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FINITENESS OF THE POINT SPECTRUM OF SOME
NONSELFADJOINT OPERATORS CLOSE TO THE
OPERATORS GENERATED BY JACOBI MATRICES

Ia. CiaLENCO, P. COJUHARI

ABSTRACT. The main purpose of the present paper is to give sufficient conditions for
the finiteness of the point spectrum of some nonselfadjoint operators.

In the present paper the results on the finiteness of the point spectrum of per-
turbed operator of the form H =V + V* + B, where V is an isometric operator
(nonunitary) on the Hilbert space $, and B € B($) (B($) denotes the class of all
linear and bounded operators on §) are obtained. In particular, we study the point
spectrum of the operator generated by Jacobi matrix. The main results are obtained
using direct method of the perturbation theory of spectrum of linear operators.

The obtained results are in concordance with those established for the Friedrichs
model [1], differential operators of the second and forth order [2, 3], Wiener—Hopf
integral operator [4] etc. As a rule, in the case of nonselfadjoint perturbations, the
problem of finiteness of the point spectrum is reduced to the theorem of uniqueness
of analytical function. Thus, the Weyl’s function that corresponds to differential
operators of the second order [2], the resolvent function in the case of Wiener—Hopf
integral operators [4] etc. are studied. In this note, we suggest a suitable method,
and more simple, generalize substantially the results from [5], where the author
investigated the operator L generated by the difference expression

1 .
(Ly); = 5(%’—1 +yiv1) +bjy; (G=1,2,...)

where (y;) € lo; yo =0y1; 0, € C (j=1,2,...); 0 € C.

In the first section, it is proved an abstract theorem about finiteness of the point
spectrum of some perturbed operators (generally speaking nonselfadjoint). In Sec-
tions 2—4, we show some applications of the abstract theorem for the operator gener-
ated by Jacobi matrix, and respectively in the case when the unperturbed operator
is with finite differences.

It should be mentioned that the abstract scheme can be used for more general
cases. For example, in the case of operators generated by Jacobi matrices of arbi-
trary order, for operators with finite differences of any order, Wiener—Hopf integral
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operators etc. The results concerning these operators will be published in author
papers afterwards.

The results on finiteness of the set of eigenvalues of the selfadjoint operators
similar to those examined in this note, have been obtained in [6-8].

1. Throughout the paper, $) will denote a Hilbert space, B($) the class of all
linear and bounded operators on §), B, ($) the class of all compact operators on £.

Let V' be an isometric operator defined on §, such that the operator V* has no
eigenvalues on the unit circle T = {z € C | ||2|| = 1}. Consider the operator H of
the form

H = H, + B, (1)

where Hy =V +V*, B € B(9).

The operator H will be considered as a perturbation of the operator Hy by the
operator B. It is known that the spectrum of the operator Hy is the set of values of
the function a(z) = z + 27!, called the symbol of the operator Hy (see [9]), on the
unit circle T. Since IZIIEI% a(z) = —2 and max a(z) = 2, the spectrum of operator Hy

is the interval [—2, 2] and since o,(V*) NT = 0, it follows that o,(Hp) = 0.

After perturbation the spectrum of operator Hy may change substantially. Due
to Weyl-type theorem, in the case when the perturbation is compact, the essential
spectrum remains invariable, but eigenvalues may appear on essential spectrum as
well as outside of it. Note that in this situation the discrete spectrum may have
accumulation points only on the essential spectrum.

Further, the conditions on the operator B for finiteness of the point spectrum
op(H) of the operator H will be indicated.

Theorem 1. Let B be an operator that satisfies the following conditions:
(i) The operator B can be represented in the form B = RTS, where R,S € B
(9), T € B (9);
.. T n n T n n
(i) nll_}Holo YISV <1, nll_}Holo VIRV < 1.

Then the set of all eigenvalues of the operator H is finite. Moreover, the possible
eigenvalues have finite multiplicity.

The proof of this theorem is based both on the straightforward studying of the
holomorphic extension of the resolvent of the unperturbed operator Hy and on the
theorem about the operator valued analytic function (see [10, Theorem XIIIL.13] or
[11, Theorem 5.1]).

The properties of the function a(z) = z + 27! (2 € C) are well known (see for
instance [12]). This function is a one-to-one transformationof T_={z € C | |z| > 1}
onto C \ [-2,2]. Let us denote by pu(\) the zero of the function a(z) — A, that
transforms C \ [—2,2] on the set T_. Since

a(z) = A= ——< (27" = uN)(z —u()) (A€ C\[-2,2])
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one gets

Ro(A) = —p(N)(V = p(N) 7 (V* = u(N) ™" (A€ C\[-2,2)), (2)

where Ry(A) denotes the resolvent function of the operator Hy, a.i. Ro(A) = (Hp —
A1 (X € p(Hp)). For simplicity of notation we will denote by Q()) the following
operator valued function

Q) =SRo(ME (A € C\[-2,2]).

Let Q(z) = Q(a(z)) (z € T_). Put pu(\) = z in relation (2). Since a(u(N)) — A =0,
we have a(z) = A and multiplying (2) by S and R to the right and to the left
respectively we obtain

Q(z)=—2S(V—2)""(V*=2)"'R (2 €T). (3)

Lemma 1. There ezists 6 € (0,1), such that the function Q(z) has holomorphic
extension from T_ to Wy = {z € C | |z| > d}.

Proof. From equality (3) it follows that

@) = (3 ZV*M ) (4)

n=0

where z € T_, f,g € 9.
Letr = 11_>_m VISsvel, re = m VIIRV™|| and 6 = max{ry,r2}. By condition
n—od
(ii) of Theorem 1, we have ¢ € (0,1). So, the series Z 2 V*" RY, E S f

=0
converge on the domain Wy, for each f € ). Moreover

V"R Vv S V**R V*kg
> fZ kﬂgi\nz f||||§j LA TS

n=0

o0
IV="R]| <= V48|
< [I£llglD " EQ Z B < cllfMHllgll,
n=0

where z € W5, f,g € 9, c=c(d) € Ry.

Thus, the right-hand of the equality (4) represents a bounded bilineare functional
on §) x § for each z € Ws. According to Riesz’s theorem, this bilineare functional
generates an operator Q1(z) € B($) (z € Wy).

Since

[ee]
1 *N *k
(@f9)== > g (V"RLV™ESg) (:€Wsifg€9), ()

n,k=0
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we conclude that the operator valued function @)1 (z) is weakly analytic on W5 and as
weak analyticity coincides with strong analyticity (see for instance [13]), the function
Q1(2) is analytic on Ws (0 < § < 1). By equality (4), the function @;(z) coincides
with @(z) on T_, and so, we have that @;(z) is a holomorphic extension of the
function Q(z) from T_ to W; for an § € (0,1). Lemma 1 is proved.

Further we preserve the notation Q(z) for holomorphic extension of function Q(z)
on Ws. By Lemma 1, the operator valued function Q(z) is continuous on T_, and

5o, there exists the limit s — li{r}) Q(A £ ie) for every A € [—2,2]. In the sequel, we
g

denote by Q4 ()\) the operator valued function defined on II., which is equal to Q())
ifAelly ={z€C|£Imz>0}and to Qs (A)if A € R.
For the proof of Theorem 1, we will use the fact that if A € ,,(H) then Ker(l +

Q+(NT) #0, Le,
(I+Q:+(NT)f =0, (fehH f#0). (6)

Essentially, the proof of this result can be done using the method from papers Kuroda
[14] and M.Schehter [15], where the selfadjoint operator H is considered.

In the case when A € p(Hp), one can see at once that the operator H — A is
invertible if and only if the operator I+ Ro(A\)RT'S is invertible which is equivalent to
the invertibility of the operator I + SRy(A)RT (see for instance [16]). If A € o(H,),
the proof, in essentially, coincides with the proof given in [16].

Due to the previous statements it is sufficient to prove that Ker(I + Q(z)T) # 0
for a finite number of values z from T_. Since the operator valued function Q(2)T is
holomorphic on W (0 < § < 1), takes values in By, () and [|Q(2)T]| = 0 (|z] = 0)
then by the theorem about the operator valued function which is holomorphic on a
domain [9, 10], it follows that Ker(I + Q(2)T) # 0 for a finite set of values zj € T_
(k=1,...,n). Moreover, dim Ker(I + Q(z;)T) < oo (k=1,...,n).

Thus Theorem 1 is proved.

2. Let $ be a Hilbert space and V' be an one-sided translation in §,i.e. V*V =1
and there exists a subspace (called the wandering subspace of V') £,£ C $, such
that

o0
VPe 1L (neN), H=) avre (7)
n=0
It should be noted that every h € $ can be represented in the form
o0
h=> Vg, (8)
n=0

where g, € £ (n =0,1,...). Moreover, ||h]|> = 3" |lgnl/*. Let us consider the
operator H = V + V* 4+ B acting in the space §), where B € B (£)). We assume
S =R =S;, where Ssh =Y " e °"V"g,, h is given by (8) and § € R. For § > 0,
the operator Ss is invertible, the inverse operator is not bounded and it is equal to
S_s. Here we consider the situation when the operator S_sBS_; is densely defined
and bounded in $) for some § > 0. Its extension will be denoted by T'.
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Theorem 2. If the operator B is such that the operator T is compact for some
0 > 0, then the operator H has at most a finite set of eigenvalues. Every eigenvalue
has finite multiplicity.

Proof. The operator H satisfies the conditions of Theorem 1. It is clear that
condition (i) is satisfied and since

ISVRRIP = IS Vgl = 1) e vty |2 =

k=0 k=0
oo o0
— e—QJnH Ze—ékvn+kgk||2 < e—26n Ze—6k|lvn+kgk||2 <
k=0 k=0

oo
<e Y gl = e bl (h e 95m e M),
k=0

we have ||SV™|| < =" (§ > 0). Thus, the condition (ii) of Theorem 1 is checked.
Theorem 2 is proved.

In particular, let $9 = I and V be the canonical translation in ), i.e. Vo =
0,z1,22,...,Zp—1,...) (x = (z,) € l). Consider the perturbation of operator
Hy =V 4+ V* with operator B = [bjx]35_, € B () (bjx are complex numbers).
From Theorem 2 follows immediately the next

Theorem 3. If the operator generated by the matriz [6‘5("+k)bnk]$§k:0 is bounded
for some 0 > 0, then the operator H =V + V* 4+ B has a finite set of eigenvalues,
each of them being of finite multiplicity.

3. In the space I, we consider the operator H generated by Jacobi matrix, i.e.
H = [ajk];?f’kzl, ajr € C, ajr, =0 if |j —k?| >1 (],k = 1,2,...).

Suppose that ajjix = ar (K = —1,0,1), a1 = @—1, ap € R Let us denote
ajr = ajj+k — ak, (K = —1,0,1). From Theorem 3 one can see at once the following

on

Theorem 4. If the sequences (e’ an)pe; (k= —1,0,1) converge for some § > 0,

then the point spectrum of the operator H is at most a finite set. Furthermore, the
possible eigenvalue has finite multiplicity.

4. It should be noted that Theorem 1 can be applied to different cases. For
example, we consider the operator V' generated in the space L2(R) by the expression

f(CU—l), .’L'Sl
0, O<ze<1.

v = {

As a perturbation of the operator Hy =V + V* consider the integral operator

(Bf)() = / b, w)fW)dy  (f € La(Ry)).

R+
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Suppose that the kernel b(-,-) is such that the operator B (generally speaking non-
selfadjoint) is bounded in L2(Ry). Let S and T be operators in Ly(R;) of the
form

(SF)(@) = e~ f(x), (Tf)(x) = / @b y) f(y)dy,

R4

where 0 > 0. Then B = STS. An easy checking of the conditions of Theorem 1
gives the following

Theorem 5. If the integral operator with the kernel 65(z+y)b(m,y) s bounded on
Ly (Ry) for some 6 > 0, then the operator H has a finite set of eigenvalues, each of
them being of finite multiplicity.
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