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Abstract
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1 Introduction

One of the central themes in mathematical finance is no-arbitrage pricing and its appli-
cations. At the foundation of no-arbitrage pricing is the First Fundamental Theorem of
Asset Pricing (FFTAP). We prove a version of the FFTAP under transaction costs! for
discrete-time markets with dividend-paying securities.

The FFTAP has been proved in varying levels of generality for frictionless markets. In
a discrete-time setting for a finite state space, the theorem was first proved in Harrison and
Pliska [HP81]. Almost a decade later, Dalang, Morton, and Willinger [DMW90] proved
the FFTAP for the more technically challenging setting in which the state space is gen-
eral. Their approach requires the use of advanced, measurable selection arguments, which
motivated several authors to provide alternative proofs using more accessible techniques
(see Schachermayer [Sch92], Kabanov and Kramkov [KK94|, Rogers [Rog94|, Jacod and
Shiryaev [JS98], and Kabanov and Stricker [KS01b]). Using advanced concepts from func-
tional and stochastic analysis, the FFTAP was first proved in a general continuous-time
set-up in the celebrated paper by Delbaen and Schachermayer [DS94]. A comprehensive
review of the literature pertaining to no-arbitrage pricing theory in frictionless markets can
be found in Delbaen and Schachermayer [DS06].

The first rigorous study of the FFTAP for markets with transaction costs in a discrete-
time setting was carried out by Kabanov and Stricker [KSOla]. Under the assumption that
the state space is finite, it was proved that NA is equivalent to the existence of a consistent
pricing system (using the terminology introduced in Schachermayer [Sch04]). However,
their results did not extend to the case of a general state space. As in the frictionless
case, the transition from a finite state space to a general state space is nontrivial due to
measure-theoretic and topological related difficulties. These difficulties were overcome in
Kabanov, Rasonyi, and Stricker [KRS02], where a version of the FFTAP was proven under
the efficient friction assumption (EF). It was shown that the strict no-arbitrage condition,
a condition which is stronger than N A, is equivalent to the existence of a strictly consistent
pricing system. Therein, it was asked whether EF can be discarded. Schachermayer [Sch04]
answered this question negatively by showing that neither N A nor the strict no-arbitrage
condition alone is sufficiently strong to yield the existence of a consistent pricing system.
More importantly, Schachermayer [Sch04] proved a new version of the FFTAP that does
not require EF. Specifically, he proved that the robust no-arbitrage condition, which is
stronger than the strict no-arbitrage condition, is equivalent to the existence of a strictly
consistent pricing system. Subsequent studies that treat the robust no-arbitrage condition
are Bouchard [Bou06], Valliere, Kabanov, and Stricker [DVKO07], Jacka, Berkaoui, and War-
ren [JBWOS]. Recently, Pennanen [Penlld, Penlla, Penllb, Penllc| studied no-arbitrage
pricing in a general context in which markets can have constraints and transaction costs
may depend nonlinearly on traded amounts. Therein, the problem of superhedging a claims

'In this study, a transaction cost is defined as the cost incurred in trading in a market in which securities’
quoted prices have a bid-ask spread. We do not consider other costs such as broker’s fees and taxes.



process (e.g. swaps) is also investigated. An excellent survey of the literature pertaining to
no-arbitrage pricing in markets with transaction costs can be found in Kabanov and Safar-
ian [KS09]. Let us mention that versions of the FFTAP for markets with transaction costs in
a continuous-time setting have also been studied in the literature. This literature considers
stronger conditions than NA (see for instance Jouini and Kallal [JK95], Cherny [Che07],
Guasoni, Réasonyi, and Schachermayer [GMS10], Denis, Guasoni, and Résonyi [DGR11],
Denis and Kabanov [DK12]).

The fundamental difference between no-arbitrage pricing theory for dividend-paying se-
curities and non-dividend paying securities is that transaction costs associated with trading
dividend-paying securities is that transaction costs associated with trading dividend-paying
securities may not be proportional to the number of units of securities purchased or sold.
Transaction costs associated with dividend-paying securities may accrue over time by merely
holding the security—for a non-dividend paying security transaction costs are only charged
whenever the security is bought or sold. Our consideration of transaction costs on dividends
distinguishes this study.

The contribution of this paper is summarized as follows:

e We define and study the value process and the self-financing condition under trans-
action costs for discrete-time markets with dividend-paying securities (Section 2).

e We define and investigate NA and EF in our context (Section 3).

e We prove a key closedness property of the set of claims that can be superhedged at
zero cost (Section 3.1).

e Using classic separation arguments, we prove a version of the FFTAP that is relevant
to our set-up. Specifically, we prove that NA under EF is satisfied if and only if there
exists a risk-neutral measure (Section 3.2).

e We introduce an appropriate notion of consistent pricing systems in our set-up, and we
study the relationship between them and NA under EF (Section 4). We demonstrate
that, if there are no transaction costs on the dividends paid by securities, NA under
EF is equivalent to the existence of a consistent pricing system (Section 4.1).

e We derive a dual representation for the superhedging ask and subhedging bid price
processes for a contingent claim (Section 5).

2 The value process and the self-financing condition

Let T be a fixed time horizon, and let 7 := {0,1,...,7} and 7* := {1,2,...,T}. Next, let
(Q, Fr,F = (F)ie1, P) be the underlying filtered probability space.

On this probability space, we consider a market consisting of a savings account B and
of N traded securities satisfying the following properties:



e The savings account can be purchased and sold according to the price process B :=

T

<(HZ:0(1 + rs))> o where (r;)]_, is a nonnegative process specifying the risk-free
t—

rate.

e The N securities can be purchased according to the ex-dividend price process P%* :=
((PtaSk’l, . .,PtaSk’N));‘FZO, and pay (cumulative) dividends specified by the process
Assk . — ((A?Sk’l, . ,A?Sk’N))Z;I. The quantity AA%* is the dividends per unit of
securities held long.

e The N securities can be sold according to the ex-dividend price process PY¢ :=
((Ptlnd’l,...,Ptb’d’N));f:O, and pay (cumulative) dividends specified by the process

Abid . — ((Afid’l, . .,Afid’N))le. The quantity AAY? is the dividends per unit of

securities held short.

We assume that the processes introduced above adapted. In what follows, we shall denote
by A the backward difference operator: AX; := X; — X;_ 1, and we take the convention
that AgSk = Ag’d = 0. It is easy to verify the following product rule for A:

A(X,Y)) = Xi1AY, + ViAX, = X AY, + Vi AX,.

Remark 2.1. For any t = 1,2,...,T and 5 = 1,2,..., N, the random variable AA?Sk’j is
interpreted as amount of dividend associated with holding a long position in security j from
time £ — 1 to time ¢, and the random variable AA?id’j is interpreted as amount of dividend
associated with holding a short position in security j from time ¢ — 1 to time ¢.

We now illustrate the processes introduced above in the context of a vanilla Credit
Default Swap (CDS) contract.

Example 2.1. A CDS contract is a contract between two parties, a protection buyer and
a protection seller, in which the protection buyer pays periodic fees to the protection seller
in exchange for some payment made by the protection seller to the protection buyer if a
pre-specified credit event of a reference entity occurs. Let 7 be the nonnegative random
variable specifying the time of the credit event of the reference entity. Suppose the CDS
contract admits the following specifications: initiation date ¢ = 0, expiration date t = T,
and nominal value $1. For simplicity, we assume that the loss-given-default is a nonnegative
scalar ¢ and is paid at default. Typically, CDS contracts are traded on over-the-counter
markets in which dealers quote CDS spreads to investors. Suppose that the CDS spread
bid
(

quoted by the dealer to sell a CDS contract with above specifications is k”** (to be received

every unit of time), and the CDS spread quoted by the dealer to buy a CDS contract with

ask (

above specifications is k to be paid every unit of time). We remark that the CDS spreads

as

k®F and k%? are specified in the CDS contract, so the CDS contract to sell protection is

technically a different contract than the CDS contract to buy protection.



The cumulative dividend processes A%** and A%? associated with buying and selling the
CDS with specifications above, respectively, are defined as

t t
APE =100 — K ey, AP =100 — KDY 1uen

u=1 u=1

for t € 7*. In this case, the ex-dividend ask and bid price processes P*? and P®* specify
the mark-to-market values of the CDS for the protection seller and protection buyer, re-
spectively, from the perspective of the protection buyer. The CDS spreads k2% and x"? are
set so that P(l)’id = P(?Sk = 0. Also, we have that P%Sk = P:Z}id = 0 since they are ex-dividend
prices.

Next, we illustrate the processes above with a vanilla Interest Rate Swap (IRS) contract.

Example 2.2. An IRS contract is a contract between two parties, in which one party agrees
to periodically pays a fixed rate (the swap rate) to the other party, in exchange for a floating
rate (usually the Libor rate). We suppose that the floating rate from i — 1 to i, denoted by
L;, is exchanged for the swap rate every unit of time. Also, we assume that the IRS admits
the following specifications: initiation date ¢t = 0, expiration date ¢t = T', and nominal value
$1. IRS contracts are traded on over-the-counter markets in which dealers quote swap rates
to investors. For the contract specified above, we denote by s*** the swap rate quoted by
the dealer for a Payer IRS (pays the swap rate and receives the floating rate), and denote
by s%? the swap rate quoted by the dealer for a Receiver IRS (pays the floating rate and
receives the swap rate). We remark that the spreads s*** and s*? are specified in the IRS
contract.

The cumulative dividend processes A% and A%* associated with the Payer and Receiver
swap with specifications above, respectively, are defined as

t t

A?Sk — Z(Ll - Sask)’ Aind — Z(Sbid o L’L)

i=1 i=1

for t € T*. The ex-dividend ask and bid price processes P¥? and P** specify the mark-to-
market values of the IRS for the Payer IRS and Receiver IRS, respectively. The values of
swap spreads s** and s%@ are set so that Pé’id = Pé’s’“ = (0 are null at initiation date, and
also note that P%Sk = ijfd = 0 since they are ex-dividend prices.

From now on, we make the following standing assumption.
Bid-Ask Assumption: pask > pbid gnq A Aask < A Abid,

For convenience, we define J := {0,1,..., N} and
J* = {1,2,...,N}. Unless stated otherwise, all inequalities and equalities between pro-
cesses and random variables are understood P-a.s. and coordinate-wise.



2.1 The value process and self-financing condition

A trading strategy is a predictable process ¢ := ((qﬁ?, b1 .., qbiv))tT:l,

as the number of units of security j held from time ¢ — 1 to time ¢. Processes ¢!,..., ¢~

where gb{ is interpreted

correspond to the holdings in the N securities, and process ¢° corresponds to the holdings
in the savings account B. We take the convention ¢g = (0,...,0).

Definition 2.1. The value process (Vi(¢))]_, associated with a trading strategy ¢ is defined
as

N j k.j bid,j .
gb(l)_'—Zj:l qul(l{dﬂlzo}P(;ls ']_‘_1{(;5]1'<0}P0z J), lft:(),

Vi(o) = j bid,j ask,j
HO) =Y 0B, + X0, 61 (Lo P + 1,0y )
+ 00 Bl (1 gy g AATST 1 AAIM), i1 << T

For t = 0, Vp(¢) is interpreted as the cost of the portfolio ¢, and for ¢ € {1,...,T} it is
interpreted as the liquidation value of the portfolio before any time ¢ transactions, including
any dividends acquired from time ¢t — 1 to time t.

Remark 2.2. Also note that, due to the presence of transaction costs, the value process V'
may not be linear in its argument, i.e. Vi(¢) + Vi(v) # Vi(¢ + 1), and Vi(ag) # aVi()
for o € R, and some trading strategies ¢, 1, some time ¢t € 7. This is the major difference
from the frictionless setting.

Next, we introduce the self-financing condition, which is appropriate in the context of
this paper.

Definition 2.2. A trading strategy ¢ is self-financing if

N
0 i ] ask,j ) bid,j
BtA¢t+1 + 21 A¢t+1(1{A¢i+120}Pt + 1{A¢§+1<0}Pt )
]:
N
_ J ) ask,j ) bid,j
=2 Ao AT + 1) AA) @
j=1
fort=1,2,...,T — 1.

The self-financing condition imposes the restriction that no money can flow in or out
of the portfolio. We note that if P := P** = P¥d and AA := AA®* = AAY? then the
self-financing condition in the frictionless case is recovered.

Remark 2.3. Note that the self-financing condition not only takes into account transaction
costs due purchases and sales of securities (left hand side of (1)), but also transaction costs
accrued through the dividends (right hand side of (1)).

The next result gives a useful characterization of the self-financing condition in terms
of the value process.



Proposition 2.4. A trading strategy ¢ is self-financing if and only if the value process V (¢)
satisfies

t N

- Z Z A, ( oo Pt + 1ag <oy P 51dij>

j=1u=1
N ot
j ask,j ) bid,j
+Zz¢i(1{¢$20}AAu T4 g copAAu j) (2)
J=1 u=1

for allt € T*.

Proof. By the definition of V(¢), and applying the product rule for the backwards difference
operator A, we obtain

t t
Vi(9) = Vo(d) + D $WABu+ > Bu_1A¢), (3)
u=1 u=2
N N
i ] bid,j ] ask,j i ) bid,j ) ask,j
- Zl 4 (1{¢{<0}P0 + Lgz01 0 ) + Zl & <1{¢520}Pt 1<t )
j= j=
N t
j ask,j ) bid,j
+2 > 4l (1{¢Z;20}AAU T4 Lgrcop A j)
j=1lu=1
N t
1 bid,j ask,j
- Z Z ¢i71 (1{¢i71<0}AA |+ 1{¢J >0}AAu71])'
=1 u=2

If ¢ is self-financing, then we see that (3) reduces to (2). Conversely, assume that the
value process satisfies (2). Subtracting (2) from (3) and applying the product rule for the
backwards difference A to both sides yields that ¢ is self-financing. O

The next proposition extends the previous result in terms of our numéraire B. For
convenience, we let V*(¢) := B~V (¢) for all trading strategies ¢.

Proposition 2.5. A trading strategy ¢ is self-financing if and only if the discounted value
process V*(¢) satisfies

N
V;S*(Qb) = Vb(d)) + Z QZ)iB;l (1{¢z20}PthdJ + 1{¢J<0}Pask,J)

k,j bid,
B ZZA%Bu 1( agns0 a1’ + Lags<oyPus 1J)

j=1lu=1

N t
DD B! (1{¢~;';20}A‘435k’j + 1{¢2;<0}AAZid’j> )

j=1u=1



for allt € T*.

Proof. Suppose that ¢ is self-financing. We may apply Proposition 2.4 and the product rule
for the backwards difference A to see that

N
A(BVilg) = ) _A <¢i3t1 (Lpgzsoy BV + 1{¢§<0}Pta3k’])>
=1

N
j—1 ) ask,j . bid,j
= D2 B (Lagso P + gy PY)
j=1

N

i H—1 ask,j bid,j

+Zl¢iBt <1{¢120}AAt " g A j)
J:

for all ¢ € T*. Summing both sides of the equation from u = 1 to u = t shows that necessity
holds.

Conversely, if the value process V(¢) satisfies (4), we may apply the product rule for
the backwards difference A to A(B(B™'V(¢))) to deduce that

N
AVi(¢) = ¢/AB + ) A (‘ﬁi (1120 2™ + 11 <0p P tm]))
=1

N
J ) ask,j ) bid,j

B z; A (1{@@20}34 + Hagicoplimt )
]:
N

i ) ask,j ] bid,j

+ Z; @] (1{#20}&@ + 10 g DA )

]:

After summing both sides of the equation above from u = 1 to u = ¢ and applying Propo-
sition 2.4, we see that ¢ is self-financing. O

Remark 2.6. If P = P%k = ptid and AA = AA*F = AAY then we recover the classic
result: a trading strategy ¢ is self-financing if and only if the value process satisfies

N t u
Vi(0) = V(o) + D D GlA (B P+ Y B AAL)
w=1

j=1u=1

for all t € T*.

For convenience, we define P2k .= B=1pask pbidx . p=1pbid paskx . p=1A fgask
and Abid* .= B=1A A,

In frictionless markets, the set of all self-financing trading strategies is a linear space
because securities’ prices are not influenced by the direction of trading. This is no longer
the case if the direction of trading matters: the strategy ¢ + 1 may not be self-financing
even if ¢ and v are self-financing. Intuitively this is true because transaction costs can be



avoided whenever gb{ wg < 0 by combining orders. However, the strategy (0%, ¢* + !, ¢? +
V2, ..., ¢ +4N) can enjoy the self-financing property if the units in the savings account §°
are properly adjusted. The next lemma shows that such 69 exists, is unique, and satisfies

¢" + 90 < 6°.

Proposition 2.7. Let 1 and ¢ be any two self-financing trading strategies with Vo(v) =
Vo(¢) = 0. Then there exists a unique predictable process 0° such that the trading strategy
0 defined as 0 := (0°,¢* + 1, ... ¢ + N) is self-financing with Vo(0) = 0. Moreover,
¢" + 40 < 6°.

Proof. The trading strategies ¢ and v are self-financing, so by definition we have that
N
. k. bid j
Biadof+ 3 A6 (a0 PEE + 1 g oy PEY) (5)
j=1

N
j ask,j bid,j
-3¢, (1 (o 0y AN 41 ¢{71<0}AAt71])
j=1
and

N
. ask,j bid,j
Bt_lAq/)?—i— Z Awg (1{Aw{20}Pt—1 74+ 1{A¢{<O}Pt71]) (6)
j=1

N
j ask,j bid,j
~S (1{w57120}AAt,1J 4 1{¢{71<0}AAHJ)
j=1

for t =2,3,...,T. By adding equations (5) and (6), and rearranging terms we see that

N
ot =i o (- aet + o o
j=1
+ (B + o) AAE
j=1
N
ask,j bid,j j j
+> (P - P (1{A¢>{<O}A¢g + 1{Aw{<o}A¢f)
j=1
N
j j bid,j ask,j
+ 2 (Lot <yl + Loyl ) (BATY - AAH”)
j=1
for t = 2,3,...,T. Now recursively define the process §° as
N N
0. __ ) j ] j ask,j ] j ] j bid,j
0= =3 (Losop @l Lpusoy ) B8 = 30 (1otcopdl + Lpugoyd) P2
j=1 j=1



and

N
_ j ask ask,j
0; == 9?—1+Bt—11<_ZA(¢g+wt )PV + Z L) AAPEY (8)
Jj=1
N

! Z; 1{A(¢{+¢{)<0}A(¢g + 1/}?) (Pta—SIf’j - Ptlidfj)
=

N
+ Z 1{¢>{_1+w{_1<0}( L) (A - AA??”))
=1

for t = 2,3,...,T. It follows that #° is unique and is self-financing. By definition, the
trading strategy 6 := (6°, o' + 1, ..., ¢ + ) is self-financing. Subtracting (7) from (8)
yields

— (¢ + ) = (¢t L+ p 1) (9)

N
+ Z Liagi+ved)<oy A(&f + ) (YT = PYY)

.
Il
—

Mz

> (Haot a0 + Ly oy ) (P21 = PIY)

<.
Il
-

n
E

( g—l + 1/’?—1) 1{¢{_1+¢{_1<0} (AAItjidij - AA?i’?j)

<.
Il
-

Mz

(¢f_11 (¢l <0}+¢t 1l <0}) (AAY — AATEY)

<.
Il
—

for t =2,3,...,T. It is straightforward to verify that the inequality

LixcopX + 1iy<oyY < Lxqpyv<op(X +Y) (10)

holds for any random variables X and Y. Moreover, the inequalities P4 < P%* and
A Ak < AAY hold by assumption. Hence, (9) reduces to

(¢t +¢t) (¢t L 1) (11)

for t = 2,3,...,T. Since Vy(¢) = Vo(v) = 0, it follows that 6 = ¢ + 99 and Vp(0) =
Vo(¢) + Vo(p) = 0. After recursively solving (11), we conclude that 69 > ¢? + 9 for all
teTr. O

The next result is the natural extension of the previous proposition to value processes.
It is intuitively true since some transaction costs may be avoided by combining orders.

10



Theorem 2.8. Let ¢ and ¢ be any two self-financing trading strategies such that Vo(¢p) =
Vo(v) = 0. There exists a unique predictable process 6° such that the trading strategy defined
as 0 := (00, ¢" + 1, ..., oN + V) is self-financing with Vy(0) = 0, and Vr(0) satisfies

Vr(é) + Vr(¥) < Vr(6).

Proof. Let ¢ and ¥ be self-financing trading strategies. By applying Proposition 2.4 and
rearranging terms, we may write

T

Vr(6) + Ve(g) = D (69 +¢0)AB

u=1

N
i i bzd, ask7
- Z (97 +v1) ( hroizoy T g gt oy ])

N T
ask,j ) . bid,j
= > (Adl +Av) ( (aghragl >0 a1 T Liagiags <oy H)
j=1u=1

N T
ask,j . ) bid,j 1 2
+ZZ (0, + ¥l ( (e z0y DA g gy Ay ]) - -0

j=lu=1
(12)

where C1 is defined as

Chi= Z (( {67 >0}¢T + 1{W >0}1/’T> P + ( {9 <0}¢T + 1{W <0}1/’T> bldd)

=1

T
Z ( {A], <0}A¢] + 1{A¢J<O}AW) ask,J

lu

WMZ
Il

bzd,
( (2620 A%+ agi 50 AVL ) 7

.MZ
Mﬂ

<
Il
—_
<
I
—

j j bid,j ) j ) j ask,j
+ <(1{¢£>0}¢{t L0y ) AATY 4 (L o0l + Loyt ) A4S J)’

M=
E

1

1w

J

and C? is defined as
N

2 . j j bid,j ask,
%=~ Z (¢JT + 1/’%) ( {dﬂ +W <0}P T+ 1{¢>J +wﬂ >0}P J)
j=1

N T
bid,j k.j
+ Z Z Agb] + Adj ) ( {AG]+Ap), >0}Pul !+ 1{A¢] +Awu<0}Psi1J)
j=lu=1

N T
bid,j ) ) ask,j
ZZ (bj J””“ ( {¢z;+¢z;20}AAu ’ +1{¢i+wi<o}AAu J)'

j=lu=1

11



By Proposition 2.7, there exists a unique predictable process #° such that the trading
strategy defined as 6 := (67, ¢' + ', ... ¢~ + o) is self-financing with Vp(#) = 0 and
satisfies ¢0 +¢° < 09, In view of Proposition 2.5, since 6 is self-financing, it follows that

T N
o 0 j j ) ) bid,j ] ] ask,j
Vr(0) = Z 0, ABy + Z (¢ + %) (1{¢7T+wazo}PT T+ Ligi 4yt <oy r ])
=1

u=1

T
. . y bidj
- Z Z (A, + Ay (1{A¢Z;+A¢f;20}P3i1] + 1{A¢>{+Awi<0}Puilj)

N T T
T Z Z (1 +3) (1{¢i+wizo}AAZSk’j t Z 1{¢%+wi;<o}AAzid7j)' (13)
- u=1

Comparing equations (12) and (13) we see that

T
Vr(¢) + V() = Vr(0) + > (65 + 4 — 65)AB, — C' - C. (14)

u=1

According to (10), the random variable C'+C? is nonnegative. Moreover, since ¢° 410 < §°
and AB > 0, it follows that Zle(qsg + 2 — 09 AB, < 0 From (14), we conclude that
Vr(¢) + Vr () < Vr(0). O

The following technical lemma, which easy to verify, will be used in the next section.
Lemma 2.1. The following hold:

o Let Y and Y be any random variables, and suppose X™ is a sequence of R-valued
random variables converging a.s. to X. Then 1{Xm20}meb + Lixmey XY con-
verges a.s. to 1{X20}XYI’ + Lix<op XY™

e If a sequence of trading strategies ¢ converges a.s. to ¢, then V(¢™) converges a.s.

to V(o).

2.2 The set of claims that can be superhedged at zero cost

For all t € T, denote by LO(Q,}},}P’;R(N +1)) the space of all (P-equivalence classes of)
RO+ _valued, Fi-measurable random variables. We equip LY, F;,P;R) with the topol-
ogy of convergence in measure P. Also, let S be the set of all self-financing trading strategies.
For the sake of conciseness, we will refer to sets that are closed with respect to convergence
in measure P simply as P-closed.

We define the sets

K:={Vi(¢): ¢ €8, Vo(¢) =0},
LY(Q, Fr,P;R) := {X € L%Q, Fr,P;R) : X >0},
K—LY(Q,Fr,P;R):={Y -~ X:YeKand X € LY(Q, Fr,P;R)}.

12



The set K is the set of attainable claims at zero cost. On the other hand, IC—LS)F(Q, Fr,P;R)
is the set of claims that can be superhedged at zero cost: for any X € K — LQ(Q,]-"T,]P’;R),
there exists an attainable value at zero cost K € K so that X < K.

The following lemma asserts that the set of claims that can be superhedged at zero cost
is a convex cone.

Lemma 2.2. The set K — LY (Q, Fr,P;R) is a convezr cone.

Proof. Let Y1, Y% € K — L% (Q, Fr,P;R). Then there exist K!, K? € K and Z',2Z? €
LY (Q, Fr,P;R) such that Y! = K! — Z! and Y? = K? — Z2. By definition of K, there
exists ¢, € S with Vy(¢) = Vo(¥) = 0 such that K = Vi(¢) and K2 = V}(¢)). We will
prove that for any positive scalars a1 and «o the following holds

a1 (Vi(9) = Z') + ao(VE(y) — Z%) € K = L5.(Q, Fr, P;R),
or, equivalently, that there exists K € K such that
a1 V(@) + V(W) — a1 Zt — an 2% < K.

The value process is positive homogeneous, so a1V} (¢) + a2V () = Vi(a1¢) + Vi(ar).
According to Theorem 2.8, there exists a unique predictable process §° such that the trading
strategy defined as 6 := (6°, a1 ¢ +antb?, . .., a1¢” +agy) is self-financing with V() = 0,
and satisfies Vji(a1¢) + Vi (awyp) < V(). By definition, we have Vi(6) € K. Since

arlVE(8) + aaVE () — an Z' — apZ? = Vi (an¢) + Vi (o)) — an 2" — ap 22
<VHO) — a1 Zt — anZ? < VF(H),

we conclude that the claim holds. O

Remark 2.9. The set K is not necessarily a convex cone. To see this, lets suppose that T' = 1,
J ={0,1}, and r = 0. Consider the trading strategies ¢ = {¢°, 1} and ¢ = {¢%, —1}, where
¢ and 9" are chosen so that Vg(¢) = Vy(1p) = 0. By definition, V1(¢), V1(¢¥)) € K. However,

V' (9) + VY () = PYid — Ppsk 4 Agsh — Abid 4 phid — pgsk,

is generally not in the set K.

3 The no-arbitrage condition

We begin by introducing the definition of the no-arbitrage condition.

Definition 3.1. The no-arbitrage condition (NA) is satisfied if for each ¢ € S such that
Vo(¢) = 0 and Vp(¢) > 0, we have Vp(¢) = 0.
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In the present context, NA has the usual interpretation that “it is impossible to make
something out of nothing.” The next lemma provides us equivalent conditions to NA in
terms of the set of attainable claims at zero cost, and also in terms of the set of claims that
can be superhedged at zero cost. They are straightforward to verify.

Lemma 3.1. The following conditions are equivalent:
(i) NA is satisfied.
(it) (K — L9(Q, Fr,P;R)) N LY(Q, Fr,P;R) = {0}.
(iii) KN LY, Fr,P;R) = {0}.
We proceed by defining The Efficient Friction Assumption in our context (cf. Kabanov

et al. [KRS02]).
The Efficient Friction Assumption (EF):

{¢p€S: Vo(g) =Vr(¢) =0} = {0}. (15)

Note that if (15) is satisfied, then for each ¢ € S, we have Vy(¢) = Vr(¢) = 0 if and
only if ¢ = 0. The efficient friction assumption, which was introduced by Kabanov et
al. [KRS02], states that the only portfolio that can be liquidated into the zero portfolio
that is available at zero price is the zero portfolio. In the present context, EF has the same
interpretation: the only zero-cost, self-financing strategy that can be liquidated into the
zero portfolio is the zero portfolio.

We will denote by NAEF the no-arbitrage condition under the efficient friction assump-
tion.

In what follows, we denote by P the set of all RV-valued, F-predictable processes. Also,
we define the mapping

N

. bidie b
fp@ﬁ)3=:j£:<ﬁ%(1{¢;20}}3f ’ *‘1{¢g<o}F¥S )
=1

N T
1 k.7, bid,j,*
=D A (Lagisy Pt + Lagi<o P )

j=1lu=1

N T
+ D 0L AL + Ly g AUt (16)
j=1u=1

for all RV-valued stochastic processes
(¢s)i=1 € LO(Q, Fr,BsRY) x - x LO(Q, Fr, P;RY),

and let K := {F(¢) : ¢ € P}. In view of Proposition 2.5, we note that V;i(¢) = Vo(¢)+F ()
for all self-financing trading strategies ¢

14



Remark 3.1.

(i) Note that F is defined on the set of all R¥-valued stochastic processes. On the
contrary, the value process is defined on the set of trading strategies, which are RV *1-
valued predictable processes.

(ii) The set K has the same financial interpretation as the set L. We introduce the set K
because it is more convenient to work with from the mathematical point of view.

(iii) F(a¢) = aF(¢) for any nonnegative random variable «.
The next results provides an equivalent condition for EF to hold.

Lemma 3.2. The efficient friction assumption (EF) is satisfied if and only if {1 € P :
F(y) =0} = {0}.

Proof. Let 1) € P be such that F(¢) = 0. We define the trading strategy

¢ = (¢, ..., 9N), where ¢V is chosen so that ¢ € S and Vy(¢) = 0. we see that
Vi(¢) = F(v), which gives us Vj(¢) = 0. EF is satisfied, so ¢/ =0 for j = 0,..., N, which
in particular implies that ¥ =0 for j =1,..., V.

Conversely, suppose EF holds, and fix ¢ € S so that Vy(¢) = V/(¢) = 0. Define the
predictable process 97/ := ¢/ for j = 1,...,N. By Proposition 2.5 and the definition of
F, it is true that F(¢) = V7(¢). Thus, F(1)) = 0. By assumption, we have that 1/ = 0
for j = 1,..., N, which implies ¢/ = 0 for j = 1,...,N. From the definition of V()
and because Vy(¢) = 0, it follows that ¢ = 0. Since ¢ € S, we may recursively solve for
gﬁg,...,gbOT to deduce that ¢ = 0 for t = 2,...,T. Hence, ¢/ =0 for j =0,1,...,N. Ul

Lemma 3.3. We have that K = K.

Proof. The claim follows from Proposition 2.5. O

3.1 Closedness property of the set of claims that can be superhedged at
zZero cost

In this section, we prove that the set of claims that can be superhedged at zero cost,
K- L(_)F(Q, Fr,P;R), is P-closed whenever NAEF is satisfied. This property plays a central
role in the proof of the First Fundamental Theorem of Asset Pricing (Theorem 3.5).

We will denote by || - || the Euclidean norm on R¥.

Let us first recall the following lemma from Schachermayer [Sch04], which is closely
related to Lemma 2 in Kabanov and Stricker [KSO01b].

Lemma 3.4. For a sequence of random variables X™ € L°(Q, F,P; RN) there s a strictly
increasing sequence of positive, integer-valued, F-measurable random variables T such that
X" converges a.s. in the one-point-compactification RN U {oc} to some random variable
X € LY9Q,F,P;RN U {c0}). Moreover, we may find the subsequence such that | X|| =
lim sup,, || X™||, where ||joco|| = oo.

15



The next result extends the previous lemma to processes.

Lemma 3.5. Let F* be a o-algebra, and Y™ e LO(Q, FL,P;RYN) fori=1,..., M. Suppose
that F* C FJ for all i < j, and that Y™ satisfies limsup,, |Y;™|| < oo fori =1,..., M.
Then there is a strictly increasing sequence of positive, integer-valued, FM -measurable ran-

dom wvariables 7™ such that, for i = 1,..., M, the sequence Y[m converges a.s. to some
Y; € L°(Q, Fi,P;RY).

Proof. We first apply Lemma 3.4 to the random variable Y{™: there exists a strictly in-
creasing sequence of positive, integer- valued Fl-measurable random variables 7i" such that
{rH(w), (w),...,} CNfor w € Q, and Y] i converges a.s. to some Y] € LY(Q, FL P, ]RN)
Since limsup,, ||Ym|| < 00, we also have that limsup,, ||Y; i | < oo. Moreover, Y,' €
LO(Q, F2,P;RY) since F! C F2. Therefore, we may apply Lemma 3.4 to the sequence Y, g4
to find a strictly increasing sequence of positive, integer-valued, F2-measurable random
variables 73" such that

{7‘21(0.1),722@), ..} C {Tll(w),ﬁ?(w), ...} CN, ae weQ, (17)

and Y;’T converges a.s. to some Yy € LO(Q, F2, P;RY). From (17), the sequence ergl
converges a.s. to Y.

We may continue by recursively repeating the argument above to the sequences Y;", for
i =3,..., M, to find strictly increasing sequences of positive, integer-valued, F*-measurable
random variables 7, such that

{rH(w), 2 (w),...} C - C{r} (W), 72 (w),...} CN, ae weQ, (18)

K3 »

and Yfm converges a.s. to some Y; € LO(Q, ', P; ]RN) Because of (18), we see that YTﬂ
converges a.s. to Y; fori =1,..., M. Therefore, 7" := 7} defines the desired sequence. [

We proceed by proving a technical lemma.

Lemma 3.6. Let F* be a o-algebra, and Y™ e LO(Q, FL,P;RYN) fori=1,..., M. Suppose
that F* C FJ for all i < j, and that there exists k € {1,..., M} and ' C Q with P() > 0
such that limsup,, ||[Y"(w)|| = oo for a.e. w € @, and limsup,, ||Y;"(w)|| < oo for i =
1,....,k—1 and for a.e. w € Q. Then there exists a strictly increasing sequence of positive,
integer-valued, F*-measurable random variables 7™ such that lim,, | Y7 (w)|| = oo, for a.e.
we, and?

XM (w) = Ty (w) — e
1Y)

satisfies limy, X™(w) =0, fori=1,...,k —1 and for a.e. w € Q

we, i=1,..., M,

*We take X" (w) = 0 whenever HYT (w)( )|l = 0. We will take the convention /0 = 0 throughout this
section.
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Proof. Since limsup,, ||V (w)|| = oo for a.e. w € Q, we may apply Lemma 3.4 to the
sequence Y, to find a strictly increasing sequence of positive, integer-valued, F k_measurable

random variables 7™ so that HYkTm(w) (w)]| diverges for a.e. w e Q.

Because limsup,,, ||Y/™|| < oo for i = 1,...,k — 1, we have limsup,, ||Y;"" || < oo for
i=1,...,k—1. Now since ||Y} (w)(w)H diverges for a.e. w €
YTm(w)
lim || X" (w)|| = 1@@))% =0, aewef, i=1,....,k—1.
e 1Y, ()l
Thus, || X]"|| converges a.s. to 0 for ¢ =1,...,k — 1, which implies that X" converges a.s.
to 0 fori=1,...,k— 1. Hence, the claim holds. O

We are now ready to prove the crucial result in this paper.

Theorem 3.2. If the no-arbitrage condition under the efficient friction assumption
(NAEF) is satisfied, then the set K — LY (Q, Fr,P;R) is P-closed.

Proof. According to Lemma 3.3, we may equivalently prove that K — LS)F(Q,]:T,]P’; R) is
P-closed. Suppose that X" € K — LQF(Q,}"T,IP’;R) converges in probability to X. Then
there exists a subsequence X*m of X* so that X*» converges a.s. to X. With a slight abuse
of notation, we will denote by X™ the sequence X* in what follows. By the definition of
K- L(}F(Q,]-"T,IP’; R), there exists Z™ € LQ(Q,]:T,]P’; R) and ¢™ € P so that

X™ = F(¢™) — Z™. (19)

We proceed the proof in two steps. In the first step, we show by contradiction that
lim sup,,, ||¢7'|| < oo for all s € T*.
Step la: Let us assume that limsup,, ||¢7'|| < oo for all s € T* does not hold. Then

7° .= {s € T*:3Q CQ such that P(Q) > 0, limsup ||¢"(w)|| = oo for a.e. w € Q’}
m—r00
is nonempty. Let tg := minZ°, and define the Fi,—1-measurable set
EY = {w e Q:limsup [|¢}'(w)| = oo}
m—r0o0

Note that P(EY) > 0 by assumption. We now apply Lemma 3.6 to ¢™: there exists a
strictly increasing sequence of positive, integer-valued, F;,_i-measurable random variables
75" such that

lim (¢ )] =00, ae. weE", (20)
and .
¢
O =g —, sE€ T, (21)
o |

satisfies lim,, w;n’(o)(w) =0,fors=1,...,tg — 1, for a.e. w e .
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We proceed as follows.
Recursively for i =1,...,T
If limsup,, [¢5"“7V| < oo for all s € {t;_y + 1,...,T}, then define k := i and ¢™ :=
"™ =1 and proceed to Step 1b.
Else, define

#; = min {s €{tir+1,...,T}:3Q C Bl st B(QY) > 0,

lim sup || ™D (w)]| = oo for ae. w e Q’},

m— 00

and A
E = {we B limsup [0 ()] = oo}
m—0o0

Next, apply Lemma 3.6 to ¢ (®): there exists a strictly increasing sequence of positive,
integer-valued, F,_1-measurable random variables 7, such that

{T}(W),TE(W),...} c.--C {T&(W),Tg(u)),...}, a.e. we Q7 (22)
the sequence w;m’(i_l) satisfies
- i CONCEY _ i
lim_ (47 @l = oo, ae we B (23)

and the sequence ™) defined as

) w;—{nv(i_l)
w;’n,(l) = ]_Ezm, S € T*, (24)
[ |
satisfies lim,, w;n’(i) (w)y=0for s=1,...,t; — 1, for a.e. w € Q.
Repeat: i — i+ 1.
Given this construction, we define
B (w) :=T;0Tip1 0 o T (w), i€{0,...,k}, weqQ,
k
m By (w B (w),(i—1
U (w) = llgrd @I TT It P )l weQ.
i=1

We make the following observations on this construction:

(i) The construction always produces a sequence ¢ such that limsup,, |cp’5”|| < oo for

all s € T*. Indeed, if t; = T for some ¢ = 1,..., T, then limy, w;n’(z)(w) = 0 for
s=1,...,T—1, for a.e. we , and lim,, Hw;“(z)(w)H = 1pi(w), for a.e. w € Q. The

sequence ¢ () clearly satisfies lim sup,, Hq/);”’(‘)u < oo forall s € T*.

(ii) We have that o™ € LY(Q, F,—1,P,RY) for s =1,...,# — 1, and
Yt e LO(Q,}"S_l,P,RN) for s = tx,...,T. Hence, the sequence ¢©™ is not a sequence
of predictable processes. However, the limit of any a.s. convergent subsequence of ¢™
is predictable because @' converges a.s. to 0 for s =1,... ¢, — 1.
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(iii) E¥ C--- C EY and P(E¥) > 0.

(iv) Any a.s. convergent subsequence of ¢ converges a.s. to a nonzero process since
|7 || converges a.s. to 1 g, which is nonzero a.s. since P(E¥) > 0.

v) From (21) and (24), we have ¢7* = 1g 36” U™ for all s € T, where E := l-“: E.
s i=1
Because EF C ... C EY,

$2e"
SO;n:lEkW, seT* (25)

(vi) U™(w) diverges for a.e. w € E¥ since (20), (22), and (23) hold.

Step 1b: By the previous step, limsup,, [|¢%"|| < oo for all s € T*. We apply Lemma 3.5
to ¢ to find a strictly increasing sequence of positive, integer-valued, Fr_i-measurable
random variables p™ so that " converges a.s. to some process ¢ such that® ¢, €
LO(Q,}}k_l,]P’;RN) for s = 1,...,t, — 1, and p, € LO(Q, Fo_1,P;RY) for s = t,...,T.
By observation (ii) in Step la, we have that ¢ is predictable.

Step lc: We proceed by showing that NAEF implies P(E?) = 0. Towards this, we first
show that the process ¢ constructed in Step 1b satisfies F'(¢) € K. For the sake of notation,
we define " := ﬁgm. From (25), we have ¢ = 15¢"" /UP". Since 1gr and UP" are

nonnegative, R-valued random variables,

F(¢"")
urr

= F(1pe ) = P, (26)

1Ek

Because ¢ converges a.s. to ¢, we may apply Lemma 2.1 to see that F(¢”") converges
a.s. to F(p). Since ¢ is predictable, we have from the definition of K that F(¢) € K.

We proceed by showing that F(¢) € L9 (Q, Fr,P;R). Lets begin by defining Xm .=
X7 /UP" and Z™ = 2" JUP™ . From (19),

F(o"")y=X"" 4 27", (27)
By multiplying both sides of (27) by 1z /U?", we see from (26) that
F(¢) = 1ge(X™ + Z™). (28)

The sequence X™ converges a.s. by assumption, so the sequence X" also converges a.s.
Recall that the sequence U™ (w) diverges* for a.e. w € E¥ so UP"(w) diverges for a.e.
w € E* since {p'(w), p%(w),...,} € N for a.e. w € Q. Hence, 15 X™ converges a.s. to
0. Since F(p*") and 1Ek)2m converge a.s., the sequence ].EkZm also converges a.s. to
some Z € LY(Q,Fr,P;R). Thus, F(¢”") converges a.s. to Z, which implies F(p) €
LY (Q, Fr,P;R).

3See observation (ii) in Step la.
“See observations (vi) in Step 1la.
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Since F(¢) € K, we immediately see that F(¢) € KN LY (Q, Fr,P;R). It is assumed

that N'A is satisfied, so by Lemmas 3.1 and 3.3 we deduce that F'(¢) = 0. We are supposing
that EF holds, so according to Lemma 3.2 we have ¢ = 0. This cannot happen given our
assumption that P(E¥) > 0 because® ||y, | = 1 ge. Therefore, we must have that P(E¥) = 0.
This contradicts the construction in Step la, so P(EY) = 0.
Step 2: By the conclusion in Step 1, we obtain that limsup,, ||[¢7"] < oo for s € T*.
By applying Lemma 3.5 to ¢, we may find a strictly increasing sequence of positive,
integer-valued, Fr_j-measurable random variables o™ such that ¢°" converges a.s. to
some predictable process ¢.

By Lemma 2.1, the sequence F(¢°") converges a.s. to F(¢). Since ¢ € P, we have
F(¢) € K. Because X™ converges a.s. to X, the sequence X°" also converges a.s. to X.
From (19), it is true that X" = F(¢°")—Z°". Since X°" and F(¢°") converges a.s., the
sequence Z° also converges a.s. Thus, F(gf)"m) — X" converges a.s. to some nonnegative
random variable Z := F(¢) — X, which gives us that X = F(¢) — Z. We conclude that
X e K- LY (Q, Fr,P;R). O

3.2 The First Fundamental Theorem of Asset Pricing

In this section, we formulate and prove a version of the First Fundamental Theorem of
Asset Pricing (FFTAP). We define the following set for convenience:

Z:={Q: Q~ P, paskx pbidx gaskx gbid* are Q-integrable}.
We now define a risk-neutral measure in our context.

Definition 3.2. A probability measure Q is a risk-neutral measure if Q € Z, and if
Eg[V#(¢)] < 0 for all ¢ € S such that ¢/ is bounded a.s., for j € J*, and Vy(¢) = 0.

A natural question to ask is whether the expectation appearing in the definition above
exists. The following lemma shows that, indeed, it does.

Lemma 3.7. Suppose that Q € Z, and let ¢ € S be such that ¢? is bounded a.s., for j € J*,
and Vo(¢) = 0. Then Vii(¢) is Q-integrable.

Proof. From the definition of Z, the processes Pask*  pbidx = gaskx = gbidx gre Q-integrable.
Because Q is equivalent to P, and since ¢/ is bounded P-a.s. for j € J*, we have that ¢/ is
bounded Q-a.s. for j € J*. Therefore, we see from Proposition 2.5 that Eg[|V/(¢)|] < oo
holds. O

Remark 3.3. For frictionless markets (P := Pk = pbid A .= Aask = Abid) 5 risk-neutral
measure is classically defined to be an equivalent probability measure such that the dis-
counted cumulative price process (P; + Zizl AA)I_ is a martingale under Q. The
present definition of a risk-neutral coincides with this classic definition of a risk-neutral

®See observations (iv) in Step la.
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measure if the market is frictionless. Indeed, if there are no frictions the value process
satisfies Vi(—¢) = =V (¢) for all trading strategies. Also, by Proposition 2.5, we have that
Eg[V7(¢)] = 0 for all ¢ € S such that ¢’ is bounded a.s. and Vy(¢) = 0 for j € J* if and
only if

N T

> 2 Ee

j=1u=1
for all ¢ € S such that ¢/ is bounded a.s., for j € J*.

¢iEq A (B, P+ zu: B,'AAj) ‘]—"u_l}] ~0
w=1

The next lemma provides a mathematically convenient condition that is equivalent to NA.

Lemma 3.8. The no-arbitrage condition (NA) is satisfied if and only if for each ¢ € S
such that ¢’ is bounded a.s. for j € J*, Vo(¢) =0, and Vr(¢) > 0, we have Vp(¢) = 0.

Proof. Necessity holds immediately, so we only show sufficiency. Let ¢ € S be a trading
strategy so that Vp(¢) = 0 and Vr(¢) > 0. We will show that Vr(¢) = 0.

First, define the F;_; measurable set Q"7 := {w € Q: ¢/ (w)| < m} form e N, t € T*,
and j € J*, and define the sequence of trading strategies ¢ as ;" J= 19?,j qbz forteT*
and j € J*, where ™0 is chosen so that ¢ is self-financing and V(™) = 0. Since 1

pd
converges a.s. to 1 for all t € T* and j € J*, we have that ;" J converges a.s. to gb{ for all
teT*and je J*.

Now we prove that Vp(¢™) converges a.s. to Vy(¢). Towards this, we first show that
w;n’j converges a.s. to qﬁ{ for all j € J. By the definition of Vy(™),

N
,0 J k,j bid,j
Vo(™) = " + Ziﬁ{n](l{wrvjzo}Pgs Tt Ly o 0 )-
=1

Since ™9 is chosen so that V(™) = 0, we have
N
70 J— 2 j . k“7 ] . b‘d7 j
9= =2 0 (g B0 Lo cop o)
j=1

The sequence Q,Z);n’j converges a.s. to gb{ for all j € J*, so by Lemma 2.1 the sequence Wln,o

converges a.s. to
N

_ Z} AL B + 1 0P ™).
j=
However, Vy(¢) = 0, so w'{n,() converges a.s. to ¢ Thus, ¢T”j converges a.s. to d){ for all
j € J. By Lemma 2.1, we have that V;(¢™) converges to Vy(¢).
A According to Lemma 2.1, V}5(¢™) converges a.s. to V;i(¢) since w;n’j converges a.s. to
¢ for all t € T* and j € J*.
Next, since 9™ is self-financing and ™ is bounded a.s. for all j € J* and all m € N,
we obtain

Vo(@™) =0, Vp(¥™) 20 = Vr(¥™) =0, meN.
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Since Vj(¢™) converges a.s. to Vy(¢), and Vji(¢™) converges a.s. to V;i(¢) we have
Vo(¢) =0, Vr(¢) 20 = Vr(¢) =0.
Since Vy(¢) = 0 and Vp(¢) > 0, we conclude that Vp(¢) = 0, so NA holds. O

Next, we recall the well-known Kreps-Yan Theorem. It was first proved by Yan [Yan80],
and then obtained independently by Kreps [Kre81] in the context of financial mathematics.
For a proof of the version presented in this paper, see Schachermayer [Sch92]. Theorem 3.2
and the Kreps-Yan Theorem will essentially imply the FFTAP (Theorem 3.5).

Theorem 3.4 (Kreps-Yan). Let C be a closed convex cone in L*(Q,F,P;R) containing
LY (Q,F,P;R) such that C N LY (Q,F,P;R) = {0}. Then there exists a functional f €
L>®(Q, F,P;R) such that, for each h € LY (Q, F,P;R) with h # 0, we have that Ep[fh] > 0
and Ep[fg] <0 for any g € C.

We are now ready prove the following version of the FFTAP.

Theorem 3.5 (First Fundamental Theorem of Asset Pricing). The following conditions
are equivalent:

(i) The no-arbitrage condition under the efficient friction assumption (NAEF) is satis-
fied.

(i) There exists a risk-neutral measure.
(i1i) There exists a risk-neutral measure Q so that dQ/dP € L>(Q, Fr,P;R).

Proof. In order to prove these equivalences, we show that (ii) = (i), (i) = (i4i), and
(7i1) = (i7). The implication (iii) = (i¢) is immediate, so we only show the remaining two.

(79) = (i): We prove by contradiction. Assume there exists a risk-neutral measure Q,
and that NA does not hold. By Lemma 3.8, there exists ¢ € S so that ¢/ is bounded a.s.,
for j € J*, Vo(¢) =0, Vi(¢) > 0, and P(V}(¢)(w) > 0) > 0. Since Q is equivalent to P,
we have Vp(¢) =0, Vji(¢) > 0 Q-a.s., and Q(V(¢)(w) > 0) > 0. So Eg[V;(¢4)] > 0, which
contradicts that Q is risk-neutral. Hence, NA holds.

(i) = (iii): We first construct a probability measure P satisfying P € Z and dP/dP €
L>(Q, Fr,P;R). Towards this, let us define the Fp-measurable weight function

T T T T
k,* bid,* k,x bid,*
wim 14 Y0Pk PU 4 37 Ak DT A, (29)
— =0 u=1 u=1

and let P be the measure on Fr with Radon- leodym derivative dIP’/ dP = ¢é/w, where
¢ is an appropriate normalizing constant. We see that P is equivalent to P, and d]P’/ dP e
L>=(Q, Fr,P;R). By the choice of the weight function w, the processes Pk, pbid* = paskx
Abidx are I?Pg—integrable. Thus, PeZ.
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Next, since P is equivalent to P, it follows that (IC—LQ(Q, Fr,P; R)) NLY.(, Fr, P; R) =
{0} by Lemma 3.1, the set K — LQ(Q, fT,]?’ ;R) is P-closed according to Theorem 3.2, and
K- LQ(Q, ]-"T,Iﬁ ;R) is a convex cone by Lemma 2.2.

Let us now consider the set C := (K — LY. (Q, Fr, P; ;R)) N LY(Q, Fr,P;R). We observe
the following that C N L% (€, Fr,P;R) = {O} C is a convex cone, and C 2 L1 (, ]:T,IP) R).
Moreover, since convergence in L'(€2, Fr, P; ;R) implies convergence in measure IP’ we have
that C is closed in L'(€, Fr,P;R).

Thus, according to Theorem 3.4, there exists a strictly positive functional®
f € L=(Q, Fr,P;R) such that E5[K f] < 0 for all K € C. Because 0 € L9 (Q, Fr,P;R), it
follows from the definition of C that

Es[Kf] <0, KeKnLYQ Fr,B;R).

By the definition of K, t~his implies that Ez[V;(#)f] <0 for all ¢ € S such that Vo(¢) =
and Vi (¢) € L*(Q, Fr,P;R). In particular, E5[V(¢)f] < 0 for all ¢ € S such that ¢ is
bounded a.s., for j € J*, Vo(¢) = 0, and V;i(¢) € LY(Q, Fr,P;R). Since P € Z, we obtain
from Lemma 3.7 that V(o) is P-integrable. Thus, E5[V7(¢)f] <0 for all ¢ € S such that
¢’ is bounded a.s., for j € J*, and Vp(¢) =0

We proceed by constructing a risk-neutral measure. Let Q be the measure on Fr with
Radon-Nikodym derivative dQ/ dP := ¢ f, where ¢ is an appropriate normalizing constant.
Because f is a strictly positive functional in L*>(Q, Fr, P; ;R), we have that Q is equivalent
to P. Since P is equivalent to IP, it follows that Q is equivalent to P. Also,

dQ  dQdP f

P o (30)

Thus, since w > 1 and f € L®(Q, Fp,P;R), we have dQ/dP € L>(), Fr,P;R). This
gives us dQ/dP € L*>°(Q, Fr,P;R) since P is equivalent to P. Moreover, we note that the
processes Pesk - pbid - gaskx - pAbid* are Q-integrable. Hence, Q € Z. We conclude that Q
is a risk-neutral measure since Eq[V7(¢)] = ¢ Ez[V;(¢) f] < 0 for all ¢ € S such that ¢/ is
bounded a.s., for j € J*, and Vj(¢) = 0. O

Remark 3.6.
(i) Note that EF is not needed to prove the implication (i7) = (7).

(ii) In practice, it is typically required for a market model to satisfy NA. According to
Theorem 3.5, it is enough to check that there exists a risk-neutral measure. However,
this is not straightforward because it has to be verified whether there exists a prob-
ability measure Q € Z so that Eg[V;(4)] < 0 for all ¢ € S so that ¢/ is bounded
a.s., for j € J*, and Vy(¢) = 0. We will show in the following section that consistent
pricing systems help solve this issue (see Proposition 4.2 and Theorem 4.3).

SFor cach h € L (€, Fr,P;R) with h # 0, we have Es[fh] > 0.
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4 Consistent pricing systems

Consistent pricing systems (CPSs) are instrumental in the theory of arbitrage in markets
with transaction costs—they provide a bridge between martingale theory in the theory
of arbitrage in frictionless markets and more general concepts in theory of arbitrage in
markets with transaction costs. Essentially, CPSs are interpreted as corresponding auxiliary
frictionless markets. They are very useful from the practical point of view because they
provide a straightforward way to verify whether a financial market model satisfies NA. In
this section, we explore the relationship between CPSs and NA.
We begin by defining a CPS in our context.

Definition 4.1. A consistent pricing system (CPS) corresponding to the market
(B, pesk ptid pask Abid) i5 a quadruplet {Q, P, A, M’} consisting of

(i) a probability measure Q € Z;

)

(i) an adapted process P satisfying Pbd* < P < paskx,

(iii) an adapted process A satisfying A%F* < A < Abidx,
)

(iv) a martingale M under Q satisfying M; = P, +>._, A, for all t € T.

Remark 4.1. Since our market is fixed throughout the paper, we shall simply refer to
{Q, P, A, M} as a CPS, rather than a CPS corresponding to the market
(B7 P(lsk‘7 ]jbial7 Aask7Abid)_

For a CPS {Q, P, A, M}, the process P is interpreted as the corresponding auxiliary
frictionless ex-dividend price process, and the process A has the interpretation of the cor-
responding auxiliary frictionless cumulative dividend process, whereas M is viewed as the
corresponding auxiliary frictionless cumulative price process.

The next result establishes a relationship between INA and CPSs in our context.

Proposition 4.2. If there exists a consistent pricing system (CPS), then the no-arbitrage
condition (NA) is satisfied.

Proof. Suppose there exists a CPS, call it {Q, P, A, M}, and suppose ¢ € S is a trading
strategy such that ¢/ is bounded a.s., for j € J*, and Vy(¢) = 0. In view of Proposition 2.5,
and because PY4 < P < P%k and A%k < A < A% we deduce that

N T
Vi) £ 3 (61 P+ D (—AGLPL, + ¢lAL).
j=1 u=1

Since M = P + Y, _; Ay is a martingale under Q, and because ¢/ is bounded a.s., for
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j € J*, we have

T
Eq|0hP)+ > (~AGLPI_, + ¢),AL)]
u=1

WE

Eq[V7(#)] <

.
Il
—

T u—1
Eo|AdiEg [P% +3 A -pPl =Y A&‘Fu_l}]
w=1 w=1

I
M=
B

<
Il

—
IS
I

—

I
WE
tg’ﬂ

A Eqg [M% . Mg_l‘fu_l}]

_
S
Il

—

Il
=

Therefore Q is a risk-neutral measure. According to Theorem 3.5, NA holds. O

At this point, a natural question to ask is whether there exists a CPS whenever NA is
satisfied. In general, this is still an open question. However, for the special case in which
there are no transaction costs in the dividends paid by the securities, A** = A"d will show
in Theorem 4.3 that there exists a CPS if and only if NAEF is satisfied.

Proposition 4.2 is important from the modeling point of view because it provides a
sufficient condition for a model to satisfy NA. In the next example, we construct a model
for which there exists a CPS.

Example 4.1. Lets consider the CDS specified in Example 2.1. Recall that the cumulative
dividend processes A%* and A%? corresponding to the CDS are defined as

t t
APF = 1en0 = K ey, AP =100 = KDY 1uen
u=1

u=1

for all t € T*. Let us fix any probability measure Q equivalent to P. We postulate that the
ex-dividend prices P** and P% satisfy

T T
Ptask,* _ EQ[ Z AZid,* ]_-t]7 Ptbzd,* _ EQ[ Z Azsk,*
u=t+1 u=t+1

7).

for all t € T*. By substituting A*** and A”%* into the equations for P*¥* and PYid*
above, we see that

T
k,x — i _
Ptas = EQ |:1{t<T§T}BT 1(5 — /ﬁbld E Bu 11{u<7}
u=t+1

7).

T
bid,* — _
Ptl = EQ |:]‘{t<T§T}B’T 15 — IQGSk E Bu 11{u<7—}
u=t+1

ft} .
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For a fixed x € [k"?, k%], we define

At = Bt_l(].{.,—:t}(s - Hl{t<7—}), te T*J
T T
P = E@[ YA }"t] = Eg {1{t<T§T}B;15 & Y B ft}, teT,
u=t+1 u=t+1
t
Mt::Pt+ZAua teT

u=1

The quadruplet {Q, P, A, M} is a CPS. To see this, first observe that A and P are Q-
integrable since A is bounded Q-a.s. Thus, Q € Z. Next, M satisfies

T
My = Bq|l<ryB7 0~ kY By e | B teT,
u=1

so M is a Doob martingale under Q. Also, since x € [k"?, k%], we have A%F* < A < Abid~
and PYd* < P < pesk*  Thus, {Q,P,A, M} is a CPS. According to Proposition 4.2,
we may additionally conclude that the financial market model {B, Pk pbid Aask Abid}
satisfies NA.

4.1 Consistent pricing systems under the assumption A%* = A%

In this section we investigate the relationship between risk-neutral measures and CPSs under
the assumption A%* = AY?  TLet us denote by A the process A**. We begin by proving
two preliminary lemmas that hold in general (without the assumption A%* = Abid),

Lemma 4.1. If Q is a risk-neutral measure, then

g2 g2
Pé’id,],* <Eg [pg;ku,* + Z Azld,],* ]:01]’ ngk’]’* > Eg [Pg;d%* + Z Azsk,J,*

u=o1+1 u=o1+1

fm] ,

for all j € J* and stopping times 0 < 01 < g9 <T.

Proof. Suppose Q is a risk-neutral measure. For stopping times 0 < 01 < 09 < T and
random variables &,, € L™(Q, F,,,P; RY), we define the trading strategy

9(0-13 02, 60'1) = (919(0-17 g2, 50'1)7 1{01+1§t§02}£}r1a ceey ]-{Ul—‘,-lgtgag}gc]f\i)?:la

where 0°(01, 09,&,,) is chosen such that 6(o1, 09,&y,) is self-financing and
Vo(0(o1,02,¢5,)) = 0. Due to Proposition 2.5, the value process associated with 6 satisfies

N o2
* j bid,j,* k,j,% k,j,%
VEO(1,02.60)) = 3 Ly sy (P97 4 37 sk — paski)
7j=1 u=o1+1

N g2
) 7 ask,j,* bid,j,x _ pbid,j,*
+ Z 1{5?;1 <0}§Ul <P02 + Z Ay PUl )
j=1 u=01+1
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Since Q is a risk-neutral measure, we have Eq[V/(6(01,02,&s,))] < 0 for all stopping times
0<o01 <02 <Tand &, € L%®(Q,F,,,P; RY). Hence, we are able to obtain

N o
. bid,j, ki b
Q[Zl{éélzo}égl <PO_; I 4 E AGSRD* _Pgls g*)
Jj=1

u=o1+1
N o2
j k,j,x bid,j,* bid,j,*
D g g (Pt 30 abidar - phiin)] <o,
7j=1 u=o1+1

for all stopping times 0 < 0y < 09 < T and random variables &,, € L>®(Q, F,,,P; RY). By
the tower property of conditional expectations, we get that

N o
Eo [Z L >0160 Ea [Pﬁid’]’* + 3 Aghar _ paskis ]__Ul}

j=1 u=o01+1

IN
o

fgl}

N 02
j k7 ‘7 bd’ '7 bd7 .7
3 1 oyl B[Pt 30 Alidis - plidis
j=1 u=01+1

for all stopping times 0 < 07 < 0o < T and random variables &,, € L>(Q, F,,,P; RY).
This implies that the claim is satisfied. O

The next result is motivated by Theorem 4.5 in Cherny [Che07]. We will denote by T¢
the set of stopping times in {¢,t+1,..., T}, forallt € T.

Lemma 4.2. Suppose Q is a risk-neutral measure, and let

Xb’J :=ess sup Eq [Pbldﬁ’ + Z A“Sk’J’ F. ],
o€Ts u=1

Xa’] — IE [Pask& Abld,J, F ] ’
e(sjsE inf Eq + Z

u=1

forallj € J* and s € T. Then X° is a supermartingale and X® is a submartingale, both
under Q, and satisfy X < X°.

Proof. Let us fix j € J*. The processes X%/ and X%J are Snell envelopes, so X%/ is a
supermartingale and X%7 is a submartingale, both under Q (see for instance, Follmer and
Schied [FS04]).

We now show that X%J < X%J. Let us define the process

T2
Xg — |:Pb’bdj * Z Aask:,j, :| EQ [Pask,j, Z AZid,j,*
u=1

ft], teT.
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For any stopping times 71,7 € T, we see that

T1 T2
X! =Fqg [EQ [ Phitis 137 gaskix _ paskis _ 7 ghid| ;ﬁm}
u=1

= u=1

d

7))|7]

T1
+ EQ [1{7_1>72} (EQ [Pflld,],* + ZAZS]CJ7* ]:7_2} N Pg;k,],* - ZAZZd’J’*>

u=1 u=1

T1 72
= EQ |:1{71ST2} (Pf_’fdﬂv* + Z AZSkzjy* — EQ |:P7€"23k’j’* + Z Azldv.%*
u=1 u=1

7.
After rearranging terms, we deduce that

T1
X,f =Eg [1{7192}p7b12d,],* + Z(AZSk’J’* _ AZ“l’j’*)
u=1

T2
_ 1{71§7-2}EQ |:P7¢_125k,],* + Z Asz,],* f7_1:| I_-t:|
u=71+1
+ EQ |:1{7'1>72}EQ [Pflldd’* + Z AZSk’]’* .7'—7—21|
u=T19+1
Ly (P54 3 (A9 — gk | 7],

u=1
Because A%k* < Abid7*, we are able to obtain

T2
Xg < EQ [1{7'1 <m} (P’fl')lzd%* - EQ [Pg;k,],* + Z Azldd’*
u=711+1

T1
+E@[1{71>T2}(E@[Pffd”’*+ > Agshi

u=1o+1

7))

-FT2:| o P;—lzsk,j,*)

]-"t]. (31)

Since Q is a risk-neutral measure, we see from Lemma 4.1 and (31) that X/ < 0. The

stopping times 7 and 75 are arbitrary in the definition of X7, so we conclude that XbJ <
X7, O]

The next theorem gives sufficient and necessary conditions for there to exist a CPS (cf.
Cherny [Che07]; Kabanov et al. [KRS02]; Schachermayer [Sch04]).

Theorem 4.3. Under the assumption that A** = AV there exists a consistent pric-

ing system (CPS) if and only if the no-arbitrage condition under the efficient condition
(NAEF) is satisfied.

Proof. Necessity is shown in Proposition 4.2, so we only prove sufficiency. Suppose that
NAETF is satisfied. According to Theorem 3.5, there exists a risk-neutral measure Q. By
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Lemma 4.1,

g2 02
bid,j,* ask,j,* R ask,j,* bid,j,* 7%
pridix < g [PUQ + > A fm], poskix > Fg [P@ + 3 4
u=0o1+1 u=o1+1

Forl,
for all j € J* and stopping times 0 < g1 < g9 <T'. Now, let us define the processes

g
Ytb’] :=ess sup Eg [Pé’id’j’* + Z A{L’*‘ft};
o€Tt

u=t+1
Y, .= ess inf E [P“Sk’j’* Al .7:}
t oe%l Qo + Z u [t
u=t+1
t t
b7 j Py— b7 j ‘7* 9, j P— 2 j ‘7*
th‘_}/;]+ZAg ’ lej'_Y;faJ_‘_ZAg ’ (32)
u=1 u=1

for all t € T and j € J*. From Lemma 4.2, we know that under Q the process X is a
submartingale and the process X? is a supermartingale, and that they satisfy X® < X¢@.
Fort=0,1,..., 7 —1and j € J%, recursively define

. J Cay C oa b
Mg =Yg", Pg=Y", Ply=NYD1+ (1= X)Y, (33)

‘ ‘ t+1
J ._ pJ J
MtJrl = Pt+1 + E Al
u=1

where X/ satisfies

M} —Ego[X[P|F] . y
; t a,j tz; , if }EQ[th”]:t] # EQ[thﬂ]‘—tL
)\g = EQ[Xt+1 - Xt—i—l‘]:t] (34)

, otherwise.

N |

Lets fix j € J* for the rest of the proof.
Step 1: In this step, we show that the processes above are well defined and adapted. First,
note that Py and M are well defined, and that, by (34),

) bj
Mg — EQ[X1]’-7:O]

N = L0
Eq[X7" — X1”|F]

0=

J _
or A=

Thus, )\{) is well defined and Fy-measurable. Next, we compute Plj and M{ , and conse-
quently we compute )\{; all of them being Fj-measurable. Inductively, we see that Ptj , Mtj ,
and )\g, for t =2,...,T are well defined and F;-measurable.

Step 2: We inductively show that )\g € [0,1] for t = 0,1,...,7 — 1. We first show that
X e [0,1]. TIf Eg[X®™ — Xf’jl]:o] = 0, then A} € [0,1] automatically, so suppose that
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EQ[Xf’j — Xf’j\}"g] > 0. Now, by the definition of M7, we have that Mg = Xg’j, so (34)
gives that ' '
X5 — Eo[Xy”| Fol

X = e
Eq[X7” — X77|Fo]

0

(35)
The process X%/ is a submartingale under Q, so it immediately follows that )\% <1. On

the other hand, since X%7 is a supermartingale under Q,

Xy — Xy
Eol X1 — X17|Fo] -

J

Because Xg’j > Xg’j, we deduce that )\g > 0.

Suppose that )\{ € [0,1] for t = 0,1,...,7 — 2. We now prove that )\T L €[0,1]. If
Eo[X% — X%7|Fr_1] = 0, then X._, = 1/2, so assume that Eg[X% — X2/ |Fr 1] > 0.
According to (34) and the definition of M7, we have that

) b bj
)‘]T 2X%]1 + ( - )‘Q.Fﬁ)XTJA - E@[XT]

Fr_1]
Eq[X{7 — X3 |Fr 1]

J
>\T 1=

(36)

Since )\‘%72 < 1, and because X%/ is a supermartingale under Q, we have that

/\%“—2(XT 1 — X7 n 1)
EQ[XT’J - TJ|]:T*1]

Moy 2
Because X% > X%J we arrive at )\jT,l > 0. Now, since X%’zl > X:bp’zl and )‘]‘sz <1, we
see from (36) that

X
XT 1 E@[ TJ|]:T—1]

b .
EQ[XTJ - T’]|‘FT*1]

J
A1 S

The process X%/ is a submartingale under Q, so it follows that )\Jf_l < 1. We conclude
that X €[0,1] for t =0,1,...,7 — 1.
Step 3: Next, we show that M is a martingale under Q. First we note that by (32) and
(33) we have

My = NX{ + (L= X)X (37)

From here, the Q-integrability of M7 follows from Q- 1ntegrab1hty of X®7, X% and bound-
edness of M. From (34) and (37), we get that Eg[M, +1|.7-"t] M/, fort =0,1,...,T — 1.
Hence, M7 is a martingale under Q.
Step 4: We continue by showing that PJ satisfies PY4*J < Pi < Pask*J  Let us first
show that Pb’d’] < P} < P8*M_ By definition of P!, we have that P = Y™/, and by (32)
we see that Y™’ Xg J | Therefore, the claim holds since Pé”dj < Xg7 < Pas,w

We proceed by proving that Pb’d’] < Pl < P%k’] for all ¢t € {1,...,T}. Towards this,
let t € {1,...,T}. By the definition of P/, we have P/ = X_,vV*/ + (1= X_)Y*/. From
(32), it is true that X > X if and only if ¥,*7 > V7. Also since t € T;, we see from
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(32) that Ytb’j > Ptbid’j’* and Y;a’j < Pt“k’j. According to Step 1, A{_l € [0,1]. So, putting
everything together, we obtain

bid,j b,j J a,j ask,j
P <Y < Bl <YM < PP

We conclude that {Q, P, A, M} is a CPS. O

5 Superhedging and subhedging theorem

In this section, we define the superhedging ask and subhedging bid prices for a dividend-
paying contingent claim, and then we provide an important representation theorem for these
prices. The representation theorem is important because it provides an alternative way of
computing the superhedging ask and superhedging bid prices. Also, it is an application
of the Fundamental Theorem of Asset Pricing: the theorem relates how the no-arbitrage
condition (and hence the existence of risk-neutral measures) is related to the pricing of
contingent claims.

For results related to this topic, both for discrete-time and continuous-time markets with
transaction costs, we refer to, among others, Soner, Shreve, and Cvitanic [SSC95]; Levental
and Skorohod [LS97]; Cvitanic, Pham, and Touzi [CPT99]; Touzi [Tou99]; Bouchard and
Touzi [BT00]; Kabanov, Résonyi, and Stricker [KRS02]; Schachermayer [Sch04]; Campi and
Schachermayer [CS06]; Cherny [Che07]; Pennanen [Penlld, Penlla, Penllb, Penllc]. Our
contribution to this literature is that we consider dividend-paying securities such as swap
contracts as hedging securities.

A contingent claim D is any a.s. bounded, R-valued, F-adapted process. Here, D
is interpreted as the spot cash flow process (not the cumulative cash flow process). We
remark that the boundedness assumption on contingent claims is satisfied for fixed income
securities.

Let us now define the set of self-financing trading strategies initiated at time t €
{0,1,...,T — 1} with bounded components (j =1,...,N) as

S(t) == {qb €S : ¢’ is bounded a.s. for j € J*, ¢s =0 for all s < t},
and the set of attainable claims at zero cost initiated at time ¢ € {0,1,...,7 — 1} as
K(t) = {Vf—f(gb) . ¢ € S(t) such that Vo(¢) = o}.
Remark 5.1.

(i) S(t) and K(t) are closed with respect to multiplication by random variables in
Lj,.—o(Qv ]:t7 ]P)a R)7

(i) SOD80)>8(1) D>+ D8(T—1)and K D K(0) D K(1) D --- D K(T—1). Moreover,
if Q is a risk-neutral measure, then Eq[K] < 0 for all K € K(t), fort =0,1,...,7—1.

TLY(Q, Fi, P R) == {X € L= (Q, F,P;R) : X > 0}.
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We proceed by defining the main objects of this section.

Definition 5.1. The discounted superhedging ask and subhedging bid prices of a contingent
claim D at time ¢ € {0,...,T—1} are defined as 7{**(D) := ess infW*(t, D) and 7}¢(D) :=
ess sup WP(t, D), where

T
Wa(t, D) = {W € LN F,B;R): —W+ Y DieK(t)— L&(Q,fT,P;R)},
u=t+1

T
Wh(t, D) = {W € LY F BR): W — Y Di e K(t) - Li(Q,fT,P;R)}.

u=t+1
Note that 7f**(D) = —7d(—D) and
T
Wa(t, D) = {W € L(Q, F,P;R) : 3K € K(t) such that Y D < K + W},
u=t+1
T
WO(t, D) = {W € L°(Q, F,P;R) : 3K € K(t) such that — Y Dj < K — W}.
u=t+1

Remark 5.2.

(i) For each t € {0,1,...,T — 1}, the prices 7**(D) and 7?"¥(D) have the following

interpretations: The price 7¢**(D) is interpreted as the least discounted cash amount

W at time t so that the gain —W + ZZZH_I
the other hand, the random variable 72¢(D) is interpreted as the greatest discounted
cash amount W at time ¢ so that the gain W — ZT

u=t+1
7Z€ero cost.

D} can be superhedged at zero cost. On

Dy can be superhedged at

(ii) In view of (i) above, it is unreasonable for the discounted ex-dividend ask price at
time ¢ € {0,1,...,7 — 1} of a contingent claim D to be a.s. greater than 7#**(D),
and for the ex-dividend bid price at time ¢ € {0,1,...,7 — 1} of a contingent claim
D to be a.s. less than 72¢(D).

(iii) Direction of trade matters: a market participant can buy a contingent claim D at
price 7#*¥(D) and sell D at price 7*¢(D). This is in contrast to frictionless markets,
where a contingent claim can be bought and sold at the same price.

(iv) The prices 7¢**(D) and 7}"(D) satisfy 7*(D) < oo and 7%*4(D) > —oo. Indeed,
since 0 € K(t), 1 € LY, (Q, F,P;R), and Zgztﬂ D} is a.s. bounded, say by M,
we have that —M + S°1_ . D* € LO(Q, Fr,P;R). Thus, 7¢*(D) < M. Similarly,

i u=t+1
7id(D) > —M.
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Next, we define the sets of extended attainable claims initiated at time t € {0,1,...,T — 1}
associated with cash amount W € L°(Q, F;, P;R):

Kot w) =K + {e( - w+ ZT: D;): £ € LT(QFBR)
u=t+1

Kb (t, W) = K(t) + {g(W - ET: D;) L te Lf(ﬂ,]—},P;R)}.
u=t+1

Remark 5.3.

(i) The sets K(t, W) and Kb(t, W) are closed with respect to multiplication by random
variables in the set L(Q, F;, P;R), and in view of Lemma 2.2 they are convex cones.

Also, K(t) C Ke(t, W) N K(t,W) since 0 € L2(Q, F¢, Py R).

(ii) In view of Proposition 2.5,

T
{e(=mtD)+ Y Di): €e LY@ APR)) (38)
u=t+1
is the set of all discounted terminal values associated with zero-cost, self-financing,
buy-and-hold trading strategies in the contingent claim D with discounted ex-dividend
ask price 7¢**(D). On the other hand, the convex cone

T
{¢(=D) = Y Di) s g e LX(Q R BR)} (39)
u=t+1
is the set of all discounted terminal values associated with zero-cost, self-financing,
sell-and-hold trading strategies in the contingent claim D with discounted ex-dividend
bid price 7} (D).

We will now introduce definitions related to the sets of extended attainable claims. For
eacht € {0,1,...,T—1}and X € L°(Q, F;,P;R), a probability measure Q is risk-neutral for
Ke(t, X) (Kb(t, X)) if Q € Z and X is Q-integrable, and if Eg[K] < 0 for all K € K%(t, X)
(K € Kb(t, X)). We denote by R%(t, X) (Rb(t, X)) the set of all risk-neutral measures Q for
Ke(t, X) (K(t, X)) so that dQ/dP € L>®(Q, Fr,P;R). We say that NA holds for K%(t, X)
if K(t,X) N LL(Q, Fr,P;R) = {0}, and likewise we say that NA holds for KCo(t, X) if
Kb(t, X) N LY.(Q, Fr,P;R) = {0}.

We will say that £(t, X) satisfies EF if

T
{6, €50 x LY FBR) : Vi(9) = 0, Vi(9) +§( = X+ Y Di) =0} ={(0,0)},

u=t+1
and say that K°(t, X) satisfies EF if
T
{(6,6) € 5() x LT(Q, 7 B5R) : Vi(9) = 0, Vi(9) + (X = > 1) =0} = {(0,0)}.
u=t+1
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Remark 5.4. According to Lemma A.1, for any t € {0,1,...,T—1} and X € L°(Q, 7, P; P),
NAETF holds for K%(t, X) (K°(t, X)) if and only if R(t, X) # 0 (R*(t, X) # 0).

For each t € {0,1,...,T — 1}, we denote by R(t) the set of all risk-neutral measures for
K(t) so that dQ/dP € L>®(Q, Fr,P;R). Specifically, we define R(t) as

R(t) = {Q € Z: Eg[K] <0 forall K € IC(t)}.

We note that R%(¢, X )URP(t, X) C R(t) for any X € L°(Q, F;,P;R) since K(t) C K%(t, X)N
KCP(t, X). Also, by the definition of a risk-neutral measure, it immediately follows that any
risk-neutral measure Q (as in Definition 3.2) satisfies Q € R(¢) for any ¢t € {0,1,...,T —1}.

The next technical lemma is needed to derive the dual representations of the superhedg-
ing ask and subhedging bid prices.

Lemma 5.1.

(i) Foreacht € {0,1,...,T—1}, if R(t) # 0 and Q € R(t), then we have that Eg[K|F;] <
0 Q-a.s. for all K € K(t).

(ii) For each t € {0,1,...,T — 1} and X € L°(Q, F;,P;R), if R%(t,X) # 0 and Q €
R(t, X), then we have that Eg[K*|F;] <0 Q-a.s. for all K* € K%(t, X).

(iii) For each t € {0,1,...,T — 1} and X € L°(Q, F;,P;R), if R*(t,X) # () and Q €
Rb(t, X), then we have that Eg[K®|F;] <0 Q-a.s. for all K® € K°(t, X).

Proof. We only prove (i) and (ii). The proof of (iii) is very similar to the proof of (). We
fix t € {1,...,T — 1} throughout the proof. Observe that in view of Lemma 3.7, we have
that for each Q € R(t), any K € K is Q-integrable. Moreover, because any contingent claim
is bounded a.s., for each Q € R%(t, X) (Q € R%(t, X)), any K¢ € K(t, X) (K® € Kb(t,W))
is Q-integrable.

(i): We prove by contradiction. Let Q € R(t), and suppose that there exists and K € K(t)
such that Eg[K|F](w) > 0 for all w € QFf, where Q' C Q and P(QY) > 0. Note that
Q' € F; since Eg[K|F;] is Fi-measurable. By definition of K(t), there exists ¢ € S(t)
with Vp(¢) = 0 such that K = V;i(¢). Define the process 1 := lgi¢. Since QF is Fp-
measurable and S(t) is closed with respect to multiplication by random variables in the set
LE(Q, F,P;R), we have that ¢ € S(t). Moreover, Vo(¢0) = 1q:Vo(¢) = 0 because 1 is
nonnegative. Therefore, V/(¢) € K(t). Since Vi(¢) = 1qtVji(¢) = 1t K, we have that
Eq[V}(v)] = Eg[lgtEg[K|F¢]] > 0, which contradicts that Q € R(t).

(ii): As in (i), we will prove by contradiction. Let X € L°(Q, F;,P;R) and Q € R%(t, X),
and assume that there exist K € IC(t) and £ € LY(Q, F;, P; R) such that

T
(W)X (w) + Eg [K ey DZ‘}}} (W) >0, weqQ,
u=t+1
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where Qf C Q and P(2!) > 0. Since R%(¢, X) C R(t), we have that Q € R(¢). In view of
(1) above, it follows that Eq[K|F;] < 0. Thus,

—§(w) X (w) +5(W)EQ[ ET: D;:’ft:| (w) >0, we.
u=t+1

We proceed by defining the F;-measurable random variable 9 := 1:£. Because Q! € F, it
is true that ¥ € LY (Q, F,P;R). Now, by the tower property of conditional expectations

we obtain
T T
EQ[ﬂ<—X+ 3 D;;)} = Eqg 1Qt(—gX+gE@[ 3 D }"tD > 0.
u=t+1 u=t+1
This contradicts that Q € R*(t, X) since ¥ € L°(2, F;, P;R) and 0 € K(t). O

We are ready to prove the main result of this section: the dual representations of the
superhedging ask price and subhedging bid price.

Theorem 5.5. Suppose that the no-arbitrage condition under the efficient friction assump-
tion (NAEF) is satisfied. Lett € {0,1,...,T — 1} and D be a contingent claim. Then the
following hold:

(i) The essential infimum of W(t, D) and the essential supremum of W°(t, D) are at-
tained.

(ii) Suppose that for each t € {0,1,...,T — 1} and X € L°(Q,F;,P;R), the efficient
friction assumption (EF) holds for K(t, X) and K°(t,X). Then the discounted su-
perhedging ask and subhedging bid prices for contingent claim D at time t satisfy

T
73*(D) = ess sup EQ[ Z D;, ft], (40)
QeR(®) u=t+1
T
bid : «
D)= IR D;|7]. 11
n(D) = s i @[u; |7 (41)

Proof. Since 7¢**(D) = —r?4(—D) holds for all ¢ € {0,...,T — 1} and contingent claim D,
it suffices to show that the essential infimum of W*(¢, D) is attained and (40) holds. Let us
fix t € {0,1,...,T — 1} throughout the proof.

We first prove (i). Let W™ be a sequence decreasing a.s. to mf*¥(D), and fix K™ ¢
K(t) and Zz™ € L9(Q, Fr,P;R) so that —W™ + Zf:tﬂ D} = K™ — Z™. Since a.s.
converges implies convergence in probability, we see that the sequence K™ — Z™ converges
in probability to some Y. Due to Theorem 3.2, we have that K(¢) — LY (Q, Fr,P;R) is P-
closed. Therefore, Y € K(t) — L% (Q, Fr,P;R). This proves that —m@*(D) + ZZZHI D; e
K(t) — LY(, Fr,P;R).
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Next, we show that (i) holds. We begin by showing that

T
73F(D) > ess sup E@[ Z DZ’]—}]. (42)
QeR(®) u=t+1

By (i), we have that 7**(D) € W%(t, D), so there exists K* € K(t) so that

T
K*+7{**(D)— Y  Dj>0. (43)
u=t+1
We are assuming that NAEF is satisfied, so according to Theorem 3.5 there exists a risk-
neutral measure Q*. Because any risk-neutral measure Q satisfies Q € R(t), we obtain that
Q* € R(t). By taking the conditional expectation with respect to F; under Q* of both sides
of the last inequality we deduce that

T
795k (D) + Ege [K*|F] > ]E@*[ 3 D;)ft].
u=t+1
According to part (i) of Lemma 5.1, we have that Eq«[K*|F;] < 0. As a result, n¢**(D) >
Eq- [Zfzt 41 D;:‘]—'t]. Taking the essential supremum of both sides of the last inequality
over R(t) proves that (42) holds.
Next, we show that

T
Ti*H(D) < ess supEq| > D:;‘ft] (44)
QeR(?) u=t+1
By (i), we have that 7#**(D) > —oc0, so we may take X € LO(Q, F;, P; R) so that 7{**(D) >
X. We now prove by contradiction that NA holds for K°(t, X). Towards this aim, we
assume that there exist K € K(t), £ € L°(Q, F,P;R), and Q° C Q with P(Q°) > 0 so that

T T
K+£(X— 3 D;;) >0 as., K+£<X— 3 D;;) >0 as onQ'  (45)
u=t+1 u=t+1
Since NA is satisfied for underlying market K, we have from (45) that there exists Q! C Q°
with P(Q!) > 0 such that Q' € 7 and € > 0 a.s. on Q. Otherwise, our assumption that
NA holds is contradicted. Of course, if Q' C QU is any set such that Q' € F;, P(Q!) > 0,
and £ = 0 a.s. on Q!, then 11 K € K(t) € K satisfies 1 K > 0 a.s., and 11 K > 0 a.s. on
Q. which violates that NA is satisfied.
Moreover, we observe that X — ZT D} >0 a.s. on QL. If there exists Q2 C Q! with

u=t+1

P(Q?) > 0 such that Q? € F; and X — Zz:t_H D < 0 as. on Q2 then from (45) we see

that K > a.s., and K > 0 a.s. on 92, which contradicts that NA holds for K.
Now, let us define

~ K

)Z':Zl 1 X +1 167raSkD, K=1lg———m +1 e K*.
Q @)em ™ (D) o S e@yy e
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From (43) we immediately have that

K+X— ZT: D = K* 4+ n%*(D Z D >0 a.s. on (Qh)°.
u=t+1 u=t+1
On the other hand, from (45) and since X — Y7 _ _i1 Di > 0as. on Q') we see that
~ L . K - % 1
_ u;rl D} = S €] + X — u;rl D; >0 a.s. on Q.

Consequently, K 4+ X — Zf:m D; >0 a.s. on Q. Now, since 0 < 1/sup,,cq1{£{(w)} < oo,
and because K(t) is a convex cone that is closed with respect to multiplication by random
variables in L°°(Q F:,P;R), we have that K € K(t). Therefore X € W4(t, D). However,
since X satisfies X < 7%%(D) and P(X < 7%*(D)) > 0, we have that X € W4(t, D)
contradicts ¥ (D) = ess inf W(t, D). Thus, NA holds for K°(¢, X).

By assumption, EF holds for K°(t, X), so NAEF is satisfied for (¢, X). According
to Lemma A.1 there exists Q € RY(t, X). In view the claim (%) in Lemma 5.1, we see that

(X +Eg[K|F) < CE; [ Z D*‘]—}} K € K(t), ¢ € L¥(Q, Fi, P;R).
u=t+1

Since 0 € K(t) and 1 € L°(Q2, F;,P;R), we obtain that X < EQ[Zfth D} |F]. Now,
because R°(t, X) C R(t), we have that Q € R(t). Hence,

X<IEA[ Z D: }< sup E@[ Z D

u=t+1 QeR(t) u—t+1

F. (46)

The random variable X < 7¢*¥(D) is arbitrary, so for any scalar ¢ > 0 we may take
X :=7¢*%(D) — e. From (46), we see that

73F(D) < sup Eg Z ] e, €>0.
QeR(t) u—tt1
Letting € approach zero shows that (44) holds. This completes the proof of (3). O

Remark 5.6. An open question that remains is whether R(¢) can be replaced by R(0)
in the representations in Theorem 5.5. In the arguments presented in this paper, it is
more convenient to work with R(¢) than R(0) because K(t) is closed under multiplication
by random variables in L$°(€2, 73, P;R). In contrast, the set /C(0) is only closed under
multiplication by random variables in L°(£2, Fo, P; R).
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6 Conclusions

In this paper, no-arbitrage pricing theory is extended to dividend-paying securities in
discrete-time markets with transaction costs. A version of the Fundamental Theorem of
Asset Pricing is proved under the efficient friction assumption, and the representations for
the superhedging ask and subhedging bid prices are given. As usual, the proof of the Fun-
damental Theorem of Asset Pricing relies on showing that the set of all claims that can
be superhedged at zero cost is closed under convergence in probability. In the special case
when there are no transaction costs on the dividends paid by the security, the no-arbitrage
condition under the efficient friction assumption is proved to be equivalent to the existence
of a consistent pricing system. The general case, in which there are transaction costs on
the dividends, is open. The theory is motivated by credit default swaps and interest rate
swaps.

A Appendix

Lemma A.1. For each t € {0,1,....,T — 1} and W € L°(Q, F;,P;R), if the no-arbitrage
condition under the efficient friction assumption is satisfied for K(t, W) (K’(t,W)), then
RO, W) £ 0 (RV(t, W) # 1),

Proof. Let us first fix t € {0,1,...,T — 1} and W € L°(Q, 7, P;R). We only prove the
lemma for K%(t, W), because the proof for K(t, W) is similar. Instead of working with
K*(t, X), we will work with the more mathematically convenient set

Ke(t, W) := {G(,&,t, W) : ¢ € P(t), & € LT (Q, Fi, P;R) |,
where P(t) is the set
P(t) :={¢p € P: ¢ is a.s. bounded for j € J*, ¢, = Liry1<5y9s for all s € T},

and

N
bZd, 5 (J,Sk', )
G(¢, &6, W)= dp(1 (>0t " + o r ")
j=1

N T
k, bid,j,

,Z Z Aq{){b (Adi>0} 531j*+1{A¢{¢<0}Puilj *)

J=1 u=t+1

N T T

j k,j* bid *

T30 D Gl AT+ 1y AU (W Y DY)

7j=1 u=t+1 u=t+1

(47)
for all for all RY-valued stochastic processes

(¢s)y € LO(Q, Fr, Py RY) x -+ x LO(Q, Fr, P;RY),
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and random variables & € LS°(§, Fr,P;R).

Since K%(¢t, W) = K%(t, W), we may equivalently prove that K*(¢, W) — L(jr (Q, Fr,P;R)
is P-closed whenever NAEF is satisfied for K%(t, W). Let X™ € K%(t, W)— L% (2, Fr,P; R)
be a sequence converging in probability to some X. We may find a subsequence XFm
that converges a.s. to X. With an abuse of notation we denote this subsequence by
X™. By the definition of K%(t, W), we may find ¢™ € P(t), £™ € LY (Q, F,P;R), and
zZm e L%(Q, Fr,P;R) so that X™ = G(¢™,&™,t,W) — Z™. Using the same arguments as
in Step 1 in the proof of Theorem 3.2, we prove that limsup,, ||[¢7"|| < oo for all t € T*
and limsup,, £™ < oo. Then, we apply Lemma 3.5 to show that we may find a strictly
increasing set of positive, integer-valued, F7_1 measurable random variables ¢” such that
¢°" converges a.s. to some bounded a.s. predictable process ¢, and €7 converges a.s. to
some §{ € L3°(€2, F;, P;R). This gives us that G, 67" t,W) — X" converges a.s. to
some nonnegative random variable. Therefore K®(t, W) — LY (Q, Fr,P;R) is P-closed.

We now argue that there exists a risk-neutral measure for K*(¢,W). Towards this,
we define the convex cone C* := (K(t,W) — LY(Q, Fr,P;R)) N L(Q, Fr,P;R). Due to
the closedness property of K*(t, W) — LQ_(Q,]:T,IP’;]R), we have that the set C* is closed
in L1(Q, Fr,P;R). As in the proof of Theorem 3.5, we may construct a measure Q € Z
such that W is Q-integrable, and Eg[K %] < 0 for all K* € K%(t, X). This completes the
proof. O
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