal parameters in the covariance kernel K . We
will come back to this idea later.

The Bayesian setting in which we have performed this derivation
also tells us that

M
yx is the posterior mean and
the posterior variance is given by K (x ,x)− k(x)T K−1k(x), the
kriging variance.
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Karhunen–Loève Expansions and Polynomial Chaos

Karhunen–Loève Expansions

The Karhunen–Loève theorem was presented in Chapter 2.

The KL expansion is especially useful for practical applications such as
SPDEs since it separates the random component of the process from
a deterministic component.

In practice, a truncated KL expansion is used. This truncated
expansion is optimal in the MSE sense, i.e., an M-term KL expansion
is the best M-term approximation of Y in the MSE sense.

On the other hand, usually the random field Y is unknown and so the
random variables Zn must be simulated as i.i.d. random variables
following the distribution of Y .

The eigenfunctions ϕn and eigenvalues λn of K may also be unknown,
in which case a numerical method is required to solve the
Hilbert–Schmidt integral eigenvalue problem.
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Karhunen–Loève Expansions and Polynomial Chaos

The KL expansion is frequently used to model random coefficients in
stochastic systems.

However, the solution itself is generally not modeled by KL since the
covariance of the solution is assumed to be unknown.

In such cases one frequently uses (generalized) polynomial chaos to
approximate functionals of random variables.

According to [NX12], algorithms for obtaining generalized polynomial
chaos expansions for the solution of PDEs come in two flavors:

“intrusive” Galerkin methods, which require lots of effort to modify
existing deterministic codes
“nonintrusive” collocation methods, which require a minimal
amount of coding overhead.

If the dependence on the random inputs is smooth one may be able to
exploit the spectral accuracy of certain collocation methods (see
[CFY12] for similar insights).
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