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Abstract The theories for radial basis functions (RBFs) as well as piecewise poly-
nomial splines have reached a stage of relative maturity as is demonstrated by the
recent publication of a number of monographs in either field. However, there re-
main a number of issues that deserve to be investigated further. For instance, it is
well known that both splines and radial basis functions yield “optimal” interpolants,
which in the case of radial basis functions are discussed within the so-called native
space setting. It is also known that the theory of reproducing kernels provides a com-
mon framework for the interpretation of both RBFs and splines. However, the as-
sociated reproducing kernel Hilbert spaces (or native spaces) are often not that well
understood — especially in the case of radial basis functions. By linking (condition-
ally) positive definite kernels to Green’s functions of differential operators we obtain
new insights that enable us to better understand the nature of the native space as a
generalized Sobolev space. An additional feature that appears when viewing things
from this perspective is the notion of scale built into the definition of these function
spaces. Furthermore, the eigenfunction expansion of a positive definite kernel via
Mercer’s theorem provides a tool for making progress on such important questions
as stable computation with flat radial basis functions and dimension independent
error bounds.

1 Introduction

A number of monographs and survey papers dealing with splines, radial basis func-
tions and, more generally, reproducing kernels, have appeared in recent years. The
following list is representative, but certainly far from complete: [1, 3, 8, 18, 20, 29,
34, 39, 40, 41, 43]. Even though (or precisely because) there is regrettably little in-
teraction between different mathematical communities, we have included references
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from approximation theory as well as probability/statistics and machine learning
since reproducing kernels play a central — and perhaps increasing — role in all of
these communities.

In this paper we will address several questions that — to our knowledge — have
not been addressed sufficiently in the existing literature. The first few questions
center around the notion of an RBF native space (to be defined below). We will
recall existing interpretations and claim that most of them are not very “intuitive”.
This has, in fact, been a point of criticism of RBF methods. What are these native
spaces, and what kind of functions do they contain? How do they relate to classical
function spaces such as Sobolev spaces? We try to shed some light on this topic by
discussing recent work of [12, 44] in Section 2.

Another set of questions is related to the role of scale. RBF practitioners have
known for a long time that the proper scaling of the basis functions plays a very im-
portant role. It might affect the accuracy of an approximation, its numerical stability
and its efficiency. Should a notion of scale be included in the definition of the native
space? Our framework of Section 2 does indeed provide a natural way of doing this.

An appropriate scaling of the kernel has been used to establish a connection be-
tween infinitely smooth RBFs and polynomial interpolants in the literature (see Sec-
tion 3 and the references listed there). If the kernels are “flat”, we get convergence
of RBF interpolants to polynomial interpolants. We will report on a recent investi-
gation [38] that reveals a similar connection between RBFs of limited smoothness
and piecewise polynomial splines.

Even though researchers have struggled for many years with the ill-conditioning
of RBF systems, relatively little progress has been made in this direction. For uni-
variate piecewise polynomial splines it is well known that moving from the basis
of truncated power functions to the B-spline basis provides well-conditioned, and
even banded, matrices. Aside from some scattered work on preconditioning of RBF
systems, only Bengt Fornberg together with his co-workers has tackled this problem
with some success. We are especially motivated by their RBF-QR idea [14, 15] and
will provide some of our own thoughts on this approach in Section 4.

Finally, many papers on rates of convergence of the RBF approximation method
exist in the literature. However, none of these papers address the question of
dimension-dependence of these bounds. In fact, it is quite obvious that all of the ex-
isting bounds suffer from the curse of dimensionality. In Section 5 we review recent
work [9] on dimension-independent error bounds for RBF approximation methods.

It turns out that a unifying theme underlying all of these questions is the notion
of Green’s functions and eigenfunction expansions. Therefore, these topics will be
reviewed in the next section. Connections between either splines and Green’s func-
tions or radial basis functions and Green’s functions have repeatedly been made
over the past decades (see, e.g., [4, 7, 19, 25, 27, 28, 37, 41]). However, many of
the connections presented in the following seem to go beyond the discussion in the
existing literature. Throughout the paper we will use (simple) examples to illustrate
the various topics.
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2 Toward an Intuitive Interpretation of Native Spaces

2.1 What is the current situation?

Even though piecewise polynomial splines and radial basis functions are conceptu-
ally very similar (some people do not even distinguish between the two and use the
term spline to refer to either method), there are relatively few intersections in the lit-
erature on these two approximation methods. Perhaps the most prominent common
feature of the two methods is given by the fact that they both yield minimum norm
interpolants (see, e.g., [2, 8, 37, 43]). In fact, it is precisely this property that led
Schoenberg to refer to piecewise polynomial univariate approximating functions as
splines [36].

To begin with a specific example, we recall that the natural spline s f ,2m of order
2m provides the smoothest interpolant to data sampled from any function f in the
Sobolev space Hm(a,b) of functions whose mth derivative is square integrable on
[a,b] and whose derivatives of orders m through 2m− 2 vanish at the endpoints of
the interval [a,b], i.e.,

s f ,2m = argmin
f∈Hm(a,b)

{∫ b

a

[
f (m)(x)

]2
dx | f (xi) = yi, i = 1, . . . ,N,

f (`)(a) = f (`)(b) = 0, `= m, . . . ,2m−2

}
.

(1)

Now let us consider the corresponding minimum norm property as it is com-
monly found for radial basis functions, or more generally reproducing kernel inter-
polants (see, e.g., [43]). The reproducing kernel interpolant s f ,K is optimal in the
sense that it is the minimum norm interpolant to data sampled from any function f
in H (K,Ω), the reproducing kernel Hilbert space (or native space) associated with
K. This can be stated as

s f ,K = argmin
f∈H (K,Ω)

{
‖ f‖H (K,Ω) | s f ,K(xi) = f (xi), i = 1, . . . ,N

}
. (2)

While the function space Hm(a,b) that appears in (1) can be rather easily under-
stood in terms of the smoothness and boundary conditions imposed, the native space
H (K,Ω) in (2) looks a bit more cryptic. What is this mysterious native space and
how is its norm defined?

For a general positive definite kernel K and domain Ω ⊆ Rd the native space is
commonly defined as

H (K,Ω) = span{K(·,z) | z ∈Ω} ,

i.e., the native space is given by all linear combinations of — often infinitely many
— “shifts” of the kernel K. This is certainly a valid definition, but what sort of func-
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tions does H (K,Ω) contain? The literature is more specific for the case in which
we use translation invariant (in the statistics literature also referred to as stationary)
kernels on Ω =Rd , i.e., if the kernel is really a function of one variable, namely the
difference of two points, or K̃(x−z) = K(x,z). In this case, if K̃ ∈C(Rd)∩L1(Rd),
then

H (K̃,Rd) =

{
f ∈ L2(Rd)∩C(Rd) | F f√

F K̃
∈ L2(Rd)

}
,

i.e., a function f belongs to the native space H (K̃,Rd) of the kernel K̃ if the de-
cay of its Fourier transform F f relative to that of the Fourier transform F K̃ of
the kernel is rapid enough. This characterization certainly encodes some kind of
smoothness information, but it is not very intuitive. The previous material is cov-
ered in much more detail in [43].

As mentioned above, we are not only interested in understanding the type of
functions contained in the native space, but also the norm this space is equipped
with. Since both the spline and kernel spaces are Hilbert spaces it is natural to look
at their inner products. In the natural spline case this is the standard Sobolev in-
ner product whose induced norm appears in (1). What does the native space inner
product look like?

For a general positive definite kernel K on a general domain Ω we take functions
f ,g ∈H (K,Ω) and use the notation NK = dim(H (K,Ω)) for the dimension of
the native space (note that NK = ∞ is common). Then

〈 f ,g〉H (K,Ω) = 〈
NK

∑
j=1

c jK(·,x j),
NK

∑
k=1

dkK(·,zk)〉H (K,Ω) =
NK

∑
j=1

NK

∑
k=1

c jdkK(x j,zk).

Once again, one might wonder how to interpret this. As before, for translation invari-
ant kernels on Ω =Rd , i.e., K̃(x−z) = K(x,z), we can employ Fourier transforms.
Then we have

〈 f ,g〉H (K̃,Rd) =
1√
(2π)d

〈 F f√
F K̃

,
Fg√
F K̃
〉L2(Rd)

provided K̃ ∈C(Rd)∩L1(Rd) and f ,g ∈H (K̃,Rd).
Before we begin our discussion relating kernel methods to Green’s functions

— and thereby providing an interpretation of native spaces as generalized Sobolev
spaces — we mention a few examples of kernels whose native spaces already are
known to be Sobolev spaces. Since all of these kernels are radial (or isotropic) ker-
nels we introduce the notation κ(‖x−z‖) = K(x,z). This also helps us avoid confu-
sion between a kernel K and the modified Bessel function of the second kind Km−d/2
that appears below.

Matérn kernels (sometimes also called Sobolev splines, see, e.g., [8]) are of the
form

κ(r) .
= Km−d/2(r)r

m−d/2, m >
d
2
,
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where we have used the notation .
= to indicate that equality holds up to a mul-

tiplicative constant. It is quite natural to use the term Sobolev splines to refer to
these functions since their native space is given by a classical Sobolev space, i.e.,
H (κ,Rd) = Hm(Rd).

A second example is given by the entire family of Wendland’s compactly sup-
ported radial basis functions (see, e.g., [8, 43]). A popular member of this family is
of the form

κ(r) .
= (1− r)4

+(4r+1),

and its native space H (κ,R3) is norm-equivalent to the classical Sobolev space
H3(R3) (see [42]).

The family of polyharmonic splines is another famous (albeit only conditionally
positive definite) example that fits this list. These functions are of the form

κ(r) .
=

{
r2m−d , d odd,
r2m−d logr, d even,

and the native space H (κ,Rd) is a Beppo-Levi space of order m

BLm(Rd) =
{

f ∈C(Rd) |Dα f ∈ L2(Rd) for all |α|= m
}
.

We may consider this space as a homogeneous Sobolev space of order m (see [8]).
This latter example is also featured in the recent paper [4], and spherical versions

of the latter two examples are discussed in [25]. We became aware of both of these
papers only after the initial submission of our own paper and it is interesting to
note that they both use the connection between reproducing kernels and Green’s
functions as an essential ingredient to obtain their Lp approximation results.

2.2 Mercer’s theorem and eigenvalue problems

We will limit most of our discussion to positive definite kernels. A perspective on
positive definite kernels that appears quite frequently in the literature on statistical
learning (but not so much in approximation theory) is their characterization via an
eigenfunction expansion. This fact goes back many years to the early work of James
Mercer [24]. We quote here a version of this result from [29].

Theorem 1 (Mercer’s theorem). Let (Ω ,µ) be a finite measure space and K ∈
L∞(Ω

2,µ2) be a kernel such that the integral operator TK : L2(Ω ,µ)→ L2(Ω ,µ)
defined by

(TK f )(x) =
∫

Ω

K(x,z) f (z)dµ(z)

is positive definite. Let ϕn ∈ L2(Ω ,µ) be the normalized eigenfunctions of TK asso-
ciated with the eigenvalues λn > 0. Then
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1. the eigenvalues {λn}∞
n=1 are absolutely summable,

2. K(x,z) =
∞

∑
n=1

λnϕn(x)ϕn(z) holds µ2 almost everywhere, and the series con-

verges absolutely and uniformly µ2 almost everywhere.

More generally, Hilbert-Schmidt theory ensures the existence of L2-convergent
eigenfunction expansions of compact, self-adjoint operators.

We now consider a kernel K : Ω ×Ω → R on a general domain Ω and define an
inner product with positive weight function σ (instead of using the measure theoretic
notation of the theorem) as

〈 f ,g〉=
∫

Ω

f (x)g(x)σ(x)dx.

The eigenvalue problem for the integral operator TK : f 7→
∫

Ω
K(·,z) f (z)σ(z)dz

consists of finding solutions λ and ϕ of∫
Ω

K(x,z)ϕ(z)σ(z)dz = λϕ(x). (3)

This represents a homogeneous Fredholm integral equation of the 2nd kind and it is
therefore not obvious how we should go about finding the eigenvalues and eigen-
functions of TK . The idea we will pursue here is to relate the integral equation to a
differential equation which may be easier to solve.

2.3 Green’s functions and eigenfunction expansions

Green’s functions play a central role in the solution of differential equations. We
now consider the nonhomogeneous linear (ordinary or partial) differential equation

(Lu)(x) = f (x) on Ω ⊂ Rd

with a linear and elliptic operator L and some appropriate homogeneous boundary
conditions. We will be more specific about the boundary conditions later.

The solution of this differential equation can be written in terms of a Green’s
function G as

u(x) =
∫

Ω

f (z)G(x,z)dz, (4)

where the Green’s function satisfies the differential equation

(LG)(x,z) = δ (x− z).

Here δ denotes the standard delta function(al), and the point z denotes a fixed (and
arbitrary) “source”. The boundary conditions are the same as above.
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We now establish a connection between the integral operator eigenvalue prob-
lem that is needed for Mercer’s series representation of a positive definite kernel
discussed above and a related eigenvalue problem for a differential operator. For
simplicity we assume that K is a free space Green’s function for the differential
operator L, i.e., (LK)(x,z) = δ (x− z)1.

We apply the differential operator L to the integral equation (3), interchange in-
tegration and differentiation and use the definition of the Green’s function to obtain

L
∫

Ω

K(x,z)ϕ(z)σ(z)dz = Lλϕ(x) ⇐⇒
∫

Ω

δ (x− z)ϕ(z)σ(z)dz = λLϕ(x).

Using the definition of the delta function this gives us

Lϕ(x) =
1
λ

σ(x)ϕ(x),

which shows that the eigenvalues of the integral operator correspond to reciprocals
of eigenvalues of the differential operator, while the corresponding eigenfunctions
are the same.

We now present a simple and well-known example (on a bounded interval). The
kernel in this example is sometimes referred to as the Brownian bridge kernel (see,
e.g., [1]) since it is the covariance kernel of a Brownian motion with zero boundary
conditions at both ends of the interval, also known as a Brownian bridge.

Example 1 (Brownian bridge kernel). Consider the domain Ω = [0,1], and let

K(x,z) = min(x,z)− xz =

{
x(1− z), x≤ z,
z(1− x), x > z.

This kernel may be obtained by integrating

− d2

dx2 K(x,z) =
1
2

δ (x− z)

twice using the boundary conditions

K(0,z) = K(1,z) = 0.

In other words, K is the Green’s function (up to a factor 2) of the differential operator
L =− d2

dx2 with corresponding boundary conditions.
We now consider the integral operator eigenvalue problem∫

Ω

K(x,z)ϕ(z)σ(z)dz = λϕ(x)

1 The problem is considerably more difficult on bounded domains, i.e., for differential equations
including boundary conditions, and we do not discuss that case here.
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with σ(x) ≡ 1 and K and Ω as above. Using the piecewise definition of K this
corresponds to ∫ x

0
zϕ(z)dz+

∫ 1

x
xϕ(z)dz−

∫ 1

0
xzϕ(z)dz = λϕ(x).

If we apply the differential operator L = − d2

dx2 to this integral equation and use
two elementary differentiation steps we obtain

d
dx

{
xϕ(x)−

∫ x

1
ϕ(z)dz− xϕ(x)−

∫ 1

0
zϕ(z)dz

}
= λϕ

′′(x)

⇐⇒ −ϕ ′′(x) = 1
λ

ϕ(x),

which again illustrates that the eigenvalues of the integral operator are the recipro-
cals of the eigenvalues of the differential operator. We will continue this example
below.

The second piece of the puzzle is to express the Green’s function of the differ-
ential equation in terms of the eigenvalues and eigenfunctions of a related Sturm-
Liouville eigenvalue problem. To this end we start with the generic ordinary differ-
ential equation

(LG)(x,z) = δ (x− z)

with regular Sturm-Liouville boundary conditions. The so-called Sturm-Liouville
eigenvalue problem is then given by

(Lϕ)(x) =
1
λ

σ(x)ϕ(x), (5)

where we need to add the same set of regular Sturm-Liouville boundary conditions.
Here σ is a weight function whose choice is basically free, but of course determines
the specific form of the eigenfunctions and eigenvalues by defining different inner
products. For a fixed choice of σ we can represent the Green’s function G via an
eigenfunction expansion of the form

G(x,z) =
∞

∑
n=1

cn(z)ϕn(x). (6)

We again consider z as an arbitrary, but fixed, source point and therefore the ex-
pansion coefficients (generalized Fourier coefficients) cn will depend on z. In order
to determine these coefficients we apply the differential operator L to (6) and use
linearity along with the definitions of the Green’s function and the Sturm-Liouville
eigenvalue problem to arrive at

δ (x− z) = (LG)(x,z) =
∞

∑
n=1

cn(z)(Lϕn)(x) =
∞

∑
n=1

cn(z)σ(x)ϕn(x)
λn

.
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Multiplication of this identity by ϕm(x) and integration from a to b yields

cn(z) =
λnϕn(z)∫ b

a ϕ2
n (x)σ(x)dx

,

where we have used the orthogonality of the eigenfunctions ϕn. If we identify the
Green’s function G with the kernel K in (3) then we see that the coefficients cn(z)
are nothing but the generalized Fourier coefficients of G, i.e., the appropriately nor-
malized inner product of G(·,z) with ϕn. In particular, if the eigenfunctions are
orthonormal with respect to σ then

G(x,z) =
∞

∑
n=1

λnϕn(x)ϕn(z).

This argument works analogously in higher space dimensions.

Example 2 (More Brownian bridge). A simple exercise in standard Sturm-Liouville
theory tells us that the boundary value problem

−ϕ
′′(x) =

1
λ

ϕ(x), ϕ(0) = ϕ(1) = 0,

has eigenvalues and eigenfunctions

λn =
1

(nπ)2 , ϕn(x) = sinnπx, n = 1,2,3, . . . ,

and we can verify

G(x,z) = min(x,z)− xz =
∞

∑
n=1

cn(z)sinnπx

with

cn(z) =
∫ 1

0
(min(x,z)− xz)sinnπxdx =

sinnπz
(nπ)2 = λnϕn(z).

2.4 Generalized Sobolev spaces

We now briefly discuss how we interpret the native space of a kernel K in terms of
an associated differential operator L. Many more details are given in [44] which also
appears in this volume, and in the more general paper [12]. A rigorous theoretical
framework supporting this interpretation is provided in [44] for vector differential
operators P, and in [12] for more general vector distributional operators. While these
two papers contain the theory for generalized Sobolev spaces on the unbounded
domain Rd , we will illustrate the framework here with some examples on bounded
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domains. A theoretical framework for that (more complicated) case is the subject of
[13].

Our approach depends on the ability to identify the differential operator L that
corresponds to a given Green’s kernel K (or vice versa). Given such an L, we then
decompose it into

L = P∗T P =
J

∑
j=1

P∗j Pj,

where the Pj are themselves differential operators and P∗j is an appropriately defined
adjoint. For example, for the Brownian bridge kernel K(x,z) = min(x,z)− xz dis-
cussed in previous examples we have L = − d

dx2 , P = P = d
dx , and P∗ = P∗ = − d

dx ,
i.e., J = 1. We point out that the theory in [12, 44] is not limited to finite J. In partic-
ular, [44] contains an example for the Gaussian kernel whose corresponding vector
differential operator P is infinite-dimensional.

We then define the generalized Sobolev space HP(Rd) as the set of slowly in-
creasing locally integrable functions f for which P f ∈ L2(Rd), i.e.,

HP(Rd) =
{

f ∈ Lloc
1 (Rd)∩SI | Pj f ∈ L2(Rd), j = 1, . . . ,J

}
.

The (semi-)inner product for this space is also defined in terms of P. Namely,

〈 f ,g〉HP(Rd) =
J

∑
j=1

∫
Rd

Pj f (x)Pjg(x)dx.

For our running Brownian bridge example the reproducing kernel Hilbert space is
the standard Sobolev space

H1
0,1(0,1) = HP(0,1) =

{
P f = f ′ ∈ L2(0,1) : f (0) = f (1) = 0

}
with inner product

〈 f ,g〉HP(0,1) =
∫ 1

0
P f (x)Pg(x)dx =

∫ 1

0
f ′(x)g′(x)dx.

We then have that K(x,z) = min(x,z)− xz is the reproducing kernel of HP(0,1).
The left graph in Figure 1 shows multiple copies of the piecewise linear Brownian

bridge kernel centered at equally spaced points in the interval [0,1]. Note how this
kernel is neither radial (isotropic), nor translation invariant (stationary).

We provide two more examples that are obtained from the previous one by a
simple shift of the eigenvalues.

Example 3 (Tension spline kernel). We begin with the Sturm-Liouville ODE eigen-
value problem

ϕ
′′(x)+(λ − ε

2)ϕ(x) = 0, ϕ(0) = ϕ(1) = 0,
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Fig. 1 Copies of the Brownian bridge (left), tension spline (middle) and relaxation spline (right)
kernels K(x,z) for 15 equally spaced values of z in [0,1].

where ε is an additional parameter, often referred to as shape parameter or tension
parameter. This means that L = − d

dx2 + ε2I and P =
[ d

dx ,εI
]T

. Note that we now
indeed have a vector differential operator P. The eigenvalues and eigenfunctions can
easily be found to be

λn = n2
π

2 + ε
2, ϕn(x) = sinnπx, n = 1,2, . . . .

The kernel (i.e., Green’s function) is given by

K(x,z) =

{
sinh(εx)sinhε(1−z)

ε sinhε
, x < z,

sinh(εz)sinhε(1−x)
ε sinhε

, x > z.

For this example, the reproducing kernel Hilbert space is again a standard Sobolev
space, namely

HP(0,1) =
{

f , f ′ ∈ L2(0,1) : f (0) = f (1) = 0
}
.

However, the inner product is now given by

〈 f ,g〉HP(0,1) =
2

∑
j=1

∫ 1

0
Pj f (x)Pjg(x)dx =

∫ 1

0
f ′(x)g′(x)dx+ ε

∫ 1

0
f (x)g(x)dx.

One of the most notable points here is that the so-called shape parameter ε of the
kernel is intimately related to the inner-product and therefore the norm of the func-
tion space. Through this feature, which is usually completely ignored in the discus-
sion of function spaces used in approximation theory, we are able to introduce a
more refined notion of a function space for a certain approximation problem at hand
by our ability to capture a certain length scale represented in the data. This length
scale is defined by the relative importance of function values and derivatives. There-
fore, we might want to denote this Sobolev space by H1

ε (0,1). As a consequence, the
definition of a generalized Sobolev space encodes both smoothness and “peakiness”
information of the functions it contains.
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The middle graph in Figure 1 shows multiple copies of the tension spline kernel
centered at equally spaced points in the interval [0,1]. Note how this kernel has a
certain tension specified by the choice of the shape parameter ε . For the graphs in
Figure 1 the value ε = 2 was used.

If we use the same differential operator, i.e., L = − d
dx2 + ε2I, but eliminate the

boundary conditions, then we obtain the related radial kernel

κ(r) =
1

2ε
e−εr, r = |x− z|,

(see [12]). This kernel is well-known in the literature as one of the members of the
Matérn family, or as the Ornstein-Uhlenbeck kernel. Its reproducing kernel Hilbert
space is the classical Sobolev space H1(R) (see also [1]).

Example 4 (Relaxation spline kernel). By adding the shift ε2 in the Sturm-Liouville
equation of the previous example instead of subtracting we obtain a different set of
eigenvalues and eigenfunctions, namely

λn = n2
π

2− ε
2, ϕn(x) = sinnπx, n = 1,2, . . . .

The kernel in this example is given by

K(x,z) =

{
sin(εx)sinε(1−z)

ε sinε
, x < z,

sin(εz)sinε(1−x)
ε sinε

, x > z,

and the generalized Sobolev space and inner product are defined analogously. The
right graph in Figure 1 shows different copies of this kernel. Since the effects of the
shape parameter here amount to a relaxation instead of a tension we chose to call
this kernel a relaxation spline kernel.

More examples of reproducing kernels, their associated differential operators, as
well as eigenvalues and eigenfunctions — also in higher space dimensions — are
presented below. It should also be noted that a connection between piecewise poly-
nomial splines and Green’s functions has been mentioned in the literature before
(see, e.g., [37, 41]). However, in both instances the splines were related to Green’s
functions of initial value problems whereas our framework uses Green’s functions
of boundary value problems.

3 Flat Limits

In this section we will take a closer look at the effect of the shape parameter ε

present in the definition of some of our kernels. In particular, we are interested in
understanding the behavior of radial kernel interpolants for the limiting case of
ε→ 0, i.e., flat kernels. A radial kernel is of the form κ(‖x−z‖) = K(x,z), i.e., it is
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invariant under both translation and rotation. In the statistics literature such a kernel
is called stationary and isotropic.

The results in this section specifically address the scattered data interpolation
problem. In other words, we are given data sites X = {x1, . . . ,xN} ⊂ Rd with as-
sociated data values { f (x1), . . . , f (xN)} sampled from some function f and wish to
reconstruct f by a function of the form

sε
f ,κ(x) =

N

∑
j=1

c jκ(ε‖x−x j‖), x ∈ Rd ,

where the coefficients c j are determined by satisfying the interpolation conditions

sε
f ,κ(xi) = f (xi), i = 1, . . . ,N.

3.1 Infinitely smooth RBFs

In recent years so-called flat radial basis functions (RBFs) have received much at-
tention in the case when the kernels are infinitely smooth (see, e.g., [5, 16, 21, 22,
23, 33]). We begin by summarizing the essential insight gained in these papers, and
then present some recent results from [38] that deal with radial kernels of finite
smoothness in the next subsection.

Theorem 2. Assume the positive definite radial kernel κ has an expansion of the
form

κ(r) =
∞

∑
n=0

anr2n

into even powers of r (i.e., κ is infinitely smooth), and that the data X are unisolvent
with respect to any set of N linearly independent polynomials of degree at most m.
Then

lim
ε→0

sε
f ,κ(x) = pm, f (x), x ∈ Rd ,

where pm, f is determined as follows:

• If interpolation with polynomials of degree at most m is unique, then pm, f is that
unique polynomial interpolant.

• If interpolation with polynomials of degree at most m is not unique, then pm, f is
a polynomial interpolant whose form depends on the choice of RBF.

This theorem applies to kernels such as
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κ(εr) =
1

1+ ε2r2 = 1− (εr)2 +(εr)4− (εr)6 +(εr)8 + · · · (IQ),

κ(εr) = e−ε2r2
= 1− (εr)2 +

1
2
(εr)4− 1

6
(εr)6 +

1
24

(εr)8 + · · · (Gaussian),

κ(εr) =
1√

1+ ε2r2
= 1− 1

2
(εr)2 +

3
8
(εr)4− 5

16
(εr)6 ++

35
128

(εr)8 + · · · (IMQ).

The implications of this theorem are quite deep since it essentially establishes ra-
dial basis functions as generalizations of polynomial spectral methods. As a conse-
quence, this opens the door to the design of algorithms for function approximation
as well as the numerical solution of partial differential equations that are more ac-
curate than the standard polynomial spectral methods. Moreover, the scattered data
setting in which radial basis functions are used allows for more flexibility with re-
spect to geometry and adaptivity.

We will come back to the Gaussian kernel in the next two sections of this paper
where we address two important issues: computational stability and rates of conver-
gence.

3.2 Finitely smooth RBFs

To our knowledge, the flat limit of RBFs with finite smoothness was not studied
until the recent paper [38] in which interpolation on Rd was investigated.

Before we explain the results obtained in [38], we look at a few finitely smooth
radial kernels as full space Green’s functions as discussed in the earlier sections.

Example 5 (Radial kernels with finite smoothness).

1. We have already mentioned the univariate C0 Matérn kernel K(x,z) .
= e−ε|x−z|.

For this first example we remember that the differential operator L associated
with this full-space Green’s function was given by

L =− d2

dx2 + ε
2I.

On the other hand, it is well-known that univariate C0 piecewise linear splines
may be expressed in terms of kernels of the form K(x,z) .

= |x− z|. The corre-
sponding differential operator in this case is

L =− d2

dx2 .

Note that the differential operator associated with the Matérn kernel “converges”
to that of the piecewise linear splines as ε→ 0. We also remark that the piecewise
linear Brownian bridge kernel does not fit into this discussion since it is associ-
ated with a boundary value problem, i.e., it is not a full-space Green’s function.
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2. The univariate C2 tension spline kernel [30] K(x,z) .
= e−ε|x−z|+ ε|x− z| is the

Green’s kernel of

L =− d4

dx4 + ε
2 d2

dx2 ,

while the univariate C2 cubic spline kernel K(x,z) .
= |x− z|3 corresponds to

L =− d4

dx4 .

Again, the differential operator associated with the tension spline “converges” to
that of the cubic spline as ε → 0.

3. In [1] we find a so-called univariate Sobolev kernel of the form K(x,z) .
=

e−ε|x−z| sin
(
ε|x− z|+ π

4

)
which is associated with

L =− d4

dx4 − ε
2I.

The operator for this kernel also “converges” to the cubic spline kernel, but the
effect of the scale parameter is analogous to that of the relaxation spline of Ex-
ample 4.

4. The general multivariate Matérn kernels are of the form

K(x,z) .
= Km−d/2 (ε‖x− z‖)(ε‖x− z‖)m−d/2 , m >

d
2
,

and can be obtained as Green’s kernels of (see [44])

L =
(
ε

2I−∆
)m

, m >
d
2
.

We contrast this with the polyharmonic spline kernels

K(x,z) .
=

{
‖x− z‖2m−d , d odd,
‖x− z‖2m−d log‖x− z‖, d even,

and
L = (−1)m

∆
m, m >

d
2
.

In summary, all of these examples show that the differential operators associated
with finitely smooth RBF kernels “converge” to those of a piecewise polynomial
or polyharmonic spline kernel as ε → 0. This motivates us to ask whether RBF
interpolants based on finitely smooth kernels converge to (polyharmonic) spline in-
terpolants for ε→ 0 mimicking the relation between infinitely smooth radial kernels
and polynomials. As the following theorem shows, this is indeed true.

As mentioned in Theorem 2, infinitely smooth radial kernels can be expanded
into an infinite series of even powers of r. Finitely smooth radial kernels can also
be expanded into an infinite series of powers of r. However, in this case there al-
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ways exists some minimal odd power of r with nonzero coefficient indicating the
smoothness of the kernel. For example, for univariate C0, C2 and C4 Matérn kernels,
respectively, we have

κ(εr) .
= e−εr = 1− εr+

1
2
(εr)2− 1

6
(εr)3 + · · · ,

κ(εr) .
= (1+ εr)e−εr = 1− 1

2
(εr)2 +

1
3
(εr)3− 1

8
(εr)4 + · · · ,

κ(εr) .
=
(
3+3εr+(εr)2)e−εr = 3− 1

2
(εr)2 +

1
8
(εr)4− 1

15
(εr)5 +

1
48

(εr)6 + · · · .

Theorem 3 ([38]). Suppose κ is conditionally positive definite of order m≤ n with
an expansion of the form

κ(r) = a0 +a2r2 + . . .+a2nr2n +a2n+1r2n+1 +a2n+2r2n+2 + . . . ,

where 2n+1 denotes the smallest odd power of r present in the expansion (i.e., κ is
finitely smooth). Also assume that the data X contain a unisolvent set with respect
to the space π2n(Rd) of d-variate polynomials of degree less than 2n. Then

lim
ε→0

sε
f ,κ(x) =

N

∑
j=1

c j‖x−x j‖2n+1 +
M

∑
k=1

dk pk(x), x ∈ Rd ,

where {pk | k = 1, . . . ,M} denotes a basis of πn(Rd).

In other words, the “flat” limit of a piecewise smooth RBF interpolant is nothing
but a polyharmonic spline interpolant. Therefore, just as infinitely smooth RBFs
can be interpreted as generalizations of polynomials, we can view finitely smooth
RBFs as generalizations of piecewise polynomial (or more generally polyharmonic)
splines.

We point out that Theorem 3 does not cover Matérn kernels with odd-order
smoothness. However, all other examples listed above are covered by the theorem.

Figure 2 illustrates the convergence of univariate C0 and C2 Matérn interpolants
to piecewise linear and piecewise cubic spline interpolants, respectively.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 

 

data
ε=2
ε=1
ε=0.1
piecewise linear

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 

 

data
ε=2
ε=1
ε=0.1
cubic spline

Fig. 2 Convergence of C0 (left) and C2 (right) Matérn interpolants to piecewise linear (left) and
cubic (right) spline interpolants.
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4 Stable Computation

We now look at some practical consequences of working with “flat” RBF kernels.
It is well-known that interpolation with “flat” Gaussian kernels leads to a notori-
ously ill-conditioned interpolation matrix K. This is due to the fact that the standard
set of basis functions {e−ε2(x−x j)

2), j = 1, . . . ,N} becomes numerically linearly de-
pendent. It needs to be emphasized that the resulting numerical instabilities are due
only to this “bad” choice of basis and not to the choice of function space itself. In
fact, we will discuss in the next section how well one can approximate with linear
combinations of Gaussians.

Even though Gaussian kernels are rather popular — especially in the machine
learning community, it has been widely accepted that working with Gaussians is
an ill-conditioned problem. As a result, the literature contains many references to a
so-called uncertainty or trade-off principle (see, e.g., [31] or the more recent paper
[35]). This uncertainty principle, however, is tied directly to the use of the standard
(“bad”) basis, and we demonstrate below how it can be circumvented by choosing a
better — orthonormal — basis. The following discussion is motivated by the recent
work of Bengt Fornberg and his collaborators [14, 15] in which they have proposed a
so-called RBF-QR algorithm which allows for stable RBF computations. In addition
to this QR-based approach they have also proposed other stable algorithms such as
the Contour-Padé algorithm [16]. The guiding principle in this work is always the
fact that the RBF-direct algorithm (based on the use of the “bad” standard basis) is
ill-conditioned, but the RBF interpolation problem itself is not.

4.1 An eigenfunction expansion for Gaussians

In [29] (and already [45], albeit with incorrect normalization) one can find the fol-
lowing general eigenfunction expansion

e−b(x−z)2
=

∞

∑
n=1

λnϕn(x)ϕn(z), (7)

where the eigenfunctions ϕn are orthonormal in L2(R,ρ) with weight function

ρ(x) =

√
2a
π

e−2ax2
.

Here a and b are arbitrary positive numbers. If we let c =
√

a2 +2ab, then the eigen-
functions ϕn turn out to be

ϕn(x) =
1√

2n−1(n−1)!
√ a

c

e−(c−a)x2
Hn−1(

√
2cx), n = 1,2, . . . ,
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with Hn the classical Hermite polynomials of degree n, i.e.,

Hn(x) = (−1)nex2 dn

dxn e−x2
for all x ∈ R, n = 0,1,2, . . .

so that ∫
R

H2
n (x)e−x2

dx =
√

π 2nn! for n = 0,1,2, . . . .

The corresponding eigenvalues are

λn =

√
2a

a+b+ c

(
b

a+b+ c

)n−1

, n = 1,2, . . . .

In particular, we will want to use the Gaussian kernel in its usual form with shape
parameter ε as

K(x,z) = e−ε2(x−z)2

so that b = ε2. Moreover, we take a = 1
2 and therefore c = 1

2

√
1+4ε2 (see also [9]).

This leads to eigenvalues

λn =
1√

1
2 (1+

√
1+4ε2)+ ε2

(
ε2

1
2 (1+

√
1+4ε2)+ ε2

)n−1

=
ε2(n−1)(

1
2 (1+

√
1+4ε2)+ ε2

)n− 1
2
, n = 1,2, . . . (8)

and eigenfunctions

ϕn(x) =

√
(1+4ε2)1/4

2n−1(n−1)!
exp

(
− ε2x2

1
2 (1+

√
1+4ε2)

)
Hn−1

(
(1+4ε

2)1/4x
)
. (9)

4.2 The RBF-QR algorithm

The starting point for the bivariate Gaussian RBF-QR algorithm in [14] was an
expansion of the form

e−ε2(x−z)2
=

∞

∑
n=0

(2ε2)n

n!
xne−ε2x2

zne−ε2z2
, x,z ∈ R. (10)

However, the authors claimed that this series is not ideal since, coupled with the
RBF-QR strategy described below, it does not provide an effective reduction of the
conditioning of the RBF interpolation algorithm. Most likely, the poor conditioning
of the new basis that results from this expansion is due to the fact that the func-
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tions x 7→ xne−ε2x2
are not orthogonal in L2(R). Indeed, for ε → 0 these functions

converge to the standard monomial basis which is known to be ill-conditioned (cf.
Vandermonde matrices). Therefore, the authors followed up their initial expansion
with a transformation to polar coordinates and an expansion in terms of Chebyshev
polynomials. This leads to an RBF-QR algorithm for Gaussians that is indeed stable,
but limited to problems in R2.

The following discussion based on the eigenfunction expansion (7) of the Gaus-
sian kernel will be applicable in any space dimension. Due to the product nature
of the kernel we describe only the 1D version here. A comment at the end of this
section indicates how to approach the general multivariate setting.

We will now show that if we use an expansion of the kernel in terms of orthonor-
mal (eigen-)functions, then the source of ill-conditioning of the Gaussian basis is
moved entirely into its eigenvalues. Since the eigenvalues of the Gaussian kernel
decay very quickly we are now able to directly follow the QR-based strategy sug-
gested in [14] — without the need for any additional transformation to Chebyshev
polynomials.

In particular, we use the eigenvalues (8) and eigenfunctions (9) of the Gaussian
kernel as discussed above.

The QR-based algorithm of [14] corresponds to the following. Starting with an
expansion of the basis functions centered at x j, j = 1, . . . ,N, of the form

K(x,x j) =
∞

∑
n=1

ε
2(n−1)bn(x j)ϕn(x), bn(x j) := ε

−2(n−1)
λnϕn(x j),

i.e., a generalized Fourier expansion with x j-dependent Fourier coefficients, we ob-
tain 

K(x,x1)
K(x,x2)

...

...
K(x,xN)

=


· · · · ·
· · · · ·
· · B · ·
· · · · ·
· · · · ·





ε0

ε2

. . .
ε2n

. . .




ϕ1(x)
ϕ2(x)

...
ϕn(x)

...

 .

Using more compact matrix-vector notation we can denote this by

k(x) = BEφ(x), (11)

where k(x) = (K(x,x j))
N
j=1 and φ(x) = (ϕn(x))

∞

n=1 are the vectors of standard basis

functions and eigenfunctions, respectively, evaluated at x, B= (bn(x j))
N,∞
j=1,n=1, and

E= diag
(
ε0,ε2, . . . ,ε2n, . . .

)
is the diagonal matrix of increasing even powers of ε .

Note that E and φ are infinite and need to be appropriately truncated for practical
applications. The matrix B has N rows, but infinitely many columns. However, since
we are working with an eigenfunction expansion, truncating the representation at M
terms will provide the best (in the L2-sense) M-term approximation to the full series.
Note that since
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B jn =

(
2

1+
√

1+4ε2 +2ε2

)n− 1
2

√
(1+4ε2)1/4

2n−1(n−1)!
e
−

2ε2x2
j

1+
√

1+4ε2 Hn−1

(
(1+4ε

2)1/4x j

)
→ 1√

2n−1(n−1)!
Hn−1(x j) as ε → 0

the matrix B remains “nice” as ε → 0. Moreover, this limiting relation is another
indication of the polynomial limit of Gaussian kernel interpolation as discussed in
the previous section.

The QR idea now consists in first computing the QR-decomposition of B, i.e.,

B= QR

with unitary matrix Q and upper triangular matrix R. Next, we multiply the relation
k(x) = BEφ(x) on both sides by the non-singular matrix E−1Q∗. The crucial obser-
vation here is that this does not change the function space spanned by the (poorly
conditioned) standard basis functions K(·,x1), . . . ,K(·,xN).

As a result, using (11), the QR-decomposition of B and the fact that Q is unitary
we obtain a new basis for the Gaussian approximation space, namely

ψ(x) = E−1Q∗k(x) = E−1Q∗QREφ(x) = E−1REφ(x),

where ψ(x) = (ψn(x))
∞

n=1. Note that the matrix E−1RE is upper triangular and due
to the scaling from the left and right should be relatively well-conditioned.

We are currently in the process of implementing this algorithm [10], and prelimi-
nary tests indicate that it is now possible to compute Gaussian RBF interpolants with
this new eigenfunction basis stably also in the “flat” limit as ε→ 0. Incidentally, this
is precisely the approach taken in [15] for stable radial basis function approximation
on the sphere. It is interesting to note that traditionally there has been a much closer
connection between (zonal) kernels used on the sphere and spherical harmonics, i.e.,
the eigenfunctions of the Laplace-Beltrami operator on the sphere (see, e.g., [11]).
Furthermore, the RBF-QR approach should be successfully applicable whenever an
eigenfunction expansion of the kernel is available.

As mentioned above, for the d-variate case we can use the fact that the Gaussian
is a tensor product kernel:

K(x,z) = e−ε2
1 (x1−z1)

2−...−ε2
d (xd−zd)

2
= ∑

n∈Nd

λnϕn(x)ϕn(z),

so that the multivariate eigenvalues and eigenvectors are simply the products of the
one-dimensional ones, i.e.,

λn =
d

∏
`=1

λn` and ϕn(x) =
d

∏
`=1

ϕn`(x`).
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One of the advantages — both practical and theoretical — of this product ap-
proach is that we can take different shape parameters ε` for different dimensions,
i.e., we can employ an anisotropic kernel K. Of course, the isotropic (or radial) case
can still be recovered if we choose ε` = ε , `= 1, . . . ,d. We will exploit this ability to
generalize to anisotropic Gaussian kernels in the next section on convergence rates.

5 Dimension Independent Error Bounds

In the last section of this paper we mention some new results (see [9] for much
more details) on the rates of convergence of Gaussian kernel approximation. To be
more specific, we will address weighted L2 approximation when the data is speci-
fied either by function values of an unknown function f (from the native space of the
kernel) or with the help of arbitrary linear functionals. Our convergence results pay
special attention to the dependence of the estimates on the space dimension d. We
will see that the use of anisotropic Gaussian kernels instead of isotropic ones pro-
vides improved convergence rates. It should also be mentioned that the work in [9]
deals with linear approximation algorithms, while the recent paper [17] addresses
nonlinear Gaussian approximation.

5.1 The current situation

A good resource for standard RBF scattered data approximation results up to the
year 2005 is [43]. There we can find two different L∞ error bounds for isotropic
Gaussian interpolation to data sampled from a function f in the native space
H (K,Ω) of the Gaussian. Both of these results are formulated in terms of the fill
distance

hX ,Ω = sup
x∈Ω

min
1≤ j≤N

‖x−x j‖,

where X = {x1, . . . ,xN} denotes the set of data sites as before. Since the results we
mention below are in terms of N, the number of data, we will restate the error bounds
from [43] also in terms of N using the fact that for quasi-uniformly distributed data
sites we have hX ,Ω = O(N−1/d).

If f has derivatives up to total order p and s f ,K is the interpolant based on the
Gaussian kernel K(x,z) = e−ε2‖x−z‖2 , i.e.,

s f ,K(x) =
N

∑
j=1

c jK(x,x j) such that s f ,K(xi) = f (xi), i = 1, . . . ,N,

then the first error bound is of the form

‖ f − s f ,K‖∞ ≤CdN−p/d‖ f‖H (K,Ω)
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with some possibly dimension-dependent constant Cd . Therefore, infinitely smooth
functions can be approximated with order p = ∞. With some extra effort one can
also obtain the spectral estimate

‖ f − s f ,K‖∞ ≤ e−
c
d N1/d logN‖ f‖H (K,Ω).

It is apparent from both of these bounds that the rate of convergence deteriorates
as d increases. Moreover, the dependence of the constants on d is not clear. There-
fore, these kinds of error bounds — and in fact almost all error bounds in the RBF
literature — suffer from the curse of dimensionality. We will now present some
results from [9] on dimension-independent convergence rates for Gaussian kernel
approximation.

5.2 New results on (minimal) worst-case weighted L2 error

As already indicated above, we will make several assumptions in order to be able to
obtain dimension-independent error bounds.

We define the worst-case weighted L2,ρ error as

errwc
2,ρ = sup

‖ f‖
H (K,Rd )≤1

‖ f − s f ,K‖2,ρ ,

where s f ,K is our kernel (minimum norm) approximation calculated in the usual
way. Therefore

‖ f − s f ,K‖2,ρ ≤ errwc
2,ρ‖ f‖H (K,Rd) for all f ∈H (K,Rd).

The Nth minimal worst case error errwc
2,ρ(N) refers to the worst case error that

can be achieved with an optimal design, i.e., data generated by N optimally chosen
linear functionals. For function approximation this means that the data sites have to
be chosen in an optimal way. The results in [9] are non-constructive, i.e., no such
optimal design is specified. However, a Smolyak or sparse grid algorithm is a natural
candidate for such a design. If we are allowed to choose arbitrary linear functionals,
then the optimal choice for weighted L2 approximation is known. In this case we
use generalized Fourier coefficients, i.e., the optimal linear functionals are L j =
〈·,ϕ j〉H (K,Rd) and we obtain the truncated generalized Fourier series approximation

s f ,K(x) =
N

∑
n=1
〈 f ,ϕn〉H (K,Rd)ϕn(x) for all f ∈H (K,Rd),

where

K(x,z) =
∞

∑
n=1

λnϕn(x)ϕn(z),
∫

Ω

K(x,z)ϕn(z)ρ(z)dz = λnϕn(x).
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It is then known [26] that
errwc

2,ρ(N) =
√

λN+1,

the (N +1)st largest eigenvalue, which is easy to identify in the univariate case, but
takes some care to specify in the multivariate setting.

In [9] it is then proved that in the isotropic case, i.e., with a truly radial Gaussian
kernel of the form

K(x,z) = e−ε2‖x−z‖2

one can approximate

• function data with an Nth minimal error of the order O(n−1/4+δ ), and
• Fourier data (i.e., arbitrary linear functional data) with an Nth minimal error of

the order O(n−1/2+δ ).

Here the constants in the O-notation do not depend on the dimension d and δ is
arbitrarily small.

With anisotropic kernels, i.e.,

K(x,z) = e−ε2
1 (x1−z1)

2−...−ε2
d (xd−zd)

2

one can do much better. In this case, if the shape parameters decay like ε` = `−α ,
then one can approximate

• function data with an Nth minimal error of the order O(n−max( α2
2+α

,1/4)+δ ), and
• Fourier data (i.e., arbitrary linear functional data) with an Nth minimal error of

the order O(n−max(α,1/2)+δ ).

Again, the constants in the O-notation do not depend on the dimension d.
In order to prove the above results it was essential to have the eigenvalues (cf.

(8))

λn =
ε2(n−1)(

1
2 (1+

√
1+4ε2)+ ε2

)n− 1
2
, n = 1,2, . . . ,

and eigenfunctions (cf. (9))

ϕn(x) =

√
(1+4ε2)1/4

2n−1(n−1)!
exp

(
− ε2x2

1
2 (1+

√
1+4ε2)

)
Hn−1

(
(1+4ε

2)1/4x
)

of the univariate Gaussian kernel K(x,z) = e−ε2(x−z)2
. As mentioned in the previous

section, the multivariate (and anisotropic) case can be handled using products of
univariate eigenvalues and eigenfunctions.

Even if we do not have an eigenfunction expansion of a specific kernel available,
the work of [9] shows that for any radial (isotropic) kernel one has a dimension-
independent Monte-Carlo type convergence rate of O(n−1/2+δ ) provided arbitrary
linear functionals are allowed to generate the data. For translation-invariant (station-
ary) kernels the situation is similar. However, the constant in the O-notation depends
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— in any case — on the sum of the eigenvalues of the kernel. For the radial case
this sum is simply κ(0) (independent of d), while for general translation invariant
kernels it is K̃(0), which may depend on d.

These results show that — even though RBF methods are often advertised as be-
ing “dimension-blind” — their rates of convergence are only excellent (i.e., spectral
for infinitely smooth kernels) if the dimension d is small. For large dimensions the
constants in the O-notation take over. If one, however, permits an anisotropic scaling
of the kernel (i.e., elliptical symmetry instead of strict radial symmetry) and if those
scale parameters decay rapidly with increasing dimension, then excellent conver-
gence rates for approximation of smooth functions can be maintained independent
of d.

6 Summary

In this paper we have attempted to shed some new light on the connections be-
tween piecewise polynomial splines and approximation methods based on repro-
ducing kernels and radial basis functions in particular. Using Mercer’s theorem and
the resulting eigenfunction expansions of positive definite kernels along with an
interpretation of these kernels as Green’s functions of appropriate differential oper-
ators we provided a new interpretation of RBF native spaces as generalized Sobolev
spaces (cf. [12, 13, 44]). As a result we have a more intuitive interpretation of RBF
native spaces in terms of the smoothness of the functions they contain. Moreover,
special attention is paid to the native space norm and how it encodes information of
the inherent scale of the functions it contains.

Extreme scaling of kernels, i.e., “flat” limits are investigated and they provide a
new connection between finitely smooth RBF kernels and piecewise polynomial or
polyharmonic splines (see [38]). We also use the eigenfunction expansions to move
Fornberg’s RBF-QR algorithm onto a more standard theoretical foundation which
provides at the same time an algorithm for Gaussians that is applicable in any space
dimension.

Finally, we discussed some of the results of [9] on dimension-independent con-
vergence rates for Gaussians. The main insight obtained from these results is that
one needs to allow for the use of an anisotropic scaling of the kernel with rapidly
decaying scale parameters in order to be able to guarantee high rates of convergence
in high space dimensions.

There is still much work to be done in the future. The theoretical framework for
Green’s functions on bounded domains needs to be completed, the new RBF-QR al-
gorithm for Gaussians needs to be implemented, and the hunt for kernels with read-
ily available or relatively easily computable eigenfunction expansions is on. Any
such kernel benefits from the ideas laid out for stable computation and dimension-
independent error bounds. There is also room to generalize the results on flat limits
of piecewise smooth RBF kernels. Finally, it is expected that the eigenfunction ex-
pansions discussed here can be exploited to obtain fast multipole-type algorithms.
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