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ON DIMENSION-INDEPENDENT RATES OF CONVERGENCE FOR
FUNCTION APPROXIMATION WITH GAUSSIAN KERNELS∗

GREGORY E. FASSHAUER† , FRED J. HICKERNELL† , AND HENRYK WOŹNIAKOWSKI‡

Abstract. This article studies the problem of approximating functions belonging to a Hilbert
space Hd with an isotropic or anisotropic translation invariant (or stationary) reproducing kernel

with special attention given to the Gaussian kernel Kd(x, t) = exp
( − ∑d

�=1 γ
2
� (x� − t�)

2
)
for all

x, t ∈ Rd. The isotropic (or radial) case corresponds to using the same shape parameters for all
coordinates, i.e., γ� = γ > 0 for all �, whereas the anisotropic case corresponds to varying γ�. The
approximation error of the optimal approximation algorithm, called a meshfree or kriging method, is
known to decay faster than any polynomial in n−1, for fixed d, where n is the number of data points.
We are especially interested in moderate to large d, which in particular arise in the construction of
surrogates for computer experiments. This article presents dimension-independent error bounds, i.e.,
the error is bounded by Cn−p, where C and p are independent of both d and n. This is equivalent to
strong polynomial tractability. The pertinent error criterion is the worst case of such an algorithm
over the unit ball in Hd, with the error for a single function given by the L2 norm whose weight is
also a Gaussian which is used to “localize” Rd. We consider two classes of algorithms: (i) using data
generated by finitely many arbitrary linear functionals, and (ii) using only finitely many function
values. Provided that arbitrary linear functional data is available, we show p = 1/2 is possible for
any translation invariant positive definite kernel. We also consider the sequence of shape parameters
γd decaying to zero like d−ω as d tends to ∞. Note that for large ω this means that the function to
be approximated is “essentially low-dimensional.” Then the largest p is roughly max(1/2, ω). If only
function values are available, dimension-independent convergence rates are somewhat worse. If the
goal is to make the error smaller than Cn−p times the initial (n = 0) error, then the corresponding
dimension-independent exponent p is roughly ω. In particular, for the isotropic case, when ω = 0,
the error does not even decay polynomially with n−1. In summary, excellent dimension-independent
error decay rates are possible only when the sequence of shape parameters decays rapidly.

Key words. Gaussian kernel, reproducing kernel Hilbert spaces, shape parameter, tractability

AMS subject classifications. 65D15, 68Q17, 41A25, 41A63

DOI. 10.1137/10080138X

1. Introduction. This article addresses the problem of function approximation.
In a typical application we are given data of the form yi = f(xi) or yi = Li(f) for
i = 1, . . . , n. That is, a function f is sampled at the locations {x1, . . . ,xn}, usually
referred to as the data sites or the design, or more generally we know the values of
n linear functionals Li on f . Here we assume that the domain of f is a subset of
R
d. The goal is to construct An(f), a good approximation to f that is inexpensive to

evaluate.
An important example is the field of computer experiments, where each datum,

yi, may be the output of some computer code implementing a realistic model of a
complex system, which takes hours or days to run. The approximation, An(f), based
on a modest number of runs, n, is used as a surrogate to explore the function at values
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of x other than the data sites. The number of different inputs into the computer code,
d, may be a dozen or more, so it is important to understand the error of An(f) for
moderate or large values of d. This is the aim of this article.

Algorithms for function approximation based on symmetric, positive definite ker-
nels have arisen in both the numerical computation literature [2, 5, 19, 31] and the
statistical learning literature [1, 4, 10, 17, 20, 22, 23, 27]. They are often used in engi-
neering applications [7] like the one just described. These algorithms go by a variety
of names, including radial basis function methods [2], scattered data approximation
[31], meshfree methods [5], (smoothing) splines [27], kriging [22], Gaussian process
models [17], and support vector machines [23]. As evidence of the popularity of these
methods, we note that the commercial statistical software JMP [12] has a Gaussian
process modeling module implementing the algorithm that uses function values.

Given the choice of a symmetric, positive definite kernel Kd : R
d × R

d → R

(see (2.1) below for the specific requirements), there is an associated Hilbert space,
Hd = H(Kd), of functions defined on R

d for which Kd is the reproducing kernel. The
spline algorithm, Sn(f), described below in (2.6), chooses the element in H(Kd) that
interpolates the data and has minimum H(Kd) norm. The spline algorithm is linear
in the data and can be computed by solving an n×n system of linear equations. If the
data are chosen as n optimal linear functionals, then the cost of computing Sn(f)(x)
for one x is equal to 2n − 1 arithmetic operations plus the cost of computing these
n optimal linear functionals. A wider discussion of the cost of the algorithm is given
at the end of section 2.1. It is well known that the spline algorithm is the optimal
approximation to functions in H(Kd). We explain in section 2 below how the notion
of optimality is understood. Probably the first use of optimal properties of splines
can be traced back to the seminal work of Golomb and Weinberger [9].

A kernel commonly used in practice, and one which is studied here, is the isotropic
Gaussian kernel:

(1.1a) Kd(x, t) = e−γ
2‖x−t‖2

for all x, t ∈ R
d,

where a positive γ is called the shape parameter. This parameter functions as an
inverse length scale. Choosing γ very small has a beneficial effect on the rate of decay
of the eigenvalues of the Gaussian kernel, as is shown below. An anisotropic but
stationary generalization of the Gaussian kernel is obtained by introducing a different
positive shape parameter γ� for each variable,

(1.1b) Kd(x, t) = e−γ
2
1(x1−t1)2− ···−γ2

d(xd−td)2 =

d∏
�=1

e−γ
2
� (x�−t�)2 for all x, t ∈ R

d.

In the tractability literature, the shape parameters γ� are called product weights. As
evidence of its popularity, we note that the anisotropic Gaussian kernel is used in
JMP [12], where the values of the γ� are determined in a data-driven way.

The error of this spline algorithm has been usually analyzed for fixed, and tacitly
assumed small, d. The typical convergence rates (see, e.g., [5, 31] and—for Gaussian
kernels in particular—[14, 18, 30]) are of the form O(n−p/d), where p denotes the
smoothness of the kernel Kd, and the design is chosen optimally. Unfortunately, for
a finite p, this means that as the dimension increases, these known convergence rates
deteriorate dramatically. Even if p can be chosen to be arbitrarily large, as is the case
for the Gaussian kernel, the dimension dependence of the leading factor in the big
O-term is usually not known and might prove to be disastrous.
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Since a growing number of applications, such as constructing surrogates for com-
puter experiments, deal with moderate to large dimension, d, it is desirable to have
dimension-independent polynomial convergence rates of the form Cn−p for positive C
and p independent of d and n, which corresponds to strong polynomial tractability. It
would also be reasonable to have convergence rates that are polynomially dependent
on dimension d and are of the form Cd q n−p for positive C, q and p independent of d
and n, which corresponds to polynomial tractability. The substantial body of litera-
ture on tractability is summarized by Novak and Woźniakowski [15, 16]. For Hilbert
spaces, tractability results utilize the eigenvalues of the Hilbert–Schmidt operator for
function approximation associated with Kd (see section 2).

The functions to be approximated here lie in the Hilbert space Hd = H(Kd),
where for our most general results Kd is an arbitrary translation invariant positive
definite kernel and for our more specialized resultsKd is the Gaussian kernel defined in
(1.1). The worst-case error of an algorithm An is based on the following L2 criterion:

(1.2a) ewor(An) = sup
‖f‖Hd

≤1

‖f −An(f)‖L2 , ‖f‖L2 =

(∫
Rd

f2(t) �d(t) dt

)1/2

.

Here, �d is the probability density function defined by

(1.2b) �d(t) =
1

πd/2
exp
(−(t21 + t22 + · · ·+ t2d

)
) for all t ∈ R

d.

This specific choice of weight � “localizes” the unbounded domain R
d by defining

a natural length scale of the problem. It also provides a setting for which we can
compute eigenvalues and eigenfunctions of the Hilbert–Schmidt operator associated
with the Gaussian kernel Kd.

The linear functionals, Li, used by an algorithm An may come either from the
class of arbitrary bounded linear functionals, Λall = H∗

d, or from the class of function
evaluations, Λstd. The nth minimal worst-case error over all possible algorithms is
defined as

ewor-ϑ(n,Hd) = inf
An with Lj∈Λϑ

ewor(An) = inf
Lj∈Λϑ

ewor(Sn), ϑ ∈ {std, all}.

Since the optimal algorithm is the spline algorithm, Sn, provided the Lj are speci-
fied, the problem of computing ewor-ϑ(n,Hd) becomes one of finding the best sam-
pling scheme. For notational simplicity ϑ denotes either the standard or linear class.
Clearly, ewor-all(n,Hd) ≤ ewor-std(n,Hd) since the former uses a larger class of func-
tion data. The case n = 0 means that no information about f is used to con-
struct the algorithm. For n = 0 we approximate f by constant algorithms, i.e.,
A0(f) = c ∈ L2. It is easy to see that the zero algorithm, An(f) = 0, minimizes the
error and ewor-ϑ(0,Hd) = ‖Id‖, where Id : Hd → L2 is the linear embedding operator
defined by Id(f) = f .

This article establishes upper and lower bounds for the convergence rates for the
nth minimal worst-case error with no dimension dependence using an isotropic or
anisotropic Gaussian kernel. These rates are summarized in Table 1.1. The notation
� n−p means that for all δ > 0 the error is bounded above by Cδn

−p+δ for some
positive Cδ that is independent of the sample size, n, and the dimension, d, but may
depend on δ. The notation � n−p is defined analogously and means that the error is
bounded from below by Cδn

−p−δ for all δ > 0. The notation � n−p means that the
error is both � n−p and � n−p.
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Table 1.1

Error decay rates for the Gaussian kernel as a function of sample size n.

Error criterion

Data available Absolute : ewor-ϑ(n,Hd) Normalized :
ewor-ϑ(n,Hd)

ewor-ϑ(0,Hd)

Arbitrary linear
functionals

� n−max(r(γ),1/2)

Theorem 5.2
� n−r(γ)

if r(γ) > 0, Theorem 6.2

Function values � n−max(r(γ)/[1+1/(2r(γ))],1/4)

Theorem 5.3 and 5.4
� n−r(γ)/[1+1/(2r(γ))]

if r(γ) > 1/2, Corollary 6.4

The term r(γ) appearing in Table 1.1 denotes the rate of convergence of the shape
parameter sequence γ and is defined by

(1.3) r(γ) = sup

{
β > 0

∣∣∣∣ ∞∑
�=1

γ
1/β
� <∞

}
with the convention that the supremum of the empty set is taken to be zero. For
instance, for the isotropic case with γ� = γ > 0 we have r(γ) = 0, whereas for
γ� = �−α for a nonnegative α we have r(γ) = α. If the γ� are ordered, that is,
γ1 ≥ γ2 ≥ · · · , then this definition is equivalent to

(1.4) r(γ) = sup

{
β ≥ 0 | lim

�→∞
γ� �

β = 0

}
.

As can be seen in Table 1.1, any isotropic Gaussian kernel gives rise to dimension-
independent convergence rates (when measured by the absolute error criterion) of
order n−1/2 provided that optimal linear functional data is available. Our remarks
following Theorem 5.1 show that dimension-independent convergence rates of the
same order can be achieved with any positive definite radial (isotropic) kernel as well
as for certain classes of translation invariant kernels.

For arbitrary linear functionals the optimal data correspond to the first n “Fourier
coefficients” of f (see section 2). For function value data one may obtain O(n−1/4)
convergence, although unfortunately the current state of theory does not allow us to
construct the optimal data sites. Again, our result about dimension-independent con-
vergence rates (Theorem 5.3) generalizes to arbitrary positive definite radial (isotropic)
kernels. The convergence rates for arbitrary linear functionals provide a lower bound
on what is possible using function values. Thus, we know that for isotropic Gaussian
kernels one can never obtain dimension-independent convergence rates better than of
order n−1/2, no matter how cleverly the data sites are chosen.

For high dimension-independent convergence rates one needs the sequence of shape
parameters to decay to zero quickly, i.e., the decay rate of γ = {γ�}�∈N must be large,
as can be seen in Table 1.1. These results are derived in sections 5 and 6. The
table also highlights that for the normalized error criterion, dimension-independent
convergence rates with isotropic kernels are not possible.

Our analysis relates the decay of the shape parameters to the decay of the eigen-
values of the Hilbert–Schmidt operator associated with Kd (see section 2). Such an
analysis is possible for other kernelsKd as long as the eigenvalues of the corresponding
Hilbert–Schmidt operator are known. Because the Gaussian kernel is of product form,
the eigenvalues for the dimension d case are products of the eigenvalues for d = 1,
which facilitates the analysis. This fact, along with the popularity of the Gaussian
kernel, is why this article focuses on this kernel.
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As the vector of shape parameters γ changes, the Hilbert space of functions to
be approximated as well as its norm change, as illustrated in the next section. Thus,
the results derived here and summarized in Table 1.1 are for a whole family of spaces
of functions indexed by γ. If a function depends on a moderate or large number
of variables and lies in a Hilbert space whose reproducing kernel is isotropic, then
we should not be surprised if all algorithms give poor rates of convergence. On the
other hand, if the function lies in a Hilbert space whose shape parameters decay with
dimension, then there exist algorithms with good rates of convergence.

As a prelude to deriving new convergence and tractability results, the next section
reviews some principles of function approximation on Hilbert spaces. Section 4 applies
these principles to Hilbert spaces with translation invariant reproducing kernels.

2. Background.

2.1. Reproducing kernel Hilbert spaces. Let Hd = H(Kd) denote a repro-
ducing kernel Hilbert space of real functions defined on R

d. The goal is to accu-
rately approximate any function in Hd given a finite number of data about it. The
reproducing kernel Kd : R

d × R
d → R is symmetric and positive definite and re-

produces function values. This means that for all n ∈ N, x, t,x1,x2, . . . ,xn ∈ R
d,

c = (c1, c2, . . . , cn) ∈ R
n, and f ∈ Hd, the following properties hold:

Kd(·,x) ∈ Hd, Kd(x, t) = Kd(t,x),

n∑
i=1

n∑
j=1

Kd(xi,xj)cicj ≥ 0,(2.1a)

f(x) = 〈f,Kd(·,x)〉Hd
.(2.1b)

For an arbitrary x ∈ R
d consider the evaluation functional Lx(f) = f(x) for all

f ∈ Hd. Then Lx is continuous and ‖Lx‖H∗
d
= K

1/2
d (x,x) (see [1, 27]).

It is assumed that Hd is continuously embedded in the space L2 = L2(R
d, �d)

of square Lebesgue integrable functions, where the L2 norm was defined in (1.2).
Continuous embedding means that ‖Idf‖L2 = ‖f‖L2 ≤ ‖Id‖ ‖f‖Hd

for all f ∈ Hd.
The kernels considered here are assumed to satisfy

(2.2)

∫
Rd

Kd(t, t) �d(t) dt <∞.

This is sufficient to imply continuous embedding since

‖Idf‖2L2
=

∫
Rd

f2(t) �d(t) dt =

∫
Rd

〈f,Kd(·, t)〉2Hd
�d(t) dt

≤ ‖f‖2Hd

∫
Rd

Kd(t, t) �d(t) dt.

Many reproducing kernels are used in practice. A kernel is called translation
invariant or stationary if K(x, t) = K̃d(x − t). In particular, the kernel is radially
symmetric or isotropic if K(x, t) = κ(‖x− t‖2), in which case the kernel is called a
radial (basic) function. A popular choice is the Gaussian kernel defined in (1.1). The
anisotropic Gaussian kernel is translation invariant, and the isotropic Gaussian kernel
is radially symmetric. Stationary or isotropic kernels are common in the literature on
computational mathematics [2, 5, 31], statistics [1, 22, 27], statistical learning [17, 23],
and engineering applications [7]. Observe that (2.2) holds for all translation invariant
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kernels since

∫
Rd

Kd(t, t) �d(t) dt =

⎧⎪⎨⎪⎩
K̃d(0), translation invariant,

κ(0), radially symmetric,

1, (anisotropic) Gaussian.

Functions in Hd are approximated by linear algorithms1

(2.3) An(f) (x) =
n∑
j=1

Lj(f)aj(x) for all f ∈ Hd, x ∈ R
d

for some continuous linear functionals Lj ∈ H∗
d and functions aj ∈ L2. In the case

of minimum norm interpolation (cf. (2.5)) these functions are known as Lagrange
or cardinal functions and are specified in (2.6). Note that for known functions aj ,
the cost of computing An(f) (x) is equal to n multiplications and n− 1 additions of
real numbers plus the cost of computing aj(x) for j = 1, 2, . . . , n. That is why it is
important to minimize n for which the error of the algorithm An meets the required
error threshold. We do not consider the cost of generating the data samples, i.e., the
computation of Lj(f) for j = 1, 2, . . . , n, even though, depending on the nature of the
linear functionals, this may be nontrivial.

2.2. Convergence and tractability. This article addresses two problems: con-
vergence and tractability. The former considers how fast the error vanishes as n in-
creases. This is the typical point of view taken in numerical analysis and for which one
can find many results in the (radial) kernel literature as summarized in, e.g., [5, 31].
However, this problem does not take into consideration the effects of d. The study
of tractability arises in information-based complexity and it considers how the error
depends on the dimension, d, as well as the number of data, n.

Problem 1: Rate of convergence (fixed d). We would like to know how
fast ewor-ϑ(n,Hd) goes to zero as n goes to infinity. In particular, we study the
rate of convergence (defined by the notation in (1.3) and (1.4)) of the sequence
{ewor-ϑ(n,Hd)}n∈N. Since the numbers ewor-ϑ(n,Hd) are ordered, we have
(2.4)

rwor-ϑ(Hd) := r
({ewor-ϑ(n,Hd)}

)
= sup

{
β ≥ 0 | lim

n→∞ ewor-ϑ(n,Hd)n
β = 0

}
.

Roughly speaking, the rate of convergence, rwor-ϑ(Hd), is the largest β for which
the nth minimal errors behave like n−β . For example, if ewor-ϑ(n,Hd) = n−α for a
positive α, then rwor-ϑ(Hd) = α. Under this definition, even sequences of the form
ewor-ϑ(n,Hd) = n−α lnp n for an arbitrary p still have rwor-ϑ(Hd) = α. On the other
hand, if ewor-ϑ(n,Hd) = qn for a number q ∈ (0, 1), then rwor-ϑ(Hd) = ∞.

Obviously, rwor-all(Hd) ≥ rwor-std(Hd). We would like to know both rates and ver-
ify if rwor-all(Hd) > rwor-std(Hd), i.e., whether Λ

all admits a better rate of convergence
than Λstd.

1It is well known that adaption and nonlinear algorithms do not help for approximation of linear
problems. A linear problem is defined as a linear operator and we approximate its values over a
set that is convex and balanced. The typical example of such a set is the unit ball as taken in
this paper. Then among all algorithms that use linear adaptive functionals, the worst-case error is
minimized by a linear algorithm that uses nonadaptive linear functionals. Adaptive choice of a linear
functional means that the choice of Lj in (2.3) may depend on the already computed values Li(f)
for i = 1, 2, . . . , j − 1. That is why in our case, the restriction to linear algorithms of the form (2.3)
can be done without loss of generality. For more detail see, e.g., [26].
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Problem 2: Tractability (unbounded d). In this case, we would like to
know how ewor-ϑ(n,Hd) depends not only on n but also on d. Because of the focus
on d-dependence, the absolute and normalized error criteria described in the previous
section may lead to different answers. For a given positive ε ∈ (0, 1) we want to find
an algorithm An with the smallest n for which the error does not exceed ε for the
absolute error criterion and does not exceed ε ewor-ϑ(0,Hd) = ε ‖Id‖ for the normalized
error criterion. That is,

nwor-ψ-ϑ(ε,Hd) = min

{
n | ewor-ϑ(n,Hd) ≤

{
ε, ψ = abs,

ε ‖Id‖, ψ = norm,

}
.

Let I = {Id}d∈N denote the sequence of function approximation problems. We
say that I is polynomially tractable if and only if there exist numbers C, p, and q such
that

nwor-ψ-ϑ(ε,Hd) ≤ C d q ε−p for all d ∈ N and ε ∈ (0, 1).

If q = 0 above, then we say that I is strongly polynomially tractable and the infimum
of p satisfying the bound above is called the exponent of strong polynomial tractability.

The essence of polynomial tractability is to guarantee that a polynomial number of
linear functionals is enough to satisfy the function approximation problem to within ε.
Obviously, polynomial tractability depends on which class, Λall or Λstd, is considered
and whether the absolute or normalized error is used. As shall be shown, the results
on polynomial tractability depend on the cases considered.

The property of strong polynomial tractability is especially challenging since then
the number of linear functionals needed for an ε-approximation is independent of d.
The reader may suspect that this property is too strong and cannot happen for func-
tion approximation. Nevertheless, there are positive results to report on strong poly-
nomial tractability.

Besides polynomial tractability, there are the somewhat less demanding concepts
such as quasi-polynomial tractability and weak tractability. The problem I is quasi-
polynomially tractable if and only if there exist numbers C and t for which

nwor-ψ-ϑ(ε,Hd) ≤ C exp
(
t ln(1 + d) ln(1 + ε−1)

)
for all d ∈ N and ε ∈ (0, 1). The exponent of quasi-polynomial tractability is defined
as the infimum of t satisfying the bound above. Finally, I is weakly tractable if and
only if

lim
ε−1+d→∞

ln nwor-ψ-ϑ(ε,Hd)

ε−1 + d
= 0,

which only means that we do not have exponential dependence on ε−1 and d. Note
that for a fixed d, quasi-polynomial tractability means that

nwor-ψ-ϑ(ε,Hd) = O
(
ε−t(1+ln d)

)
as ε→ 0.

Hence, the exponent of ε−1 may now weakly depend on d through ln d.
We will report about quasi-polynomial and weak tractability in the case when

polynomial tractability does not hold. As before, quasi-polynomial and weak tractabil-
ity depend on which class Λall or Λstd is considered and on the error criterion. Mo-
tivation of tractability study and more on tractability concepts can be found in [15].
Quasi-polynomial tractability has been recently studied in [8].
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2.3. The spline algorithm. As alluded to in the introduction, the optimal
approximation algorithm for a function in Hd is known once the data functionals
L1, . . . , Ln are specified. That is, the optimal a1, . . . , an in (2.3) for which the worst-
case error of An is minimized can be determined explicitly. This optimal algorithm,
Sn, is the spline or the minimal norm interpolant ; see, e.g., section 5.7 of [26].

For given yj = Lj(f) for j = 1, 2, . . . , n, we take Sn(f) as an element of Hd that
satisfies the conditions

Lj(Sn(f)) = yj for j = 1, 2, . . . , n,(2.5)

‖Sn(f)‖Hd
= inf
g∈Hd, Lj(g)=yj , j=1,2,...,n

‖g‖Hd
.

The construction of Sn(f) may be done by solving a linear equation Kc = y, where
y = (y1, y2, . . . , yn)

T and the n× n matrix K has entries

Ki,j = Li(kj), i, j,= 1, . . . , n, with kj(x) = LjKd(·,x).

Then

(2.6) Sn(f)(x) = kT (x)K−1y with k(x) = (ki(x))
n
i=1,

i.e., the optimal functions aj of (2.3) are given by aT (x) = kT (x)K−1 and

ewor(Sn) = sup
‖f‖Hd

≤1, Lj(f)=0, j=1,2,...,n

‖f‖L2.

Note that depending on the choice of linear functionals L1, . . . , Ln the matrix K may
not necessarily be invertible; however, in that case c = K†y is well defined via the
pseudoinverse K† as the vector of minimal Euclidean norm which satisfies Kc = y.
Alternatively, one can require the linear functionals to be linearly independent.

We briefly comment on the cost of computing Sn(f)(x). Assume that the matrix
K is given and is nonsingular as well as that the function values kj(x) can be computed.
Then Sn(f)(x) can be computed by solving an n×n system of linear equations. This
requires O(n3) arithmetic operations if, for example, Gaussian elimination is used.
But we usually can do better. For a general nonsingular matrix K, suppose we need
to compute the spline Sn(f)(x) for many x. Then we can factorize the matrix K
once at cost proportional to O(n3) and then compute the solution c at cost O(n2).
More important, as we shall see later, for the optimally chosen linear functionals Lj the
matrix K is an identity and the cost of computing Sn(f)(x) equal to n multiplications,
n− 1 additions, and the n function evaluations of kj(x). In any case, independent of
the matrix K, it is clear that we should aim to work with the smallest possible n.

The spline enjoys more optimality properties. For instance, it minimizes the local
worst-case error (see, e.g., [26, Theorem 5.7.2]). Roughly speaking this means that
for each x ∈ R

d, the worst possible pointwise error |f(x) − An(f)(x)| over the unit
ball of functions f is minimized over all possible An by choosing An = Sn.

2.4. The eigendecomposition of the reproducing kernel. It is nontrivial to
find the linear functionals Lj from the class Λstd that minimize the error of the spline
algorithm Sn. For the class Λ

all, the optimal design is known, at least theoretically; see
again, e.g., [26]. Namely, let Wd = I∗d Id : Hd → Hd, where I

∗
d : L2 → Hd denotes the

adjoint of the embedding operator, i.e., the operator satisfying 〈f, I∗dh〉Hd
= 〈Idf, h〉L2

for all f ∈ Hd and h ∈ L2. As a consequence,Wd is a self-adjoint and positive definite
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linear operator given by

Wd f =

∫
Rd

f(t)Kd(·, t) �d(t) dt for all f ∈ Hd.

In fact, Wd is a Hilbert–Schmidt operator (see, e.g., [11]), that is, it has a finite trace.
Clearly,

〈f, g〉L2
= 〈Idf, Idg〉L2

= 〈Wdf, g〉Hd
= 〈f,Wdg〉Hd

for all f, g ∈ Hd.

It is known that limn→∞ ewor-all(n,Hd) = 0 if and only if Wd is compact (see, e.g.,
[15, section 4.2]). In particular, (2.2) implies that Wd is compact.

Let us define the eigenpairs of Wd by (λd,j , ηd,j), where the eigenvalues are or-
dered, λd,1 ≥ λd,2 ≥ · · · , and

Wd ηd,j = λd,j ηd,j with 〈ηd,j, ηd,i〉Hd
= δi,j for all i, j ∈ N.

Note also that for any f ∈ Hd we have

〈f, ηd,j〉L2
= 〈Idf, Idηd,j〉L2

= 〈f,Wdηd,j〉Hd
= λd,j 〈f, ηd,j〉Hd

.

Taking f = ηd,i we see that {ηd,j} is a set of orthogonal functions in L2. For simplicity
and without loss of generality we assume that all λd,j are positive.2 Letting

ϕd,j = λ
−1/2
d,j ηd,j for all j ∈ N

we obtain an orthonormal sequence {ϕd,j} in L2. Since {ηd,j} is a complete orthonor-
mal basis of Hd we have

(2.7) Kd(x, t) =

∞∑
j=1

ηd,j(x) ηd,j(t) =

∞∑
j=1

λd,j ϕd,j(x)ϕd,j(t) for all x, t ∈ R
d.

The assumption (2.2) implies thatWd is a Hilbert–Schmidt (or a finite trace) operator:

(2.8)

∞∑
j=1

λd,j =

∫
Rd

Kd(t, t) �d(t) dt <∞.

It is known that the best choice of Lj for the class Λall is Lj = 〈·, ηd,j〉Hd
(see,

e.g., [15, section 4.2]). Then the spline algorithm Sn with the minimal worst-case
error is defined using the eigenfunctions corresponding to the n largest eigenvalues,
i.e., aj = ηd,j in (2.3):

Sn(f) =

n∑
j=1

〈f, ηd,j〉Hd
ηd,j for all f ∈ Hd

and

ewor(Sn) = ewor-all(n,Hd) =
√
λd,n+1 for all n ∈ N.

The last formula for n = 0 yields that the initial error is ‖Id‖ =
√
λd,1.

2Otherwise, we should switch to a subspace of Hd spanned by eigenfunctions corresponding to k
positive eigenvalues and replace N by {1, 2, . . . , k}.



256 G. E. FASSHAUER, F. J. HICKERNELL, AND H. WOŹNIAKOWSKI

The results for the class Λall are useful for finding rates of convergence as well
as necessary and sufficient conditions on polynomial, quasi-polynomial, and weak
tractability in terms of the behavior of the eigenvalues λd,j . This has already been
done in a number of papers or books, and we will report these results later for spaces
studied in this paper. For the class Λstd, the situation is much harder, although there
are papers that relate rates of convergence and tractability conditions between classes
Λall and Λstd. Again we report these results later.

In summary, knowing the eigenpairs of the Hilbert–Schmidt operator Wd asso-
ciated with Kd provides us both with the optimal linear functionals as well as the
minimal worst-case error for the minimum norm interpolant. Other power series
expansions of Kd, while potentially easier to find, likely will not have these nice prop-
erties.

3. Eigenvalues of Gaussian kernels. From the previous section, it is clear
that the key to dimension-independent convergence rates and tractability is to show
that the eigenvalues of the reproducing kernel ordered by size decay quickly enough.
While the general framework from the previous section applies to any symmetric
positive definite kernel whose eigenpairs are known, we now analyze the function
approximation problem for the Hilbert space with the Gaussian kernel given by (1.1b)
since—as we will now show—the eigenpairs in this case are readily available.

What makes the analysis of the Gaussian kernel Kd especially attractive is its
product form. This implies that the space Hd is the tensor product of the Hilbert
spaces of univariate spaces with the kernels e−γ

2
� (x−t)2 for x, t ∈ R. As a further

consequence the operator Wd is of the product form and its eigenpairs are products
of the corresponding eigenpairs for the univariate cases.

Consider now d = 1 and the space H(K1) with K1(x, t) = e−γ
2(x−t)2 . Then the

eigenpairs (λ̃γ,j , ηγ,j) of W1 are known; see [17]. (This is related to Mehler’s for-
mula and appropriately rescaled Hermite functions [25, Problems and Exercises, Item
23].) Note that we have introduced the notation λ̃γ,j to emphasize the dependence
of the eigenvalues on γ in the following discussion (while the dependence on d has
temporarily been dropped from the notation). We have

λ̃γ,j =
1√

1
2 (1 +

√
1 + 4γ2) + γ2

(
γ2

1
2 (1 +

√
1 + 4γ2) + γ2

)j−1

= (1− ωγ)ω
j−1
γ ,

where

(3.1) ωγ =
γ2

1
2 (1 +

√
1 + 4γ2) + γ2

,

and ηγ,j =
√
λ̃γ,j ϕγ,j with

ϕγ,j(x) =

√
(1 + 4γ2)1/4

2j−1(j − 1)!
exp

(
− γ2x2

1
2 (1 +

√
1 + 4γ2)

)
Hj−1

(
(1 + 4γ2)1/4x

)
,

where Hj−1 is the Hermite polynomial of degree j − 1, given by

Hj−1(x) = (−1)j−1ex
2 dj−1

dxj−1
e−x

2

for all x ∈ R,
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so that ∫
R

H2
j−1(x) e

−x2

dx =
√
π 2j−1(j − 1)! for j = 1, 2, . . . .

Note that both ηγ,j(x) and ϕγ.j(x) can be computed at cost proportional to j by
using the three-term recurrence relation for Hermite polynomials.

Obviously, we have 〈ηγ,i, ηγ,j〉H(K1)
= 〈ϕγ,i, ϕγ,j〉L2

= δij , and applying (2.7) we

obtain

K1(x, t) = e−γ
2(x−t)2 =

∞∑
j=1

λ̃γ,jϕγ,j(x)ϕγ,j(y) for all x, t ∈ R.

Note that the eigenvalues λ̃γ,j are ordered and have the following asymptotic proper-
ties:

λ̃γ,1 = 1− ωγ =

√
2

1 +
√
1 + 4γ2 + 2γ2

= 1− γ2 +O(γ4) as γ → 0,

λ̃γ,j =
(
1− γ2 +O(γ4)

)( γ2

1− γ2 +O(γ4)

)j−1

for j = 1, 2, . . . .(3.2)

The space H(K1) consists of analytic functions for which

‖f‖2H(K1)
=

∞∑
j=1

〈f, ηγ,j〉2H(K1)
=

∞∑
j=1

1

λ̃γ,j
〈f, ϕγ,j〉2L2

<∞.

This means that the coefficients of f in the space L2 decay exponentially fast. The
inner product is obviously given as

〈f, g〉H(K1)
=

∞∑
j=1

1

λ̃γ,j

∫
R

f(t)
ϕγ,j(t)√

π
e−t

2

dt

∫
R

g(t)
ϕγ,j(t)√

π
e−t

2

dt for all f, g ∈ H(K1).

For more about the characterization of the space H(K1) see [24].
For d > 1, let γ = {γ�}�∈N and j = (j1, j2, . . . , jd) ∈ N

d. As mentioned, the
eigenpairs (λ̃d,γ,j , ηd,γ,j) of Wd are given by the products

λ̃d,γ,j =
d∏
�=1

λ̃γ�,j� =
d∏
�=1

1√
1
2 (1 +

√
1 + 4γ2� ) + γ2�

(
γ2�

1
2 (1 +

√
1 + 4γ2� ) + γ2�

)j�−1

=

d∏
�=1

(1− ωγ�)ω
j�−1
γ� ,(3.3)

where ωγ is defined above in (3.1), and

ηd,γ,j =

d∏
�=1

√
λ̃γ�,j� ϕγ�,j� , 〈ηd,γ,i, ηd,γ,j〉Hd

= 〈ϕγ,i, ϕγ,j〉L2
= δij .

In the next sections, it will be convenient to reorder the sequence of eigenvalues
{λ̃d,γ,j}j∈Nd as the sequence {λd,j}j∈N with λd,1 ≥ λd,2 ≥ · · · . Obviously, for the
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univariate case, d = 1, we have λ1,j = λ̃1,γ1,j for all j ∈ N, but for the multivariate

case, d > 1, the correspondence between λd,j and λ̃d,γ,j is more complex. Obviously,

λd,1 =
∏d
�=1 (1− ωγ�) . This section ends with a lemma describing the convergence

of the sums of powers of the eigenvalues for the multivariate problem and how these
sums depend on the dimension, d. Also included is a simple estimate of λd,n+1. This
lemma is used repeatedly in the following sections.

Lemma 3.1. Let τ > 0. Consider the Gaussian kernel with the sequence of shape
parameters γ = {γ�}�∈N. The sum of the τ th power of the eigenvalues for the d-variate
case, d ≥ 1, is

(3.4)

∞∑
j=1

λτd,j =
∑
j∈Nd

λ̃τd,γ,j =

d∏
�=1

⎛⎝ ∞∑
j=1

λ̃τγ�,j

⎞⎠ =

d∏
�=1

(1− ωγ�)
τ

1− ωτγ�

{
> 1, 0 < τ < 1,

= 1, τ = 1.

The (n+ 1)st largest eigenvalue satisfies

(3.5) λd,n+1 ≤ 1

(n+ 1)1/τ

d∏
�=1

1− ωγ�
(1− ωτγ�)

1/τ
.

Proof. Equation (3.4) follows directly from the formula for λ̃d,γ,j in (3.3). From
the definition of ωγ in (3.1) it follows that 0 < ωγ < 1 for all γ > 0. For τ ∈ (0, 1),
consider the function f : ω �→ (1−ω)τ − 1+ωτ defined on [0, 1]. Clearly, f is concave
and vanishes at 0 and 1, and therefore f(ω) > 0 for all ω ∈ (0, 1). This yields the
lower bound on the sum of the power of the univariate eigenvalues.

The ordering of the eigenvalues λd,j implies that

λd,n+1 ≤
⎛⎝ 1

n+ 1

n+1∑
j=1

λτd,j

⎞⎠1/τ

≤
⎛⎝ 1

n+ 1

∞∑
j=1

λτd,j

⎞⎠1/τ

=
1

(n+ 1)1/τ

⎛⎝ ∞∑
j=1

λτd,j

⎞⎠1/τ

.

This yields the upper bound on the (n+1)st largest eigenvalue in (3.5) and completes
the proof.

The main point of (3.5) is that this estimate holds for all positive τ . This means
that λd,n+1 goes to zero faster than any polynomial in (n+ 1)−1.

4. Rates of convergence for translation invariant kernels. In this section
we consider the function approximation problem for the Hilbert space Hd = H(Kd)
with translation invariant kernels and in particular the anisotropic Gaussian kernel
given by (1.1b). We stress that the sequence γ = {γ�}∞�=1 of shape parameters can be
arbitrary. In particular, we may consider the isotropic (or radial) case for which all
γ� = γ > 0.

We want to verify how fast the minimal errors ewor-all(n,Hd) and e
wor-std(n,Hd)

go to zero and what the rate of convergence of these sequences is; see (2.4). Note that
the dimension d is arbitrary, but fixed, throughout this section.

Theorem 4.1. For the anisotropic as well as the isotropic Gaussian kernel

rwor-all(Hd) = rwor-std(Hd) = ∞.

Proof. For the class Λall we know that ewor-all(n,Hd) =
√
λd,n+1, where λd,n+1

is the (n + 1)st largest eigenvalue of the Hilbert–Schmidt operator Wd associated
with Kd. Lemma 3.1 demonstrates that λd,n+1 is proportional to (n + 1)−1/τ times
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a dimension-dependent constant. (Note that the dependence on τ is irrelevant since
(3.5) holds for all τ .) This implies that rwor-all(Hd) ≥ 1/(2τ) and since τ can be
arbitrarily small, we conclude that rwor-all(Hd) = ∞, as claimed.

Consider now the class Λstd. We use [13, Theorem 5], which states that if there
exist numbers p > 1 and B such that

(4.1) λd,n ≤ B n−p for all n ∈ N,

then for all δ ∈ (0, 1) and n ∈ N there exists a linear algorithm An that uses at most n
function values and its worst-case error is bounded by

ewor(An) ≤ BCδ,p (n+ 1)−(1−δ) p2/(2p+2).

Here, Cδ,p is independent of n and d and depends only on δ and p.
Note that assumption (4.1) holds in our case for an arbitrarily large p with B

that can depend on d. Hence, rwor-std(Hd) ≥ (1 − δ) p2/(2p + 2), and since δ can
be arbitrarily small and p can be arbitrarily large we conclude rwor-std(Hd) = ∞, as
claimed. This completes the proof.

We stress that the algorithm An that was used in the proof is nonconstructive.
However, there are known algorithms that use only function values and whose worst-
case error goes to zero like n−p for an arbitrary large p. In fact, given a design, it is
known that the spline algorithm is the best way to use the function data given via that
design. Thus, the search for an algorithm with optimal convergence rates focuses on
the choice of a good design. One such design was proposed by Smolyak in 1963 [21],
and today it is usually referred to as a sparse grid; see [3] for a survey. An associated
algorithm from which this design naturally arises is Smolyak’s algorithm. The essence
of this algorithm is to use a certain tensor product of univariate algorithms. Then, if
the univariate algorithm has the worst-case error of order n−p, the worst-case error
for the d-variate case is also of order n−p modulo some powers of ln n; see, e.g., [28].

Theorem 4.1 states that as long as one is interested only in the rate of convergence,
the function approximation problem for Hilbert spaces with infinitely smooth kernels
such as the Gaussian is easy. As mentioned earlier, convergence rates for wide classes
of infinitely smooth (p = ∞) radial kernels such as, e.g., (inverse) multiquadrics and
Gaussians can be found in the literature [14, 18, 31]. However, the rate of convergence
tells us nothing about the dependence on the dimension d. As long as d is small the
dependence on d is irrelevant. But if d is large we want to check how the decay
rate of the minimal worst-case error depends not only on the number of samples,
but also on the dimension. We are especially concerned about a possible exponential
dependence on d which following Bellman is called the curse of dimensionality. It also
may happen that we have a trade-off between the rate of convergence and dependence
on d. Furthermore, the results may now depend on the weights γ�. This is the subject
of our next sections.

5. Tractability for the absolute error criterion. As in the previous section,
we consider the function approximation problem for Hilbert spaces Hd = H(Kd) with
a Gaussian kernel. We now consider the absolute error criterion and we want to
verify whether polynomial tractability holds. Let us recall that we study the minimal
number of functionals from the class Λall or Λstd needed to guarantee a worst-case
error of at most ε,

nwor-abs-ϑ(ε,Hd) = min
{
n | ewor-ϑ(n,Hd) ≤ ε

}
, ϑ ∈ {std, all}.
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5.1. Arbitrary linear functionals. We first analyze the class Λall and polyno-
mial tractability. We are able to establish dimension-independent convergence rates
for any translation invariant positive definite kernel. First we discuss the Gaussian
kernel and then explain how to generalize our result to other radial and general trans-
lation invariant kernels.

Theorem 5.1. Consider the function approximation problem I = {Id}d∈N for
Hilbert spaces with isotropic or anisotropic Gaussian kernels with arbitrary positive
γ� for the class Λall and the absolute error criterion. Then we have the following:

• I is strongly polynomially tractable with exponent of strong polynomial tract-
ability at most 2. For all d ∈ N and ε ∈ (0, 1) we have

ewor-all(n,Hd) ≤ (n+ 1)−1/2, nwor-abs-all(ε,Hd) ≤ ε−2.

• For the isotropic Gaussian kernel the exponent of strong tractability is 2, so
that the bound above is best possible in terms of the exponent of ε−1. Further-
more strong polynomial tractability is equivalent to polynomial tractability.

Proof. We use [15, Theorem 5.1]. This theorem says that I is strongly polynomi-
ally tractable if and only if there exist two positive numbers C1 and τ such that

C2 := sup
d∈N

⎛⎝ ∞∑
j=	C1


λτd,j

⎞⎠1/τ

<∞.

If so, then

nwor-abs-all(ε,Hd) ≤ (C1 + Cτ2 ) ε
−2τ for all d ∈ N and ε ∈ (0, 1).

Furthermore, the exponent of strong polynomial tractability is

pall = inf{2τ | τ for which C2 <∞}.
Let τ = 1. Then, by (3.4) it follows that no matter what the weights γ� are, we can
take an arbitrarily small C1 so that �C1� = 1 and C2 = 1 as well as nwor-abs-all(ε,Hd) ≤
(C1 + 1) ε−2. For C1 tending to zero, we conclude the bound

nwor-abs-all(ε,Hd) ≤ ε−2.

Furthermore, by (3.5) in Lemma 3.1 it follows that

ewor-all(n,Hd) =
√
λd,n+1 ≤ (n+ 1)−1/2,

as claimed.
Assume now the isotropic case, i.e., γ� = γ for all j ∈ N. Then for any positive

C1 and τ we use Lemma 3.1 and obtain

∞∑
j=	C1


λτd,j =

∞∑
j=1

λτd,j −
	C1
−1∑
j=1

λτd,j =

(
(1− ωγ)

τ

1− ωτγ

)d
−

	C1
−1∑
j=1

λτd,j

≥
(
(1− ωγ)

τ

1− ωτγ

)d
− (�C1� − 1)λτd,1

=

(
(1− ωγ)

τ

1− ωτγ

)d
− (�C1� − 1) (1 − ωγ)

τ d.
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For τ ∈ (0, 1), we know from Lemma 3.1 that (1−ωγ)τ/(1−ωτγ) > 1, and therefore
the last expression goes exponentially fast to infinity with d. This proves that C2 = ∞
for all τ ∈ (0, 1). Hence, the exponent of strong tractability is two.

Finally, to prove that strong polynomial tractability is equivalent to polynomial
tractability, it is enough to show that polynomial tractability implies strong polyno-
mial tractability. From [15, Theorem 5.1] we know that polynomial tractability holds
if and only if there exist numbers C1 > 0, q1 ≥ 0, q2 ≥ 0, and τ > 0 such that

C2 := sup
d∈N

⎧⎪⎨⎪⎩d−q2
⎛⎝ ∞∑
j=	C1 d q1


λτd,j

⎞⎠1/τ
⎫⎪⎬⎪⎭ <∞.

If so, then

nwor-abs-all(ε,Hd) ≤ (C1 + Cτ2 ) d
max(q1,q2τ) ε−2τ

for all ε ∈ (0, 1) and d ∈ N. Note that for all d we have

d−q2τ
(
(1− ωγ)

τ

1− ωτγ

)d
− d−q2τ (�C1� − 1) (1− ωγ)

τ d ≤ Cτ2 <∞.

This implies that τ ≥ 1. On the other hand, for τ = 1 we can take q1 =
q2 = 0 and arbitrarily small C1 and obtain strong tractability. This completes the
proof.

Although Theorem 5.1 is for Gaussian kernels, it is easy to extend this theorem
for other positive definite translation invariant or radially symmetric kernels. Indeed,
for translation invariant kernels the only difference is that for τ = 1 the sum of the
eigenvalues is not necessarily one but

∞∑
j=1

λd,j = K̃d(0).

Hence, for all ε ∈ (0, 1) and d ∈ N we have

ewor-all(n,Hd) ≤
[
K̃d(0)

n+ 1

]1/2
and nwor-abs-all(n,Hd) ≤ K̃d(0) ε

−2.

Tractability then depends on how K̃d(0) depends on d. In particular, it is easy to
check the following facts:

• If

sup
d∈N

K̃d(0) <∞,

then we have strong polynomial tractability with exponent at most 2, i.e.,

nwor-all(n,Hd) = O (ε−2
)
.

• If there exists a nonnegative q such that

sup
d∈N

K̃d(0) d
−q <∞,

then we have polynomial tractability and

nwor-all(n,Hd) = O (d q ε−2
)
.
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• If

lim
d→∞

ln max(K̃d(0), 1)

d
= 0,

then we have weak tractability.
For radially symmetric kernels, the situation is even simpler since

∞∑
j=1

λd,j = κ(0),

and it does not depend on d. Hence,

ewor-all(n,Hd) ≤
[
κ(0)

n+ 1

]1/2
and nwor-abs-all(n,Hd) ≤ κ(0) ε−2,

and we have strong polynomial tractability with exponent at most 2.
We now compare Theorems 4.1 and 5.1. Theorem 4.1 says that for any p we have

ewor-all(n,Hd) = O(n−p),

but the factor in the big O notation may depend on d. In fact, from Theorem 5.1 we
conclude that, indeed, for the isotropic case it depends more than polynomially on d
for all p > 1/2. Hence, the good rate of convergence does not necessarily mean much
for large d.

The exponent of strong polynomial tractability is 2 for the isotropic case. We
now check how—for Gaussian kernels—the exponent of strong polynomial tractability
depends on the sequence γ = {γ�}�∈N of shape parameters. The determining factor is
the quantity r(γ) introduced in (1.3), which measures the rate of decay of the shape
parameter sequence.

Theorem 5.2. Consider the function approximation problem I = {Id}d∈N for
Hilbert spaces with isotropic or anisotropic Gaussian kernels for the class Λall and the
absolute error criterion. Let r(γ) be the rate of decay of shape parameters. Then we
have the following:

• I is strongly polynomially tractable with exponent

pall = min

(
2,

1

r(γ)

)
≤ 2.

• For all d ∈ N, ε ∈ (0, 1), and δ ∈ (0, 1) we have

ewor-all(n,Hd) = O
(
n−1/pall+δ

)
= O

(
n−max(r(γ),1/2)+δ

)
,

nwor-abs-all(ε,Hd) = O
(
ε−(pall+δ)

)
,

where the factors in the big O notation are independent of d and ε−1 but may
depend on δ.

• Furthermore, in the case of ordered shape parameters, i.e., γ1 ≥ γ2 ≥ · · · if

nwor-abs-all(ε,Hd) = O (ε−p d q) for all ε ∈ (0, 1) and d ∈ N,

then p ≥ pall, which means that strong polynomial tractability is equivalent to
polynomial tractability.
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Proof. As in the proof of Theorem 5.1, I is strongly polynomially tractable if and
only if there exist two positive numbers C1 and τ such that

C2 := sup
d∈N

⎛⎝ ∞∑
j=	C1


λτd,j

⎞⎠1/τ

<∞.

Furthermore, the exponent pall of strong polynomial tractability is the infimum of 2τ
for which this condition holds. Proceeding similarly as before, we have

∞∑
j=	C1


λτd,j ≤
∞∑
j=1

λτd,j =

∞∏
�=1

(1− ωγ�)
τ

1− ωτγ�

and since γ� > 0 ensures λd,j < 1

∞∑
j=	C1


λτd,j ≥
∞∑
j=1

λτd,j − C1 =

∞∏
�=1

(1− ωγ�)
τ

1− ωτγ�
− C1.

Therefore, I is strongly polynomially tractable if and only if there exists a positive τ
such that

C3 :=

∞∏
�=1

1− ωγ�
(1− ωτγ�)

1/τ
<∞

and the exponent pall is the infimum of 2τ for which the last condition holds.
As we already know, this holds for τ = 1. Take now τ ∈ (0, 1). Since (1 −

ωγ�)/(1− ωτγ�)
1/τ > 1, then C3 <∞ implies that

lim
�→∞

1− ωγ�
(1− ωτγ�)

1/τ
= 1.

Taking into account (3.1), it is easy to check that the last condition is equivalent to

lim
�→∞

ωγ� = lim
�→∞

γ2� = 0.

Furthermore, C3 <∞ implies that

∞∑
�=1

γ2τ� <∞,

and r(γ) ≥ 1/(2τ) > 1/2. Hence, pall < 2 only if r(γ) > 1/2. On the other hand,
2τ ≥ 1/r(γ) and therefore pall ≥ 1/r(γ). This establishes the formula for pall. The
estimates on ewor-all(n,Hd) and n

wor-abs-all(ε,Hd) follow from the definition of strong
tractability.

Assume now polynomial tractability with p < 2 and an arbitrary q. Then
λd,n+1 ≤ ε2 for n = O(ε−pdq). Hence,

λd,n+1 = O(d 2q/p(n+ 1)−2/p).

This implies

d∏
j=1

(1 − ωγ�)
τ

1− ωτγ�
=

∞∑
�=1

λτd,� = O(d 2qτ/p) for all 2τ > p.
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For τ < 1, this yields

exp

(
d∑
�=1

γ2τ�

)
= O(d 2qτ/p).

Therefore

lim sup
�→∞

∑d
�=1 γ

2τ
�

ln d
<∞.

Since the γ�’s are ordered, we have

dγ2τd
ln d

≤
∑d
�=1 γ

2τ
�

ln d
= O(1),

and γd = O((ln(d)/d)1/(2τ)). Hence, r(γ) ≥ 1/(2τ) and r(γ) ≥ 1/p. This means that
2 > p ≥ 1/r(γ) = pall, as claimed.

It is interesting to notice that the last part of Theorem 5.2 does not hold, in
general, for unordered shape parameters. Indeed, for s > 1/2, take

γak = 1 for all natural k with ak = 22
k

,

γ� =
1

�s
for all natural � not equal to ak.

Then strong polynomial tractability holds with the exponent 2 since C3 = ∞ in the
proof of Theorem 5.2 for all τ < 1. On the other hand, we have polynomial tractability
with p = 1/s < 2 and q arbitrarily close to 1/(2s). Indeed, for τ = 1/(2s) and q1 = 0
and q2 > 1 we have

d−q2
∞∑
�=1

λτd,� = d−q2
d∏
�

(1− ωγ�)
τ

1− ωγ�

= d−q2
(
1− ω1)

τ

1− ω1

)O(1)+ln ln d

O(d) <∞.

This implies that

nwor-abs-all(ε,Hd) = O
(
d q2/(2s) ε−1/s

)
.

Theorem 5.2 states that the exponent of strong polynomial tractability is 2 for all
shape parameters for which r(γ) ≤ 1/2. Only if r(γ) > 1/2 is the exponent smaller
than 2. Again, although the rate of convergence of ewor-all(n,Hd) is always excellent,
the dependence on d is eliminated only at the expense of the exponent which must
be roughly 1/pall. Of course, if we take an exponentially decaying sequence of shape
parameters, say, γ� = q � for some q ∈ (0, 1), then r(γ) = ∞ and pall = 0. In this
case, we have an excellent rate of convergence without any dependence on d.

Extending Theorem 5.2 to arbitrary stationary or isotropic kernels is not so
straightforward. To achieve smaller strong tractability exponents than 2, one needs
to know the sum of the powers of eigenvalues and their dependence on d. One would
suspect, as is the case for Gaussian kernels, that some sort of anisotropy is needed to
obtain better strong tractability exponents than 2.
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5.2. Only function values. We now turn to the class Λstd and prove the fol-
lowing theorem for Gaussian kernels. As for Theorem 5.1, it is straightforward to
extend this theorem to other radially symmetric and even translation invariant posi-
tive definite kernels.

Theorem 5.3. Consider the function approximation problem I = {Id}d∈N for
Hilbert spaces with isotropic or anisotropic Gaussian kernels for the class Λstd and
the absolute error criterion. Then we have the following:

• I is strongly polynomially tractable with exponent of strong polynomial tractabil-
ity at most 4. For all d ∈ N and ε ∈ (0, 1) we have

ewor-std(n,Hd) ≤
√
2

n1/4

(
1 +

1

2
√
n

)1/2

,

nwor−abs−std(ε,Hd) ≤
⌈
(1 +

√
1 + ε2)2

ε4

⌉
.

• For the isotropic Gaussian kernel the exponent of strong tractability is at least
2. Furthermore, strong polynomial tractability is equivalent to polynomial
tractability.

Proof. We now use [29, Theorem 1]. This theorem says that

(5.1) ewor-std(n,Hd) ≤ min
k=0,1,...

(
[ewor−all(k,Hd)]

2 +
k

n

)1/2

.

Taking k = �n−1/2� and remembering that ewor-all(k,Hd) ≤ k−1/2 we obtain

ewor-std(n,Hd) ≤
(

1√
n
+

1 +
√
n

n

)1/2

=

√
2

n1/4

(
1 +

1

2
√
n

)1/2

,

as claimed. Solving ewor-std(n,Hd) ≤ ε, we obtain the bound on nwor-abs-std(ε,Hd).
For the isotropic case, we know from Theorem 5.1 that the exponent of strong

tractability for the class Λall is 2. For the class Λstd, the exponent cannot be smaller.
Finally, assume that we have polynomial tractability for the class Λstd. Then

we also have polynomial tractability for the class Λall. From Theorem 5.1 we know
that then strong tractability for the class Λall holds. Furthermore, we know that the
exponent of strong tractability is 2 and nwor-abs-all(ε,Hd) ≤ ε−2. As above, we then
get strong tractability also for Λstd with the exponent at most 4. This completes the
proof.

We do not know if the error bound of order n−1/4 is sharp for the class Λstd. We
suspect that it is not sharp and that maybe even an error bound of order n−1/2 holds
for the class Λstd exactly as for the class Λall.

For fast decaying shape parameters it is possible to improve the rate obtained in
Theorem 5.3. This is the subject of our next theorem.

Theorem 5.4. Consider the function approximation problem I = {Id}d∈N for
Hilbert spaces with isotropic or anisotropic Gaussian kernels for the class Λstd and
the absolute error criterion. Let r(γ) > 1/2. Then we have the following:

• I is strongly polynomially tractable with exponent at most

pstd =
1

r(γ)
+

1

2 r2(γ)
= pall + 1

2

[
pall
]2
< 4.
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• For all d ∈ N, ε ∈ (0, 1), and δ ∈ (0, 1) we have

ewor-std(n,Hd) = O
(
n−1/pstd+δ

)
= O

(
n−r(γ)/[1+1/(2r(γ))]+δ

)
,

nwor-abs-std(ε,Hd) = O
(
ε−(pstd+δ)

)
,

where the factors in the big O notation are independent of d and ε−1 but may
depend on η.

Proof. For r(γ) > 1/2, Theorem 5.2 for the class Λall states that the exponent of
strong polynomial tractability is pall = 1/r(γ). This means that for all η ∈ (0, 1) we
have

λd,n = O(n−2r(γ)+η)

with the factor in the big O notation independent of n and d but dependent on δ.
Since 2r(γ) > 1, it follows that for all positive η small enough, p = 2r(γ) − η > 1.
Applying [13, Theorem 5] as in the proof of Theorem 4.1, it follows that for any
δ1 ∈ (0, 1) we have

ewor-std(n,Hd) = O
(
n−(1−δ1)p2/(2p+2)

)
= O

(
n−(1−δ1)(1+O(η))2r2(γ)/(2r(γ)+1)

)
= O

(
n−1/pstd+δ

)
,

again with the factor in the big O notation independent of n and d but dependent on
δ. This leads to the estimates of the theorem.

Note that for large r(γ), the exponents of strong polynomial tractability are nearly
the same for both classes Λall and Λstd. For an exponentially decaying sequence of
shape parameters, say, γ� = q � for some q ∈ (0, 1), we have pall = pstd = 0, and the
rates of convergence are excellent and independent of d.

6. Tractability for the normalized error criterion. We now consider the
function approximation problem for Hilbert spaces Hd(Kd) with a Gaussian kernel
for the normalized error criterion. That is, we want to find the smallest n for which

ewor-ϑ(n,Hd) ≤ ε ‖Id‖, ϑ ∈ {std, all}.
Note that ‖Id‖ =

√
λd,1 ≤ 1 and it can be exponentially small in d. Therefore the

normalized error criterion may be much harder than the absolute error criterion and
this is the reason for a number of negative results for this error criterion. It turns out
that the isotropic and anisotropic cases are quite different and we will study them
in separate subsections. We begin with the case where the data are generated by
arbitrary linear functionals. The class Λstd is partially covered at the end.

6.1. Isotropic case with arbitrary linear functionals. For the isotropic
case, γ� = γ > 0, we have

‖Id‖ = λ̃
d/2
γ,1 = (1− ωγ)

d/2,

and since λ̃γ,1 = 1 − ωγ < 1, the norm of Id is exponentially small. We are ready to
present the following theorem.

Theorem 6.1. Consider the function approximation problem I = {Id}d∈N for
Hilbert spaces with isotropic Gaussian kernels for the class Λall and for the normalized
error criterion. Then we have the following:
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• I is not polynomially tractable.
• I is quasi-polynomially tractable with exponent

t all = t all(γ) =
2

ln
1+2γ2+

√
1+4γ2

2γ2

.

That is, for all d ∈ N, ε ∈ (0, 1) and δ ∈ (0, 1) we have

ewor-all(n,Hd)

= O
⎛⎝‖Id‖

(
1

n

) 1

(tall+δ) (1+ln d)

(
1

1
2 (1 +

√
1 + 4γ2) + γ2

)d/4⎞⎠ ,

nwor-nor-all(ε,Hd)

= O (exp ((tall + δ)(1 + ln d)(1 + ln ε−1)
))
,

where the factors in the big O notations are independent of n, ε−1 and d but
may depend on δ.

Proof. The lack of polynomial tractability follows, in particular, from [15, The-
orem 5.6]. In fact, the lack of polynomial tractability for the class Λall holds for all
tensor product problems with two positive eigenvalues for the univariate case.

For quasi-polynomial tractability we use [8, Theorem 3.3], which states that quasi-
polynomial tractability for the class Λall holds for tensor product problems if and only
if the rate

r = sup
{
β ≥ 0 | lim

n→∞ λ̃γ,n n
β = 0

}
of the univariate eigenvalues is positive and the second largest univariate eigenvalue
λ̃γ,2 is strictly less than the largest univariate eigenvalue λ̃γ,1. If so, then the exponent
of quasi-polynomial tractability is

t all = max

(
2

r
,

2

ln λ̃γ,1/λ̃γ,2

)
.

In our case, r = ∞ and

tall =
2

ln λ̃γ,1/λ̃γ,2
=

2

− ln ωγ
=

2

ln
1+2γ2+

√
1+4γ2

2γ2

.

The estimates of ewor-all(n,Hd) and nwor-nor-all(ε,Hd) follow from the definition of
quasi-polynomial tractability. This completes the proof.

For the isotropic case we lose polynomial tractability for the normalized error
criterion although even strong polynomial tractability is present for the absolute error
criterion. This shows qualitatively that the normalized error criterion is much harder.
In this case we only have quasi-polynomial tractability. Observe that the exponent of
quasi-polynomial tractability depends on γ and we have

lim
γ→0

tall(γ) = 0 and lim
γ→∞ tall(γ) = ∞.

For some specific values of γ we have

γ 2−1/2 1 21/2

tall(γ) 1.5186 . . . 2.0780 . . . 2.8853 . . .
.
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6.2. Anisotropic case with arbitrary linear functionals. We now consider
the sequence {γ�}�∈N of shape parameters and ask when we can guarantee strong
polynomial tractability. As we shall see, this holds for the class Λall if r(γ) > 0
although the exponent of strong polynomial tractability is large for small r(γ). More
precisely, we have the following theorem, which is similar to Theorem 5.2.

Theorem 6.2. Consider the function approximation problem I = {Id}d∈N for
Hilbert spaces with anisotropic Gaussian kernels for the class Λall and for the normal-
ized error criterion. Then we have the following:

• I is strongly polynomially tractable if r(γ) > 0. If so, then the exponent is

pall =
1

r(γ)
.

• Let r(γ) > 0. Then for all d ∈ N, ε ∈ (0, 1), and δ ∈ (0, 1) we have

ewor-all(n,Hd) = O
(
‖Id‖n−1/pall+δ

)
= O

(
n−r(γ)+δ

)
,

nwor-nor-all(ε,Hd) = O
(
ε−(pall+δ)

)
,

where the factors in the big O notations are independent of n, ε−1, and d but
may depend on δ.

• Furthermore, in the case of ordered shape parameters, i.e., γ1 ≥ γ2 ≥ · · · if

nwor-nor-all(ε,Hd) = O (ε−p d q) for all ε ∈ (0, 1) and d ∈ N,

then p ≥ pall = 1
r(γ) , which means that strong polynomial tractability is equiv-

alent to polynomial tractability.
Proof. [15, Theorem 5.2] states that strong polynomial tractability holds if and

only if there exits a positive number τ such that

C̃2 := sup
d

∞∑
j=1

(
λd,j
λd,1

)τ
=

∞∏
�=1

1

1− ωτγ�
<∞.

If so, then nwor-nor-all(ε,Hd) ≤ C̃2 ε
−2τ for all ε ∈ (0, 1) and d ∈ N, and the exponent

of strong polynomial tractability is the infimum of 2τ for which C̃2 <∞.
Clearly, C̃2 <∞ if and only if

∞∑
�=1

ωτγ� <∞ if and only if

∞∑
�=1

γ2τ� <∞.

This holds if and only if r(γ) ≥ 1/(2τ) > 0. This also proves that pall = 1/r(γ). The
estimates on ewor-all(n,Hd) and n

wor-nor-all(ε,Hd) follow from the definition of strong
tractability.

The case of polynomial tractability for ordered shape parameters follows analo-
gously from the proof in Theorem 5.2. From [15, Theorem 5.2], we know that the prob-
lem is polynomially tractable with nwor-nor-all(ε,Hd) = O (ε−2τ d q2τ

)
if and only if

C̃2 := sup
d∈N

d−q2
[ ∞∑
j=1

(
λd,j
λd,1

)τ ]1/τ
= d−q2

d∏
�=1

1

(1 − ωτ� )
1/τ

<∞.
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Proceeding as in the proof of Theorem 5.2, this can happen for ordered shape param-
eters only if τ ≥ 1/(2r(γ)). Therefore, p ≥ pall = 1/r(γ), as claimed.

The essence of Theorem 6.2 is that under the normalized error criterion, strong
polynomial and polynomial tractability for the class Λall requires that the shape pa-
rameters tend to zero polynomially fast so that r(γ) > 0. This condition is stronger
than what is required for the absolute error criterion.

It is interesting to compare strong polynomial tractability for the absolute and
normalized error criteria for the class Λall; see Theorems 5.2 and 6.2. This is the
subject of the next corollary.

Corollary 6.3. Consider the function approximation problem I = {Id}d∈N for
Hilbert spaces with isotropic or anisotropic Gaussian kernels for the class Λall. Let
r(γ) be the rate of convergence of shape parameters. Then we have the following:

• Absolute error criterion: I is always strongly polynomially tractable with ex-
ponent

pall = min

(
2,

1

r(γ)

)
≤ 2.

• Normalized error criterion: I is strongly polynomially tractable if and only if
r(γ) > 0. If so, the exponent is

pall =
1

r(γ)
.

The strong tractability exponents under the two error criteria are the same provided
that r(γ) ≥ 1/2.

6.3. Only function values. We now turn to the class Λstd. We do not know if
quasi-polynomial tractability holds for the class Λstd in the isotropic case. The theo-
rems that we used for the absolute error criterion are not enough for the normalized
error criterion. Indeed, no matter how a positive k is defined in (5.1) we must take n
exponentially large in d if we want to guarantee that the error is less than ε‖Id‖. Sim-
ilarly, if we use (4.1), then we must guarantee that p > 1, and this makes the number
B exponentially large in d. We leave as an open problem whether quasi-polynomial
tractability holds for the class Λstd.

We now discuss the initial error for lim�→∞ γ� = 0. We have

‖Id‖ =
d∏
�=1

(1− ωγ�)
1/2 = exp

(
O(1)− 1

2

d∑
�=1

γ2�

)
.

For r(γ) ∈ [0, 1/2), the initial error still goes exponentially fast to zero, whereas for
r(γ) = 1/2 it may go to zero or be uniformly bounded from below by a positive
number, and finally for r(γ) > 1/2 it is always uniformly bounded from below by a
positive number. For example, take γ� = �−α lnβ(1 + �) for a positive α and real β.
Then r(γ) = α. For α = 1

2 , the initial error goes to zero for β > − 1
2 and is of order 1

if β ≤ − 1
2 .

This discussion shows that for r(γ) > 1/2 there is really no difference between the
absolute and normalized error criteria. This means that for r(γ) > 1/2 we can apply
Theorem 5.4 for the class Λstd with ε replaced by ε‖Id‖ = Θ(ε). For r(γ) = 1/2,
Theorem 5.3 can be applied if we assume additionally that

∑∞
�=1 γ

2
� < ∞. The last

assumption implies that ‖Id‖ = Θ(1). We summarize this discussion in the following
corollary.
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Corollary 6.4. Consider the function approximation problem I = {Id}d∈N

for Hilbert spaces with anisotropic Gaussian kernels for the class Λstd and for the
normalized error criterion. Assume that

r(γ) > 1
2 or

(
r(γ) = 1

2 and
∞∑
�=1

γ2� <∞
)
.

Then
• I is strongly polynomially tractable with exponent at most

pstd =
1

r(γ)
+

1

2 r2(γ)
= pall + 1

2

[
pall
]2 ≤ 4;

• For all d ∈ N, ε ∈ (0, 1), and δ ∈ (0, 1) we have

ewor-all(n,Hd) = O
(
n−1/(pall+δ)

)
,

nwor-nor-all(ε,Hd) = O
(
ε−(pall+δ)

)
,

where the factors in the big O notation are independent of n, ε−1, and d but
may depend on δ.

The case r(γ) < 1/2 is open. We do not know if polynomial tractability holds for
the class Λstd in this case.
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[13] F. Kuo, G. W. Wasilkowski, and H. Woźniakowski, On the power of standard information

for multivariate approximation in the worst case setting, J. Approx. Theory, 158 (2009),
pp. 97–125.

[14] W. R. Madych and S. A. Nelson, Bounds on multivariate polynomials and exponential error
estimates for multiquadric interpolation, J. Approx. Theory, 70 (1992), pp. 94–114.
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