
ON THE POINT SPECTRUM OF NONSELFADJOINT
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Abstract. In this paper there are obtained results on the finiteness of the point
spectrum of some nonselfadjoint operators. In particular the operators of Wiener-
Hopf type acting in arbitrary Hilbert space, l2 and L2(R+) are considered.

In the present paper there is examined the problem of finiteness of the point
spectrum of some nonselfadjoint operators. The similar problems have been studied
for differential operators of second order [1,2] and fourth one [3], operator with finite
difference of second order [4], Wiener-Hopf integral operator [5], for Friedrichs model
[6] etc. Usually, in the case of nonselfadjoint perturbation, the problem of finiteness
of the point spectrum is reduced to the theorem of uniqueness of analytical function.

In this paper the problem is solved by the method of holomorphic extension of
resolvent of unperturbed operator through continuous spectrum and application of
the theorem of holomorphic operator-valued function. The obtained results are in
concordance with those established in [1–6]. Moreover, it is possible to generalize
substantially the results from [4], where it is considered the operator L generated
by the difference expression

(Ly)j =
1
2
(yj−1 + yj+1) + bjyj , (j = 1, 2, . . . )

where (yj) ∈ l2; y0 = θy1; bj ∈ C (j = 1, 2, . . . ); θ ∈ C. There is considered
the operator with finite difference of any order and more general perturbation (not
necessarily diagonal).

In the first section, we give a general scheme about finiteness of the point spec-
trum of perturbed operators. In section 2, we prove an abstract theorem for the
case of abstract Wiener-Hopf type operators. The sections 3–5 contain various ap-
plications of the abstract theorem. Thus, it is considered the operator generated
by generalized Jacobi matrix, the case when unperturbed operator is with finite
difference (arbitrary order) acting in l2 and L2(R+) respectively. The results of the
present paper generalize our previous ones given in [7–8].

2. Throughout the paper, H will denote a Hilbert space, B(H) the class of all
linear and bounded operators on H, B∞(H) the class of compact operators on H.

Let H0 and B be linear and bounded operators on H such that the following
assumptions are fulfilled:

(1) The operator H0 is selfadjoint and σp(H0) = ∅;
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(2) The operator B can be represented in the form B = RTS, where
R, S ∈ B(H), T ∈ B∞(H);

(3) There exists Q̃±(λ) = s− lim
ε→0

Q(λ±iε) (λ ∈ R), where Q(λ) = S(H0 − λ)−1
R

(λ ∈ ρ(H0)).
For simplicity of notation, let Q±(λ) be the operator-valued functions defined on
Π±, which are equal to Q(λ) if λ ∈ Π± = {z ∈ C |± Imz > 0} and Q̃±(λ) if λ ∈ R.

Proposition. If λ ∈ σp(H0 + B) then Ker(I + Q±(λ)T ) 6= 0, i.e.

(I + Q±(λ)T )f = 0 , (f ∈ H, f 6= 0). (1)

The proof of this proposition coincides essentially with those from [10] or [11],
where the case of selfadjoint operator is discussed. Due to previous proposition for
finiteness of the point spectrum of the operator H0 +B, it is sufficient to prove that
Ker(I + Q±(λ)T ) 6= 0 for a finite number of values λ ∈ C.

3. Let V be an isometric operator (non-unitary) defined on H such that the
operator V ∗ has no eigenvalues on the unit circle T = {z ∈ C | |z| = 1}.

Hereafter, K(V ) denotes the linear span (nonclosed) of the operators V n

(n = 0,±1,±2, . . . ), where V n = (V ∗)−n (n = −1,−2, . . . ), and respectively, we
will denote by K−(V ) (K+(V )) the linear span of the operators V n

(n = 0,−1, . . . )(V n (n = 0, 1, . . . )). The closure of the linear sets K(V ), K±(V )
in B(H) will be denoted by R(V ) and R±(V ) respectively. R±(V ) are commu-
tative subalgebras of the algebra B(H). The elements of the subspace R(V ) are
called the operators of Wiener-Hopf type (see for instance [9]). In this context, the
operator A ∈ R(V ) can be regarded (in some sense) as the value of its symbol at V ,
i.e. A = a(V ). The set of all symbols constitutes the space C(T) of all continuous
functions on T. Simultaneously, the set of symbols of operators from R+(V ) (re-
spectively R−(V )) coincides with the set C+(T) (respectively C−(T)) of all func-
tions from C(T) which have holomorphic extension to W+ = {z ∈ C | |z| < 1}
(respectively W− = {z ∈ C | |z| > 1}). If a(z) ∈ C(T) is a real-valued function,
then the operator a(V ) ∈ R(V ) is selfadjoint on H. In this case, the spectrum of
operator A is the set of all values of the function a(z) on the unit circle T, i.e.
σ(A) = {a(z) | z ∈ T}.

From now on, we will use the notations: Tr,R = {z ∈ C | r < |z| < R}
(0 < r < R), W±

δ = {z ∈ C | |z| ≶ δ} (δ > 0), Tδ = Tδ, 1
δ

(δ ∈ (0, 1)).
It is supposed that the function a(z) is analytic on a ring Tr,R (0 < r < 1 < R)

and a(z) ∈ R (z ∈ R).
Let H be an operator of the form

H = H0 + B , (2)

where H0 = a(V ) and B ∈ B(H). The operator H0 is selfadjoint and σ(H0) =
[a, b] ⊂ R, where a = min

z∈T
a(z), b = max

z∈T
a(z). Moreover, σp(H0) = ∅ (see, for

example, [9]).
In the sequel, conditions on the operator B (generally speaking nonselfadjoint)

will be indicated for finiteness of the point spectrum σp(H) of the operator H.
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Theorem 1. Let H0, B be operators that satisfy the following conditions:
(i) H0 = a(V ), where a(·) is an analytic function on a ring Tr,R

(0 < r < 1 < R);
(ii) a(z) ∈ R (z ∈ T);
(iii) The operator B can be represented in the form B = RTS, where

R, S ∈ B (H), T ∈ B∞ (H);
(iv) lim

n→∞
n
√
‖SV n‖ < 1, lim

n→∞
n
√
‖R∗V n‖ < 1.

Then the set of all eigenvalues of the operator H = H0 +B is finite. Moreover, the
possible eigenvalues have finite multiplicity.

Without loss of generality, we will prove this theorem in the case, when the
function a(z) introduced in (i) is analytic on a ring Tδ (δ ∈ (0, 1)). Now we are
going to prove some auxiliary lemmas.

Lemma 2. Suppose that the function a(z, λ) is analytic on the set Tδ × U(λ0)
for an δ ∈ (0, 1), continuous on the boundary of Tδ and a(z, λ) 6= 0 ((z, λ) ∈ Tδ ×
U(λ0)), ν+(λ) = ind

z∈T
a(δz, λ) = 0 (λ ∈ U(λ0)), ν−(λ) = ind

z∈T
a( z

δ , λ) = 0 (λ ∈ U(λ0)).

Then there exists the operator
(
a(V, λ)

)−1 ∈ B(H) (λ ∈ U(λ0)) and the operator-
valued function

(
a(V, λ)

)−1 is analytic on U(λ0).

Proof. Let us consider the function a( z
δ , λ) on Tδ × U(λ0). This function satisfies

the following conditions: a( z
δ , λ) (z ∈ T, λ ∈ U(λ0)) is continuous in z, a( z

δ , λ) 6=
0 (z ∈ T, λ ∈ U(λ0)), ind

z∈T
a( z

δ , λ) = 0 (λ ∈ U(λ0)). Due to the theorem about

factorization of continuous functions on the unit circle (see, for example, [12]), the
function a( z

δ , λ) can be represented in the form

a(
z

δ
, λ) = α+(z, λ)α−(z, λ) , (3)

where α±(z, λ) are analytic in z on W± (λ ∈ U(λ0)), α±(z, λ) 6= 0 (z ∈ W
±

, λ ∈
U(λ0)). Moreover, α±(z, λ) are determined by the formulas

ln α±(z, λ) = ± 1
2πi

∮

T

ln a( ζ
δ , λ)

ζ − z
dζ (z ∈ W±), (4)

and α± ∈ R±, α−1
± ∈ R± (see [9],[12]).

Since a( z
δ , λ) 6= 0 (λ ∈ U(λ0), z ∈ T) and it is analytic on U(λ0), it follows from

(4) that α±(z, λ) are analytic in λ on U(λ0).
So,

α−(z, λ) = a

(
z

δ
, λ

)
α−1

+ (z, λ) (z ∈ T, λ ∈ U(λ0)).

Since the function α−1
+ (z, λ) is analytic on W+ × U(λ0) and a( z

δ , λ) is analytic
on Tδ2,1 × U(λ0), it may be concluded that the function α−(z, λ) has holomorphic
extension in z from W− to W−

δ2 (λ ∈ U(λ0)).
Thus

a(z, λ) = a+(z, λ)a−(z, λ) ,
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where a±(z, λ) = α±(δz, λ) (z ∈ Tδ, λ ∈ U(λ0)).
Therefore

a−1(z, λ) = a−1
+ (z, λ) a−1

− (z, λ) , (z ∈ Tδ, λ ∈ U(λ0)) (5)

and as, a−1
± ∈ R±, it follows that a−1

± (z, λ) can be represented in the form

a−1
+ (z, λ) =

∞∑

k=0

bk(λ)zk , (z ∈ W+
1
δ

, λ ∈ U(λ0))

a−1
− (z, λ) =

0∑

k=−∞
bk(λ)zk , (z ∈ W−

δ , λ ∈ U(λ0)).

Since bk(λ) (k ∈ Z, λ ∈ U(λ0)) are Fourier coefficients, the functions bk(λ)
(k ∈ Z) are analytic on U(λ0).

It follows from (5) that

a−1(V, λ) =
∞∑

k=0

bk(λ)V k
∞∑

k=0

b−k(λ)V ∗k (λ ∈ U(λ0)).

¤

Lemma 3. For any λ0 ∈ R there exists a neighborhood U(λ0) (generally speaking
on the Riemann surface), such that the function Q+(λ) has holomorphic extension
from U(λ0) ∩ Π+ to U(λ0). Furthermore, λ0 is an algebraic branch point. The
same is true for the operator-valued function Q−(λ).

Proof. For the case λ0 ∈ ρ(H0) the proof is obvious, because of the analyticity of
the resolvent function on the resolvent set ρ(H0).

Let λ0 ∈ σ(H0). Consider the function a(z)− λ on Tτ × U(λ0), where U(λ0) is
a neighborhood of point λ0. This function is analytic on Tτ × U(λ0) (τ ∈ (0, 1)).

Let z1, z2, . . . , zn be the roots of the function a(z) − λ0, mk (k = 1, . . . , n) be
their corresponding multiplicities. Without restriction of generality we can assume
that zk ∈ T (k = 1, . . . , n), a(z) − λ0 6= 0 (z ∈ Tτ \ T). By virtue of the implicit
function theorem (see for instance [13]), it follows that a(z)− λ can be represented
in the form

a(z)− λ = (z − a1(λ))(z − a2(λ)) . . . (z − ak(λ))a0(z, λ) , (6)

where z ∈ Tτ , λ ∈ U(λ0), aj (j = 1, . . . , k) are analytic branches of the functions
zs (s = 1, . . . , n),m1 + m2 + · · · + mn = k, the a0(z, λ) is analytic on Tτ × U(λ0)
and a0(z, λ) 6= 0 (z ∈ Tτ , λ ∈ U(λ0)). Here and subsequently Tτ and U(λ0) are
choosed conveniently, but without loss of generality we preserve the same notations
Tτ and U(λ0) respectively. It should be noted that the functions aj (j = 1, . . . , k)
can coincide and U(λ0) is a neighborhood of the point λ0 belonging to Riemann
surface. In this case λ0 is an algebraic branch point.
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Suppose that aj (j = 1, . . . , k) are counted such that

|aj(λ)| < 1 (j = 1, . . . , s; λ ∈ U(λ0) ∩Π+)

|aj(λ)| > 1 (j = s + 1, . . . , k; λ ∈ U(λ0) ∩Π+) (7)

It is easily seen that k = 2s and the function zsa0(z, λ) satisfies the conditions of
Lemma 2. It follows from (6) and (7) that the operator (H0 − λ)−1 (λ ∈ U(λ0)∩Π+)
can be represented in the form

(H0 − λ0)−1 = (V − as+1(λ))−1 . . . (V − ak(λ))−1

b(V, λ)(I − a1(λ)V ∗)−1 . . . (I − as(λ)V ∗)−1 , (8)

where b(V, λ) is the operator from R with the symbol (zsa0(z, λ))−1.
From (8) we have

(Q+(λ)f, g) = (b(V, λ)(I − a1(λ)V ∗)−1 . . . (I − as(λ)V ∗)−1Rf,

(V ∗ − as+1(λ))−1 . . . (V ∗ − ak(λ))−1Sg) , (9)

where λ ∈ U(λ0) ∩Π+; f, g ∈ H.
Since,

(I − zV ∗)−1 =
∞∑

j=0

zj V ∗j , (z ∈ W−)

it follows from (9) that

(Q+(λ)f, g) =
(

b(V, λ)
∞∑

j=0

Pj(λ)V ∗jRf,

∞∑

j=0

Qj(λ)V ∗jSg

)
, (10)

where f, g ∈ H, λ ∈ U(λ0)∩Π+ and Pj(λ), Qj(λ) (j = 0, 1, . . . ) are polynomials of
degree j in a1(λ), . . . , as(λ) and 1

as+1(λ) , . . . ,
1

ak(λ) respectively.

Let r1 = lim
n→∞

n
√
‖R∗V n‖, r2 = lim

n→∞
n
√
‖SV n‖ and δ = max{τ, r1, r2}. Choose

U(λ0) such that aj(λ) ∈ Tδ (λ ∈ U(λ0); j = 1, . . . , k).
Thus, the series

∞∑

j=0

Pj(λ)V ∗jRf ,

∞∑

j=0

Qj(λ)V ∗jSg (11)

converge absolutely for λ ∈ U(λ0); f, g ∈ H.
Actually,

∞∑

j=0

‖Pj(λ)V ∗jRf‖ 6
∞∑

j=0

|Pj(λ)| ‖V ∗jR‖ ‖f‖ 6

6
∞∑

j=0

j!
δj
‖R∗V j‖ ‖f‖ (λ ∈ U(λ0), f ∈ H).
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Since lim
n→∞

n

√
‖R∗V n| n!

δn < 1 the first series from (11) converges absolutely. Similarly
the second series converges absolutely too.

Thus, the right-hand of the equality (10) is equal to

∞∑

n,j=0

Pn(λ) Qj(λ)
(
b(V, λ)V ∗nRf, V ∗jSg

)
, (12)

where λ ∈ U(λ0); f, g ∈ H. Moreover, the series from (12) converges absolutely and

∣∣∣∣
∞∑

n,j=0

Pn(λ)Qj(λ)(b(V, λ)V ∗nRf, V ∗jSg)
∣∣∣∣ 6 c ‖f‖ ‖g‖ ,

where c = c(δ) ∈ R+; λ ∈ U(λ0); f, g ∈ H.
So, the expression (12) represents a bounded biliniare functional on H × H for

each λ ∈ U(λ0). According to Riesz theorem, this biliniare functional generates
an operator Q1(λ) ∈ B(H) (λ ∈ U(λ0)). Since, aj(λ) (j = 1, . . . , k; λ ∈ U(λ0)) are
analytic branches of functions zj(λ) (j = 1, . . . , n) with λ = λ0 algebraic branch
point, it follows that aj (j = 1, . . . , k) can be expanded into a Puiseux series. This
gives that

(Q1(λ)f, g) = λ0 +
∞∑

j=1

Bj(f, g)(λ− λ0)
j
p , (13)

where λ ∈ U(λ0); f, g ∈ H; p ∈ N, Bj(f, g) (j ∈ N) are biliniare functionals on H×H
and as weak analyticity coincides with strong analyticity (see for instance [14]), the
function Q1(λ) is analytic on U(λ0).

By equalities (10) and (13) the function Q1(λ) coincides with Q+(λ) on U(λ0)∩
Π+, and therefore Q1(λ) is a holomorphic extension of the function Q+(λ) from
U(λ0)∩Π+ to U(λ0), with U(λ0) being placed into Riemann surface and λ0 algebraic
branch point. ¤

Since Q±(λ) is analytic on C \ [a, b] and ‖Q±(λ)‖ → 0 (|λ| → ∞), by theorem
about operator-valued function which is holomorphic on a domain [14,15], it follows
that the set of all λ ∈ C which satisfies (1), is at most countable. Moreover, the
possible points of accumulation belonging to [a, b].

Let λ0 ∈ [a, b]. By Lemma 3, Q±(λ) can be represented in the form

Q±(λ) = λ0I +
∞∑

j=1

B±
j (λ− λ0)

j
p , (14)

where λ ∈ U(λ0), p ∈ N, B±
j ∈ B(H) (j ∈ N).

Take t = (λ − λ0)
1
p (λ ∈ U(λ0)). The image t(U(λ0)) of the neighborhood

U(λ0) will be the neighborhood U0 of the point t = 0. Let us denote P±(t) =
Q±(λ0 + tp) (t ∈ U0). Thus, there is a bijective correspondence between the set of
all λ ∈ U(λ0) such that satisfying (2) and the set of all t ∈ U0 such that

(I + P±(t)T )f = 0 (15)
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where f ∈ H, f 6= 0.

From (14) the operators Q±(t) can be written in the form P±(t) =
∞∑

j=0

B±
j tj ,

where t ∈ U0,and B±
0 = λ0I. By the theorem about holomorphic operator-valued

function, it follows that Ker(I + P±(t)T ) 6= 0 for a finite set af values ts ∈ U0 (s =
1, . . . , m). Moreover, dimKer(I + P±(ts)T ) < ∞ (s = 1, . . . ,m). Thus Theorem 1
is proved.

3. Let H be a Hilbert space and V an one-sided translation in H, i.e. V ∗V = I,
and there exists a subspace (called a wandering subspace of V ) L, L ⊂ H, such that

V nL ⊥ L (n ∈ N) H =
∞∑

n=0

⊕V nL. (16)

In view of (16) every h ∈ H can be represented in the form

h =
∞∑

n=0

V ngn , (17)

where gn ∈ L (n = 0, 1, . . . ). Moreover,

‖h‖2 =
∞∑

n=0

‖gn‖2.

Let us consider the function a(z) analytic on Tτ for an τ ∈ (0, 1), real-valued on T,
and the operator H = a(V ) + B acting in the space H, where B ∈ B(H).

We assume that S = R = Sδ, where

Sδh =
∞∑

n=0

e−δnV ngn ,

h has been given by (17) and δ ∈ R. For δ > 0 the operator Sδ is invertible,
its inverse operator is not bounded and it is equal to S−δ. Here, we consider the
situation when the operator S−δBS−δ is densely defined and bounded in H for some
δ > 0. Denote the extension of this operator by Tδ.

Theorem 2. If the operator B is such that the operator Tδ is compact for some
δ > 0, then the operator H has at most a finite set of eigenvalues. Every eigenvalue
has finite multiplicity.

Proof. Clearly that the operator H satisfies the conditions (i)–(iii) of the Theorem
1. Since,

‖SV nh‖2 =
∥∥∥∥S

( ∞∑

k=0

V n+kgk

)∥∥∥∥
2

=
∥∥∥∥
∞∑

k=0

e−δ(n+k)V n+kgk

∥∥∥∥
2

=

= e−2δn

∥∥∥∥
∞∑

k=0

e−δkV n+kgk

∥∥∥∥
2

6 e−2δn
∞∑

k=0

e−δk
∥∥V n+kgk

∥∥2 6
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6 e−2δn
∞∑

k=0

‖gk‖2 = e−2δn‖h‖2 (h ∈ H; n ∈ N) ,

we have that ‖SV n‖ 6 e−δn (δ > 0). Thus the condition (iv) of Theorem 1 is
satisfied. ¤

4. Let H = l2 and V be the shift operator in H, i.e. V x =
(0, x1, . . . , xn−1, . . . ) (x = (xn) ∈ l2). We consider the unperturbed operator H0 of

the form H0 =
∞∑

k=−∞
akV k, where ak ∈ C (k ∈ Z) and

∞∑
k=−∞

akzk ∈ R (z ∈ T).

As a perturbation of H0 we take the operator B = [bjk]∞j,k=1 ∈ B(H), where bjk

are complex numbers. Assume that
∞∑

k=−∞
|ak|eτ |k| < ∞ for some τ > 0. This

assumption is equivalent to analyticity of the function a(z) =
∞∑

k=−∞
akzk on Tτ . In

this case Theorem 2 can be formulated as follows.

Theorem 3. If
∞∑

k=−∞
|ak|eδ|k| < ∞ and the operator generated by the matrix

[eδ(n+k)bnk]∞n,k=1 is bounded in l2 for some δ > 0, then the operator H = H0 + B
has a finite set of eigenvalues, each of them being of finite multiplicity.

In particular, we can formulate the same result for the operator generated by
generalized Jacobi matrix. Let us consider in the space l2 the operator H generated
by matrix [ajk]∞j,k=1 with complex elements such that ajk = akj (j, k = 1, 2 . . . ),
and ajk = 0 if |j − k| > n for some n ∈ N.

Suppose that aj,j+k → ak (j → ∞; k = 0,±1, . . . ,±n). Let us denote αjk =
aj,j+k − ak (k = 0,±1, . . . ,±n). Thus, the operator H can be represented in the
form H = H0 + B, where

H0 =
n∑

k=−n

akV k, B = [bjk]∞j,k=1 , bjk =
{

αjk , |j − k| 6 n

0 , |j − k| > n.

From Theorem 3 one gets at once the following

Theorem 4. If the sequences (eδjαjk)∞j=1 (k = 0,±1, . . . ,±n) converge for some
δ > 0, then the point spectrum of the operator H is at most a finite set. Further-
more, the possible eigenvalues have finite multiplicity.

5. It should be mentioned that Theorem 1 could be applied in different cases.
In this section, we consider the operator V generated in the space L2(R+) by the
expression

(V f)(x) =
{

f(x− 1) , x ≥ 1
0 , 0 < x < 1.

As an unperturbed operator H0, we choose the following selfadjoint operator

H0 =
∞∑

n=−∞
anV n ,
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where an ∈ C (n ∈ Z) and
∞∑

n=−∞
anzn ∈ R (z ∈ T). The operator H0 represents an

operator with finite difference of arbitrary order. Let us consider a perturbation of
the operator H0 by the integral operator

(Bf)(x) =
∫

R+

b(x, y)f(y)dy, (f ∈ L2(R+)).

Suppose that the kernel b(·, ·) is such that the operator B (generally speaking
nonselfadjoint) is bounded in L2(R+). Let S and T be the operators in L2(R+) of
the form

(Sf)(x) = e−δxf(x) , (Tf)(x) =
∫

R+

eδ(x+y)b(x, y)f(y)dy ,

where δ > 0. Then B = STS. It can be easily verified that the following Theorem
is true

Theorem 5. If for some δ > 0, the integral operator with kernel eδ(x+y)b(x, y) is

bounded on L2(R+) and
∞∑

n=−∞
eδ|n||an| < ∞, then the operator H = H0 + B has a

finite set of eigenvalues, each of them being of finite multiplicity.
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