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Introduction

Mathematicians usually prove properties (e.g., convergence rates) of
numerical methods under the assumption that the method is applied to
functions (or data sampled from a function) in some specific function
space.

Some examples are
f ∈ Ck (Ω), spaces of certain Hölder smoothness
f ∈ Hk (Ω) = W k

2 (Ω), Sobolev spaces
f ∈ HK (Ω), reproducing kernel Hilbert spaces

The last example is not “standard”, and so we would like to relate it to
one or both of the others.

We will refine the concept of Sobolev spaces by adding a notion of
scale.
Our spaces will not only emphasize sets of functions (i.e., with the
same smoothness properties), but different structure (i.e., with different
inner products/norms).
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Introduction

Why might introducing scale be a good idea?

We have already seen that kriging leads to BLUPs, i.e.,
kernel-based interpolation is optimal.
In the next chapter we will show that the kernel interpolant
minimizes the native space norm.
In Chapter 2 we said that it is difficult to understand the native
space norm (sometimes Fourier transforms can be used).
Now we will show that we can design this norm via the inner
product (which in turn comes from the differential operator that
defines a Green’s kernel).
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Introduction

Weighted Sobolev spaces

[NW08, Appendix A.2.1] discusses three different examples of
weighted Sobolev spaces:

The set of functions is always the same, i.e., absolutely
continuous real functions on [0,1] with first derivative in L2([0,1])
or f ∈ H1([0,1]).

The three spaces differ in their inner products, and therefore their
norms. This produces weighted Sobolev spaces H1,ε([0,1]).
The spaces are algebraically identical, but differ topologically
since they are equipped with different norms.

The first example is due to [TA96], the other two follow from [Hic98].
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Introduction

Example (First weighted Sobolev space)

The norm for the first example is induced by the inner product

〈f ,g〉H1,ε([0,1]) =

∫ 1

0
f ′(x)g′(x)dx + ε2

∫ 1

0
f (x)g(x)dx .

The reproducing kernel for this example is given by

K (x , z) =
cosh(εmin(x , z)) cosh(ε(1−max(x , z)))

ε sinh(ε)

and the eigenvalues and eigenfunctions are

λn =
1

ε2 + ((n − 1)π)2 , n = 1,2, . . .

ϕn(x) =
√

2 cos ((n − 1)πx) .

Note λ1 = 1/ε2 and ϕ1(x) = 1.
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Introduction

Remark
This example is different from the generalized Brownian bridge kernel
K1,ε.

While the inner products are the same for the two cases, the boundary
conditions are different (just look at the eigenfunctions; sines vs.
cosines).

For the Brownian bridge kernel the RKHS is the homogeneous space
H1,ε

0 ([0,1]), while here we have H1,ε([0,1]).
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Introduction

Example (Second weighted Sobolev space)
Now the inner product is

〈f ,g〉H1,ε([0,1]) =

∫ 1

0
f ′(x)g′(x)dx + ε2f (a)g(a),

where a ∈ [0,1] is referred to as an anchor.
The reproducing kernel is given by

K (x , z) = 1 +
ε2

2
(|x − a|+ |z − a| − |x − z|) ,

with special cases
a = 0: K (x , z) = 1 + ε2 min(x , z)

a = 1: K (x , z) = 1 + ε2 min(1− x ,1− z)
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Introduction

Remark
These kernels will always be piecewise linear, for any choice of ε and
anchor a.

However, for values of 0 < a < 1 this kernel appears to be less useful
since multivariate integration based on a tensor product of this kernel
was proven to be intractable in [NW01].
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Introduction

Example (Third weighted Sobolev space)
This time we use the inner product

〈f ,g〉H1,ε([0,1]) =

∫ 1

0
f ′(x)g′(x)dx + ε2

∫ 1

0
f (x)dx

∫ 1

0
g(x)dx ,

which uses the product of the averages of f and g over [0,1] instead of
their L2 inner product as for the first example.
The reproducing kernel is given by

K (x , z) = 1 +
ε2

2

(
B2(|x − z|) + 2(x − 1

2
)(z − 1

2
)

)
,

where B2 is the Bernoulli polynomial of degree 2, i.e.,
B2(x) = x2 − x + 1

6 .
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Introduction

Copies of reproducing kernels for the three weighted
Sobolev spaces H1,ε([0,1])

The first weighted kernel (left) uses ε = 10, the other two use ε = 1,
and the second weighted kernel (middle) uses a = 1

2 .
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Generalized Sobolev Spaces in a Nutshell

Our approach depends on the ability to identify a linear self-adjoint
differential operator L that corresponds to a given Green’s kernel K or
vice versa.

This means that we try to understand the generalized Sobolev space
by either

starting with a known kernel and then identifying its differential
operator (and subsequently the inner product and norm in the
associated Sobolev space as described below)
starting with a differential operator (which again defines an inner
product and a norm in the generalized Sobolev space) and then
getting the reproducing kernel as the corresponding Green’s
kernel.

The latter approach is most likely the easier one, and we follow that
here.
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Generalized Sobolev Spaces in a Nutshell

Given a linear self-adjoint differential operator L, we decompose it into

L = P∗P,

with an appropriate differential operator P and its formal adjoint P∗.

Example (Brownian bridge kernel)

Start with L = −D2, so that P = D and P∗ = −D.
The inner product will turn out to be

〈f ,g〉HK =

∫ 1

0
Pf (x)Pg(x)dx =

∫ 1

0
f ′(x)g′(x)dx .
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Generalized Sobolev Spaces in a Nutshell

Remark
The decomposition of L is not unique.

Example

Consider L =
(
−D2 + ε2I

)3 (for ε = 0→ quintic splines).

This operator can be decomposed in two different ways as

L =
(
−D3 + 3εD2 − 3ε2D + ε3I

)(
D3 + 3εD2 + 3ε2D + ε3I

)
=
(
−D3 − εD2 + ε2D + ε3I

)(
D3 − εD2 − ε2D + ε3I

)
.

The resulting norms will be different:

‖f‖2HK3,ε
=

∫ 1

0

(
f ′′′(x) + 3εf ′′(x) + 3ε2f ′(x) + ε3f (x)

)2
dx

‖f‖2HK3,ε
=

∫ 1

0

(
f ′′′(x)− εf ′′(x)− ε2f ′(x) + ε3f (x)

)2
dx .

fasshauer@iit.edu MATH 590 16
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Generalized Sobolev Spaces in a Nutshell

We now present a rigorous framework for 1D bounded domains.

A theoretical framework supporting for more general vector
distributional operators is provided in [FY11, FY13].

The paper [FY11] contains the theory for generalized Sobolev
spaces on the unbounded domain Rd .
The more complicated setting with bounded domains is the
subject of [FY13].

We will not bother with this distributional setting.

Remark
Similar to the weighted Sobolev spaces, our generalized Sobolev
spaces will in some cases be equivalent to a common classical
Sobolev space Hβ(Ω), i.e., they all consist of the same sets of
functions, but are all equipped with their own individual norms.
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Generalized Sobolev Spaces in a Nutshell

Given a bounded domain Ω and the nonhomogeneous differential
equation

Lu = f , in Ω,

Bu = g, on ∂Ω,

we want to find the reproducing kernel K of the associated generalized
Sobolev space HP,B.

Here
L = P∗P: self-adjoint linear (partial) differential operator of order 2β,

P: scalar linear (partial) differential operator of order β,
P∗: formal adjoint of P,

B = (B1, . . . ,Bnb )T : vector boundary operator of length nb,
Bj : boundary operators of order β (or lower) chosen so that

the differential equation problem is well-posed.
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Generalized Sobolev Spaces in a Nutshell

We construct two smaller reproducing kernel Hilbert spaces, HG and
HR, such that their direct sum gives us HK according to the properties
of RKHS discussed in Chapter 2.

Assuming that the boundary conditions are specified such that

null(B) ∩ null(P) = {0},

the desired direct sum decomposition of HK is provided by these two
spaces.

We therefore need to find the reproducing kernels of
HG = null(B)

HR = null(P)

along with their corresponding inner products.
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Generalized Sobolev Spaces in a Nutshell

Reproducing kernel for the null space of B

Consider the Green’s kernel G for the problem with homogeneous
BCs, i.e., for a fixed z ∈ Ω,

LG(x , z) = δ(x − z), x ∈ Ω,

BG(x , z) = 0, x ∈ ∂Ω.

For functions f ,g ∈ HG(Ω) = null(B) we define the inner product as

〈f ,g〉HG(Ω) =

∫
Ω
Pf (x)Pg(x)dx .
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Generalized Sobolev Spaces in a Nutshell

G is the reproducing kernel for HG(Ω) since for any f ∈ HG(Ω)

〈G(·, z), f 〉HG(Ω) =

∫
Ω
PG(x , z)Pf (x)dx

= B(PG(·, z), f )(x)|x∈∂Ω +

∫
Ω
P∗PG(x , z)f (x)dx

=

∫
Ω
P∗PG(x , z)f (x)dx =

∫
Ω
LG(x , z)f (x)dx

=

∫
Ω
δ(x − z)f (x)dx = f (z).

Here we have used something akin to Green’s formula, i.e.,∫
Ω

(f (x)Pg(x)− g(x)P∗f (x)) dx = B(f ,g)(x)|x∈∂Ω,

where B is called the bilinear concomitant which is coupled to the
boundary operator B (see, e.g., [SV67] for the 1D setting of L-splines).
Since f ∈ null(B) we have that B(PG(·, z), f )(x)|x∈∂Ω = 0.
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Generalized Sobolev Spaces in a Nutshell

Reproducing kernel for the null space of P

We now consider HR = null(P) and note that this space has finite
dimension na (since the order of P is β).

Let {ψ1, . . . , ψna} be an orthonormal basis of null(P) with respect to
the boundary inner product

〈f ,g〉HR(∂Ω) =

nb∑
j=1

〈Bj f ,Bjg〉∂Ω.

Remark
The inner product 〈f ,g〉∂Ω must be defined by the user, and the choice
of inner product will have an impact on the native space of K .
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Generalized Sobolev Spaces in a Nutshell

Then we define

R(x , z) =
na∑

k=1

ψk (x)ψk (z)

and see that R is the reproducing kernel of null(P) since any
f ∈ null(P) can be expressed as f (·) =

∑na
`=1 a`ψ`(·) so that we have

〈R(·, z), f 〉HR(∂Ω) =

nb∑
j=1

〈
Bj

( na∑
k=1

ψk (·)ψk (z)

)
,Bj

( na∑
`=1

a`ψ`(·)

)〉
∂Ω

=
na∑

k=1

ψk (z)
na∑
`=1

a`
nb∑

j=1

〈Bjψk (·),Bjψ`(·)〉∂Ω

=
na∑

k=1

ψk (z)
na∑
`=1

a`〈ψk , ψ`〉HR(∂Ω) =
na∑

k=1

ψk (z)
na∑
`=1

a`δk ,`

=
na∑

k=1

akψk (z) = f (z).
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Generalized Sobolev Spaces in a Nutshell

Reproducing kernel of the generalized Sobolev space
HP,B
Altogether, we have

K (x , z) = G(x , z) + R(x , z) = G(x , z) +
na∑

k=1

ψk (x)ψk (z),

where G is the Green’s kernel of L with respect to the homogeneous
boundary conditions given by B.

The inner product in HP,B is also given by the sum of the inner
products, i.e.,

〈f ,g〉HP,B(Ω) = 〈f ,g〉HG(Ω) + 〈f ,g〉HR(∂Ω)

=

∫
Ω
Pf (x)Pg(x)dx +

nb∑
j=1

〈Bj f ,Bjg〉∂Ω.
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Generalized Sobolev Spaces in a Nutshell

Remark
The exposition in [RS05, Chapter 20] (see also [BTA04,
Chapter 6, Section 1.6.2]) is for ordinary differential equations with
appropriate initial conditions and reflects the treatment of splines
in [Wah90].

In [DR93] the constraints for the ODE are generalized to arbitrary
“boundary” conditions specified by an operator B such that
null(L) ∩ null(B) = {0}.
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Generalized Sobolev Spaces in a Nutshell

An Example — The Brownian bridge kernel, again

Consider L = −D2 = P∗P with P = D and P∗ = −D on Ω = [0,1].

As boundary operator we have B = (I|x=0, I|x=1)T , i.e., point
evaluation at x = 0 and x = 1, respectively.

The inner products for the two reproducing kernel spaces are given by

〈f ,g〉HG(Ω) =

∫ 1

0
Pf (x)Pg(x)dx =

∫ 1

0
f ′(x)g′(x)dx ,

〈f ,g〉HR(∂Ω) =
2∑

j=1

〈Bj f ,Bjg〉∂Ω = f (0)g(0) + f (1)g(1).
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Generalized Sobolev Spaces in a Nutshell

From the definitions of P and B we have

null(P) = span{1},
null(B) = {f ∈ L2([0,1]), f (0) = f (1) = 0}.

Green’s kernel of null(B): G(x , z) = min(x , z)− xz,
kernel for null(P): R(x , z) = 1

2 (since we need to normalize the
basis of null(P) with respect to the 〈·, ·〉HR(∂Ω) inner product).

Together this implies that

K (x , z) = min(x , z)− xz +
1
2

is the reproducing kernel for the generalized Sobolev space
HP,B([0,1]).
This space is isomorphic to the classical Sobolev space H1

per([0,1]).
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Generalized Sobolev Spaces in a Nutshell

However, the inner product of HP,B([0,1]) is

〈f ,g〉HP,B(Ω) =

∫ 1

0
f ′(x)g′(x)dx + f (0)g(0) + f (1)g(1),

while the standard inner product for H1
per([0,1]) is (see, e.g., [BTA04,

Chapter 7, Example 19])

〈f ,g〉H1(Ω) =

∫ 1

0
f ′(x)g′(x)dx +

∫ 1

0
f (x)dx

∫ 1

0
g(x)dx .
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Generalized Sobolev Spaces in a Nutshell

The periodicity can be deduced, e.g., by inspection or by employing
the reproducing property, i.e.,

〈K (·, z), f 〉HP,B =

∫ 1

0

d
dx

K (x , z)f ′(x)dx + K (0, z)f (0) + K (1, z)f (1)

=

∫ z

0
(1− z)f ′(x)dx +

∫ 1

z
(−z)f ′(x)dx +

f (0)

2
+

f (1)

2

= (1− z) (f (z)− f (0))− z (f (1)− f (z)) +
f (0)

2
+

f (1)

2

= f (z) +

(
z − 1

2

)
f (0) +

(
1
2
− z
)

f (1)

= f (z),

provided f (0) = f (1).
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Generalized Sobolev Spaces in a Nutshell

Remark
The space HP,B(Ω) can be embedded in the classical Sobolev space
Hβ(Ω), where β is the order of P.

HP,B(Ω) is isomorphic to Hβ(Ω) if we generate the kernel R using
null(L) instead of null(P).

We look at this setting next.

fasshauer@iit.edu MATH 590 30

http://math.iit.edu/~fass


Some Comments on More General Settings

Outline

1 Introduction

2 Generalized Sobolev Spaces in a Nutshell

3 Some Comments on More General Settings

fasshauer@iit.edu MATH 590 31

http://math.iit.edu/~fass


Some Comments on More General Settings

Using a Basis of null(L) Instead of null(P)
Up until now we assumed that

K (x , z) = G(x , z) + R(x , z) = G(x , z) +
na∑

k=1

ψk (x)ψk (z),

where
G(·, z) ∈ null(B), and
{ψk} is an ON basis of null(P).

This meant that HP,B(Ω) is equipped with the inner product

〈f ,g〉HP,B(Ω) = 〈f ,g〉HG(Ω) + 〈f ,g〉HR(∂Ω)

=

∫
Ω
Pf (x)Pg(x)dx +

nb∑
j=1

〈Bj f ,Bjg〉∂Ω.

It is also possible to take {ψk} as an ON basis of null(L).
We now discuss this case (for details see [FY13]).
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Some Comments on More General Settings

First we mention that the inner product in the case of {ψk} ∈ null(P)
can also be written as

〈f ,g〉HP,B(Ω) = 〈f ,g〉HG(Ω) +
na∑

k=1

f̂k ĝk
Iak

ak
,

where
f̂k = 〈f , ψk 〉HR(∂Ω) and ĝk = 〈g, ψk 〉HR(∂Ω)

and the ak are appropriate coefficients [FY13, Thm. 3.2 & Cor. 3.1].
Here

Ix =

{
1 if x > 0,
0 otherwise,

and 0/0 ≡ 0 (this indicator ensures that ψk does not contribute to the
inner product if ak = 0).
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Some Comments on More General Settings

Now, in the case {ψk} ∈ null(L) the inner product becomes

〈f ,g〉HP,B(Ω) = 〈f ,g〉HG(Ω) +
na∑

k=1

f̂k ĝk
Iak

ak
−

na∑
k=1

na∑
`=1

f̂k ĝk 〈ψk , ψ`〉HG(Ω)Iak a`
,

and the kernel is of the form

K (x , z) = G(x , z) + R(x , z) = G(x , z) +
na∑

k=1

akψk (x)ψk (z).

Remark
This form of the kernel is slightly more general than before since it
allows for use of nonnegative coefficients ak that can be selected by
the user.
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Some Comments on More General Settings

Another Example

We already know that the Green’s kernel for L = −D2 + ε2I with
homogeneous boundary conditions is given by

G(x , z) =

{sinh(εx) sinh(ε(1−z))
ε sinh(ε) , 0 ≤ x ≤ z ≤ 1,

sinh(εz) sinh(ε(1−x))
ε sinh(ε) , 0 ≤ z ≤ x ≤ 1.

Since we can take P = D + εI — similarly to the ε = 0 case — the
inner product in null(B) is

(f ,g)HG(Ω) =

∫ 1

0

(
f ′(x)g′(x) + ε2f (x)g(x)

)
dx .

We now look at the effects of adding a specific ON basis for null(L).
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inner product in null(B) is

(f ,g)HG(Ω) =

∫ 1

0

(
f ′(x)g′(x) + ε2f (x)g(x)

)
dx .

We now look at the effects of adding a specific ON basis for null(L).
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We can consider nullL = span{ψ̃1, ψ̃2} with

ψ̃1(x) = eεx + eε(1−x),

ψ̃2(x) = eεx − eε(1−x).

For the normalization we compute

〈ψ̃1, ψ̃1〉HR(∂Ω) = ψ̃1(0)2 + ψ̃1(1)2 = 2(eε + 1)2

〈ψ̃2, ψ̃2〉HR(∂Ω) = ψ̃2(0)2 + ψ̃2(1)2 = 2(eε − 1)2

so that

ψ1(x) =
eεx + eε(1−x)

√
2 (eε + 1)

,

ψ2(x) =
eεx − eε(1−x)

√
2 (eε − 1)

.
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If we choose the positive coefficients

a1 =
eε + 1
2εeε

, a2 =
eε − 1
2εeε

then

K (x , z) = G(x , z) +
2∑

k=1

akψk (x)ψk (z) =
1
2ε

e−ε|x−z|,

a scaled version of the C0 Matérn kernel.

The RKHS turns out to be H1(Ω) with inner-product

〈f ,g〉H1(Ω) =

∫ 1

0

(
f ′(x)g′(x) + ε2f (x)g(x)

)
dx+2ε (f (0)g(0) + f (1)g(1)) ,

where we now allow non-homogeneous BCs.
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Further Generalizations

Everything done with distribution theory using things such as
distributional Fourier transforms,
distributional adjoints,
distributional operators (allows pseudo-differential operators
instead of just differential operators).

Using vector differential operators P so that L = P∗P , e.g.

L = −D2 + ε2I with P = (D, εI)T , P∗ = (−D, εI).

null(L) not necessarily finite-dimensional, e.g., L = ∇2 on
Ω ⊆ Rd , d ≥ 2.
Full space instead of bounded domains.
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Multivariate Full-space Kernels

The general Matérn kernels are of the form

K (x , z)
.

= Kβ−d/2 (ε‖x − z‖) (ε‖x − z‖)β−d/2
, β >

d
2
,

where Kβ−d/2 are modified Bessel functions of the second kind.
The Matérn kernels can be obtained as Green’s kernels of

L =
(
−∆ + ε2I

)β
, β >

d
2
.

We contrast this with the (conditionally positive definite) polyharmonic spline
kernels

K (x , z)
.

=

{
‖x − z‖2β−d , d odd,
‖x − z‖2β−d log ‖x − z‖, d even,

and
L = (−1)β∆β , β >

d
2
.
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