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Abstract

Finiteness of the point spectrum of linear operators acting in a Ba-

nach space is investigated from point of view of perturbation theory. In

the first part of the paper we present an abstract result based on analyt-

ical continuation of the resolvent function through continuous spectrum.

In the second part, the abstract result is applied to differential operators

which can be represented as a differential operator with periodic coeffi-

cients perturbed by an arbitrary subordinated differential operator.
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1 Introduction

One fundamental problem in spectral analysis of linear operators is finiteness of
the point spectrum, which is of great interest for various problems from math-
ematical physics, quantum mechanics and related topics as well as for spectral
theory itself. Unlike the case of selfadjoint operators, in which various methods
of investigation were elaborated thanks to the fundamental spectral theorem,
in the case of nonselfadjoint operators this problem is typically reduced to the
uniqueness theorem of analytic functions. From this point of view, the prob-
lem of finiteness of the point spectrum (i.e. the set of all eigenvalues including
those contained in the continuous spectrum) of nonselfadjoint operators has
been studied in many papers, where concrete classes of operators have been
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considered: differential operators (of the second order) [5, 18], Schrödinger op-
erator [1, 10], the Friedrics model [14, 22], the finite-difference operators [13],
perturbed Winer-Hopf integral operators [8]. Some general results have been
presented in [15], where the nonselfadjoint operator is considered as a pertur-
bation of a selfadjoint operator acting in some Hilbert space.

In the present paper, using direct methods of perturbation theory, we pro-
pose a generalization of the so-called method of analytic continuation of the
resolvent of the unperturbed operator across its continuous spectrum for the
case of Banach spaces and unbounded operators. It should be mentioned that
the results obtained here are framed in the theory of large perturbations.

In Section 2 the problem of finiteness of the point spectrum is solved in
abstract settings. Conditions on the linear operators H0 and B are given such
that the perturbed operator H0+B has a finite set of eigenvalues. The obtained
results actually guarantee the finiteness of the spectral singularities which were
investigated for the first time by M. A. Naimark [17], and which are also very
closely related to the problem of eigenfunction expansion and generalized Par-
seval identity. The abstract results proposed here can be applied to different
classes of unbounded operators, among which we can mention ordinary differen-
tial operators, integro-differential operators, pseudo-differential operators, etc.
We want to mention that similar problem for bounded (nonselfadjoint) oper-
ators has been studied by author in [2, 3, 4]. The abstract results, similar to
those presented here, have been applied to finite-difference perturbed opera-
tor (of any order), Wiener-Hopf perturbed operators (abstract, discrete, and
integral), operators generated by Jacobi matrices, etc.

In Section 3, we obtain some new results about finiteness of the point spec-
trum of the following class of differential operators: the unperturbed operator is
a differential operator with periodic coefficients and the perturbation is a sub-
ordinated differential operator. These operators act in one of the spaces Lp(R)
or Lp(R+) (1 ≤ p < +∞). We want to stress out that while these results are of
independent interest, and could be obtained separately, we derived them from
the abstract results presented in Section 2. Also, we note that the unperturbed
operator can be of any order and can be nonselfadjoint itself. The results agree
with know ones. For example, if the unperturbed operator is Hill operator,
then the finiteness of the point spectrum is guaranteed if the potential in the
perturbation part has exponential decay at infinity (see the concluding result of
this paper).

2 Abstract Results

Let H0 and B be linear operators acting in a Banach space B such that the
following assumptions are fulfilled:

2



(i) The spectrum σ(H0) of the operator H0 is a simple rectifiable curve
and the point spectrum of H0 is absent, i.e. σp(H0) = ∅;
(ii) The operator B can be represented in the form B = RTS, where S is
an operator acting from B into B1 with Dom(S) ⊃ Dom(H0), the operator
R acts from B1 into B, T acts in B1, and B1 is a Banach space (possibly
different from B).

We denote by Dom(A) and Ran(A) the domain and the range of the operator
A, by B(B) the set of all linear and bounded operators on B, and by B∞(B) the
class of all compact operators defined on B. Also, we denote by Q(λ), λ ∈ C,
the operator S(H0 − λI)−1RT defined on the set Lλ := {u ∈ B1 : RTu ∈
Ran(H0 − λI)}.

Under the above assumptions the following statement holds true.

1 Proposition. If λ ∈ σp(H0 + B), then there exists ϕ ∈ Lλ, ϕ 6= 0, such that

(I + Q(λ))ϕ = 0 . (1)

The proof is based on the following argument. Suppose that λ ∈ σp(H0+B).
Then, there exists a vector u ∈ B, u 6= 0, such that (H0−λ)u+RTSu = 0. Note
that RTSu ∈ Ran(H0 − λI), hence u + (H0 − λI)−1RTSu = 0. Consequently,
Su + S(H0 − λI)−1RTSu = 0. Put ϕ = Su and equality (1) follows. Note
that ϕ 6= 0, since otherwise Su = 0, and then (H0 − λI)u = 0, which is a
contradiction with initial assumption σp(H0) = ∅.

It should be mentioned that the operator-valued function Q(λ) plays a
key role in perturbation theory and scattering theory. Proposition similar to
Proposition 1 show up in many problems of spectral analysis (see for instance
[11, 12, 21] where the selfadjoint case is considered). Note that (1) does not
imply that corresponding λ belongs to the point spectrum of H0. Actually, λ

that satisfies (1) is called spectral singularity, and is related to eigenfunction
expansion problem and generalized Parseval identity (see for instance [17]).

Due to Proposition 1, to establish that the point spectrum of the operator
H = H0 + B is a finite set, it suffices to show that the equality (1) holds for a
finite set of numbers λ ∈ C, and non-zero vectors ϕ ∈ Lλ. Consequently, using
the theorem of uniqueness of analytic operator-valued functions, it is sufficient
to establish the analyticity of the function Q(λ) with respect to λ. Generally
speaking, Q(λ) is analytic only on the resolvent set ρ(H0) (for instance if R,S, T

are bounded operators), and the analyticity is lost in the neighborhood of σ(H0).
In connection with this, we suppose that there exists an analytic continuation
of the function Q(λ) across σ(H0) (of course on Riemann surface). Namely, we
suppose that the following assumption is satisfied.

Let λ0 ∈ σ(H0), and let U(λ0) be a neighborhood of the point λ0. We
denote by U0(λ0) one of the connected components of the neighborhood U(λ0)
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with respect to σ(H0). In other words, the curve σ(H0) divides the set U(λ0)
in several parts, and by U0(λ0) we denote the interior of one of these parts.
For example if H0 is a selfadjoint operator, and Π± denotes upper/lower half
complex plane, then U0(λ0) := U(λ0) ∩Π+ or U0(λ0) := U(λ0) ∩Π−.

(iii) For every λ0 ∈ C there exists a neighborhood U(λ0) such that for
every U0(λ0) there exists a neighborhood Û(λ0) (maybe on a Riemann
surface) of the point λ0, and an operator-valued function Q̂(λ) : Û(λ0) →
B∞(B1) such that U0(λ0) ⊂ Û(λ0), Q̂(λ) is analytic on Û(λ0) and Q̂(λ) ⊃
Q(λ), λ ∈ U0(λ0).

2 Theorem. If the operators H0 and B satisfy conditions (i)-(iii), then the
perturbed operator H = H0 + B has a finite set of eigenvalues. Moreover, the
possible eigenvalues have finite multiplicity.

Proof. By Assumption (iii), Q̂ is uniquely defined on entire Riemann surface.
Moreover, one can formally write Q̂(λ) ⊃ Q(λ), λ ∈ C, meaning that for every
λ ∈ C, there exists µ on the Riemann surface, such that Q(λ) = Q̂(µ). Accord-
ing to the theorem about holomorphic operator-valued functions with values in
B∞ (see, for example, [9], Chapter VII.1.3 or [19], theorem XII.13), the func-
tion Q̂(·) has a finite number of zeros in every neighborhood on the Riemann
surface. Consequently Q(·) has a finite number of zeros in C. The possibility
of existence of sequence λn ∈ C, λn → ∞, Q(λn) = 0, is ruled out by the
analyticity of the resolvent function (H0 − λI)−1. Thus, (1) is satisfied for a
finite number of values λ. Moreover, for every λ, the subspace B1(λ) generated
by the corresponding vectors ϕ ∈ Lλ that satisfy (1) has a finite dimension. By
Proposition 1, σp(H0 +B) is finite, and every eigenvalues has finite multiplicity.
Theorem is proved.

In many applications, usually H0 is a selfadjoint operator, so σ(H0) ⊂ R.
Hence, (i) is satisfied if H0 has no eigenvalues. Condition (ii) is a technical
condition, but strongly related to (iii). In particular, (ii) and (iii) holds true
if one may find the operators R and S such that R(H0 − λI)−1S has analytic
continuation and T := S−1BR−1 is a compact operator. The hardest to check
is condition (iii), and verification depends on the class of operators to be con-
sidered, and the general rule is to have an explicit or manageable form of the
resolvent function of the unperturbed operator.

3 Application to Differential Operators

In this section we will present one application of the general results from Section
2. We will consider some perturbations of differential operators with periodic
coefficients of arbitrary order acting in Lp(R).
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Let H be the differential operator of the following form

Hϕ(t) =
n∑

k=0

hk(t)
dkϕ(t)

dtk
, (2)

where hk(t) = ak(t) + qk(t) (k = 0, 1, . . . n; t ∈ R or R+), ak(t) (k =
0, 1, . . . , n; an ≡ 1) are periodic functions (with the same period T ) and qk(t) (k =
0, 1, . . . , n; qn ≡ 0) are functions (generally speaking, complex-valued) vanishing
for t →∞. Assume that ak(t) (k = 0, 1, . . . , n) are as smooth as required. The
operator H is supposed to act in the spaces Lp(R) or Lp(R+) (1 ≤ p < +∞).
The domain of the operator H consists of all functions ϕ ∈ Lp(R) (Lp(R+))
having absolutely continuous derivatives of order n − 1 on each bounded in-
terval of the real axis (semiaxis) and derivative of the n-th order belonging to
Lp(R) (Lp(R+)).

To apply the abstract scheme from Section 2, we consider the operator H as
a perturbation of the operator

H0 =
n∑

k=0

ak(t)
(

d

dt

)k

by the differential operator

B =
n−1∑

k=0

qk(t)
(

d

dt

)k

.

The spectral properties of the unperturbed operator H0 have been investi-
gated by many authors (see for instance [16, 20] and the references therein).
In [20] the operator H0 is considered in the space L2(R), while in [16] in
Lp(R) (1 ≤ p ≤ ∞). In these papers it is shown that the spectrum of the
operator H0 is continuous, coincides with the set of those λ ∈ C for which the
equation H0ϕ = λϕ has a non-trivial solution (so-called zones of relative sta-
bility), and it is bounded in C. Moreover, the unperturbed operator H0 has no
eigenvalues and satisfies condition (i) from Section 2. Actually this statement
will also follow from our derivations related to properties (ii) and (iii). In what
follows we suppose that the operator H is acting in the space Lp(R), but all
results (with obvious changes) hold true for Lp(R+).

As we mentioned before, the key point in our abstract scheme is to find an
analytical extensions of function Q(λ), for which we need to have at hand a
manageable representation of the resolvent function (H0−λI)−1. Although the
spectrum of the operator H0 is well-known (see for instance [16, 20]), we will
present here a different method for describing explicitly the resolvent of H0,
suitable for our goal to verify the abstract conditions (ii) and (iii). The repre-
sentation relies on Floquet-Liapunov theory about linear differential equations
with periodic coefficients (see for instance [7, 23]).
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Without loss of generality we can assume that T = 1.
Let us consider the equation

H0ϕ = λϕ , (3)

where λ is a complex number, or in vector form

dx

dt
= A(t, λ) x , (4)

where

A(t, λ) =




0 1 0 . . . 0 0
0 0 1 . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . 0 1
λ− a0 −a1 −a2 . . . −an−2 −an−1




, x =




ϕ

ϕ′
...

ϕ(n−1)


 .

Denote by U(t) (= U(t, λ)) the matriciant of the equation (4), i.e., the matrix
which satisfies the following system of differential equations

dU(t)
dt

= A(t, λ)U(t), U(0) = En ,

where En is n × n identity matrix. The matrix U(1) is called the monodromy
matrix of the equation (4) and the eigenvalues ρ1(λ), . . . , ρm(λ) of the matrix
U(1) are called the multiplicators. Also, we will say that U(1) is the monodromy
matrix and ρ1(λ), . . . , ρm(λ) are multiplicators of the operator H0 − λI.

Let Γ = ln U(1) be a solutions of the matrix equation exp(Γ) = U(1). Note
that this equation has solutions since the monodromy matrix U(1) is nonsin-
gular. Due to Floquet theory (see for instance [7]), the matrix U(t) has the
following representation

U(t) = F (t) exp(tΓ) , (5)

where F (t) is a nonsingular differentiable matrix of period T = 1.
Let us describe explicitly the structure of the matrix exp(tΓ). For this, we

write Γ in its Jordan canonical form, Γ = GJG−1, where J = diag[J1, . . . , Jm]
and Jk, k = 1, . . . , m, is the Jordan canonical block corresponding to the eigen-
value µk. Hence, exp(tΓ) = G exp(tJ)G−1, exp(tJ) = diag[exp(J1t), . . . , exp(Jmt)],
and

exp(Jkt) = exp(tµk)




1 t . . . tpk−1

(pk−1)!

0 1 . . . tpk−2

(pk−2)!

. . . . . . . .

0 0 . . . 1


 ,

where pk, k = 1, . . . , m, is the dimension of the Jordan block Jk.
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Since U(t) is the matriciant of the equation (4), it follows that every solution
of this equation has the form

x(t) = U(t) x0 , (6)

where x0 is an arbitrary vector from Rn.
Thus, from (4)-(6), we conclude that the components of the vector x(t),

and consequently the solution of the equation (3), are linear combinations of
exp(µkt) (k = 1, . . . ,m) with polynomial coefficients.

Remark that |tk exp(tλj)| → ∞, t → ∞, if Reλj 6= 0, k = 0, 1, . . . , or
Reλj = 0, k = 1, 2, . . . . Also note that |tk exp(tλj)| = 1 for k = 0, Reλj =
0. From this we conclude that the only solution of equation (3) belonging to
Lp(R) (1 ≤ p < +∞) is the function ϕ ≡ 0, which yields that σp(H0) = ∅.

Since ρj = exp(µj), j = 1, . . . , m, we conclude that |ρj | < 1, |ρj | > 1 or
|ρj | = 1, if and only if Reλj < 0, Reλj > 0 or Reλj = 0, respectively.

Now we are ready to solve explicitly equation H0u − λu = v, where v ∈
Ran(H0 − λI). In matrix form this equation becomes

dx

dt
= A(t, λ) x + f , (7)

where f = (0, 0, . . . , v)⊥, A(t, λ) and x are the same as in (4), and ⊥ stands for
the transposed vector. According to the Floquet representation of the matriciant
(5), and making the substitution x = F (t) y in (7), we get

dy

dt
= Γ y + F−1(t)f . (8)

Assume that |ρk| 6= 1, k = 1, . . . , m, and suppose that ρk are numbered such
that |ρk| > 1 for k = 1, . . . , l, and |ρk| < 1 for k = l + 1, . . . ,m. Denote by
P1 the projection in Ln

p (R) of the form P1 y = (0, 0, . . . , yj+1, . . . , yn), where
y = (y1, . . . , yn) ∈ Ln

p (R), j = p1 + · · ·+ pl, and put P2 := I − P1.
An easy computation shows that the vector-valued function

y(t) =

t∫

−∞
exp(Γ(t− s))P1 F−1(s) f(s)ds−

+∞∫

t

exp(Γ(t− s)) P2 F−1(s) f(s)ds

(9)
is a solution of the equation (8).

Since x(t) = F (t) y(t), it follows that

x(t) = F (t)

t∫

−∞
exp(Γ(t− s)) P1 F−1(s) f(s)ds−

− F (t)

+∞∫

t

exp(Γ(t− s)) P2 F−1(s) f(s)ds , (10)
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and taking into account (7) one obtains

(H0 − λI)−1v(t) =
m∑

r=l+1

pr∑

k=0

qrk(t)

t∫

−∞
exp(µr(t− s))(t− s)khrk(s)v(s)ds +

+
l∑

r=1

pr∑

k=0

qrk(t)

+∞∫

t

exp(µr(t− s))(t− s)khrk(s)v(s)ds, (11)

where v ∈ Ran(H0 − λI), qrk and hrk are some continuous periodic functions.
It is easy to show that under assumption |ρk| 6= 1, k = 1, . . . , m, the operator

defined in (11) is bounded, hence λ ∈ ρ(H0). Moreover, λ ∈ σ(H0) if there exists
at least one multiplicator which lie on the unit circle T = {z ∈ C : |z| = 1}. It
should be mentioned, since an(t) ≡ 1, it is not possible to have a multiplicator
ρk that belongs to T and is independent of λ (see for instance [20]).

3 Remark. Summing up, we conclude: the point spectrum of the unperturbed
operator H0 is absent; σ(H0) consists from the set of all curves determined by
the equation det (U(1, λ)− ρI) = 0, |ρ| = 1; for every regular point λ ∈ ρ(H0)
the resolvent function (H0 − λI)−1 has the form (11).

Now we are ready to prove the main result of this section. In what follows
we will preserve the same notations as we defined above.

4 Theorem. If the functions qk(t), k = 0, 1, . . . , n− 1, are such that

qk(t) exp(τ |t|) ∈ L∞(R) , (12)

for some τ > 0, then the point spectrum of the perturbed operator H is at most
a finite set. Furthermore, the possible eigenvalues have finite multiplicity.

Proof. For an arbitrary λ ∈ C, in the space Ln
p (R) we consider the operator H1

of the following form

H1x(t) =
(

d

dt
−A(t, λ)

)
x(t) + B1x(t) , (13)

where A(t, λ) and x are as in (4), and

B1 =




0 0 . . . 0

.. .. . . . ..

q0(t) q1(t) . . . qn−1(t)




.

Denote by P1 the projection in Ln
p (R) of the form P1 y = (0, 0, . . . , yl+1, . . . , yn),

and put P2 := I − P1. The index l will be specified latter on. To satisfy
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conditions (ii) and (iii) from the the abstract result, we factorize the operator
B1 as follows: B1 = RTS, where R = exp(−δ|t|) · P2, S = exp(−δ|t|) · P1,
T = exp(δ|t|) ·B1 · exp(δ|t|), and δ > 0. Note that T ∈ B(Ln

p (R)), and condition
(ii) is fulfilled.

By Remark 3, it is sufficient to show that the operator-valued function

Q(λ) = S

(
d

dt
−A(t, λ)

)−1

R T , λ ∈ σ(H0) ,

satisfies condition (iii).
Let λ0 ∈ σ(H0). Since U(t) is the matriciant, the matrix U(t) = U(t, λ)

is analytic in λ (see for instance [23], p.71, Th.1.3). Therefore, the function
det(U(1, λ) − ρ) = 0 is also analytic in λ. By implicit function theorem,
there exists a neighborhood U(λ0) of the point λ0, such that the multiplicators
ρ1(λ), . . . , ρm(λ) are holomorphic on U(λ0). Let U0(λ0) be one of the connected
components of the neighborhood U(λ0), and assume that the multiplicators (in-
cluding their multiplicity) are enumerated such that

Re(µk) > 0, for all λ ∈ U0(λ0); k = 1, . . . , l,

Re(µk) < 0, for all λ ∈ U0(λ0); k = l + 1, . . . , m,

where exp(µk) = ρk (k = 1, . . . , n). Using (10), (11) and (13), we conclude
that the operator Q(λ), λ ∈ U0(λ0), is a linear combination of the following
operators

(Q1(λ)ϕ) (t) =

t∫

−∞
exp(µk(λ)(t− s))(t− s)r exp(−τ |t|)Tϕ(s) ds,

(k = l + 1, . . . ,m; r ∈ N) (14)

(Q2(λ)ϕ) (t) =

+∞∫

t

exp(µk(λ)(t− s))(t− s)r exp(−τ |s|)Tϕ(s) ds,

(k = 1, . . . , l; r ∈ N).

We take the neighborhood Û(λ0) ⊂ U(λ0) such that Re(µk(λ))− δ < 0, k =
1, . . . , l; λ ∈ Û(λ0) and Re(µk(λ)) + δ > 0, k = l + 1, . . . , m; λ ∈ Û(λ0). For
every λ ∈ Û(λ0), we define the operator Q̂(λ) by the same formula by which
the operator Q(λ) is defined on U0(λ0) (i.e. integral operators generated by
(14)). Under these conditions, the operator-valued functions (14) are analytic
on Û(λ0) and take values in B∞(Lp(R)). Hence, the same property holds true
for the operator-valued function Q̂(λ), λ ∈ Û(λ0). By the definition of Q̂ we
have Q̂(λ) ⊃ Q(λ), λ ∈ U0(λ0). Thus, the condition (iii) of the abstract scheme
is verified, and Theorem 4 is proved.
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5 Remark. The initial spectral problem has been reduced to the correspond-
ing system of first order differential equations (4) and (13). Moreover, we did
not use the particular form and dimension of the matrices A(t, λ) and B1(t).
Actually, the Theorem 4 holds true for any matrices A(t, λ) and B1(t), under
condition that A(t, λ) is periodic in t and analytic in λ, and the elements of the
matrix B1(t) are such that exp(τ |t|)|bjk(t)| ∈ L∞(R), τ > 0; j, k = 1, . . . , n.
The obtained results are also true if the operator (2) is a differential operator
with matrix coefficients, i.e. ak(t) (k = 0, 1, . . . , n) are periodic matrix-valued
functions of dimension r× r, det an(t) 6= 0, bk(t), k = 0, 1, . . . , n− 1, are mea-
surable matrix-valued functions of the same dimension r × r, and the operator
H acts in the space Lp(R,Cn) (1 ≤ p < +∞). In addition, the condition (12)
should be replaced by the following one: exp(τ |t|)|bk| ∈ L∞(R), for some τ > 0,
where | · | is the operator matrix norm in Cn.

6 Remark. It should be mentioned that similar results can be formulated for
more general classes of operators. Namely, instead of periodicity of the unper-
turbed operator it is sufficient to suppose that the system of differential equations
generated by the unperturbed operator is a reducible one.

7 Example. As a concrete application of the previous results, consider the
differential operator of the form

H = − d2

dt2
+ q1(t)

d

dt
+ p(t) + q2(t) , (15)

where p(t + 1) = p(t), qk, k = 1, 2, are measurable, complex-valued functions,
and the operator H is acting in L2(R). The unperturbed operator is well-studied
Hill operator (see for instance [6], p.281)

H0u = −d2u

dt2
+ p(t)u .

Hence, for the perturbed Hill operator (15) we can formulate the following result.

8 Theorem. If exp(τ |t|)qk(t) ∈ L∞(R) (k = 1, 2; τ > 0), then the perturbed
Hill operator (15) has a finite set of eigenvalues, each of them of finite multi-
plicity.
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10



no. suppl., 485–496 (2000), Mathematical analysis and applications (Iaşi,
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