Math 410 – Number Theory

Course Description from Bulletin: Divisibility, congruences, distribution of prime numbers, functions of number theory, diophantine equations, applications to encryption methods. (3-0-3)

Enrollment: Elective for AM and other majors.

Textbook(s): Burton, Elementary Number Theory, 6th Edition, McGraw-Hill.

Other required material: Occasional handouts

Prerequisites: MATH 230 or consent of the instructor

Objectives:

- 1. Students will achieve command of the fundamental definitions and concepts of number theory.
- 2. Students will understand and apply the core definitions and theorems, generating examples as needed.
- 3. Students will become proficient in writing proofs in elementary number theory.
- 4. Students will learn about applications to cryptography.

Lecture schedule: 3 50 minute (or 2 75 minute) lectures per week

Course Outline:				
0.	Preliminaries	1.5		
	Mathematical Induction, the Binomial Theorem			
1.	Divisibility	2		
	The Division "Algorithm", Greatest Common Divisor, the Euclidean			
	Algorithm & Euclid's Lemma, the Diophantine Equation $ax+by=c$.			
2.	Primes and Their Distribution	3		
	The Fundamental Theorem of Arithmetic, the Sieve of Eratosthenes, the	ne		
	Goldbach Conjecture & other great unknowns			
3.	Congruences	3		
	Basics, Binary, Decimal, & base-B Representations of Integers and Ch	eck		
	Digits, Linear Congruences, the Chinese Remainder Theorem			
4.	Fermat's Little Theorem	3		
	Fermat's Little Theorem, Pseudoprimes and Carmichael Numbers, Wil	son's		
	Theorem, the Fermat-Kraitchik Factorization Method			
5.	Multiplicative Functions	6		
	Sum of divisors sigma $\bullet(n)$, Number of divisors $\bullet(n)$, Multiplicative			
	Functions, Mobius function and Mobius Inversion Formula, Euler •-fu	unction,		
	Euler's Theorem			
6.	Primitive Roots	3		
	The Order of an Integer modulo <i>n</i> , Primitive Roots, Lagrange's Theore	em,		
	Primitive Roots of a Prime, Primitive Roots of a Composite (without f	ull		
	proof), Optional: Theory of Indices			

7.	Quadratic	Reciprocity		6		
	Quadı	adratic Residues and Nonresidues,	Euler's			
	Criterion, the Legendre Symbol & its properties, Gauss' Lemma, G					
	Primes (& primes of the form $4k+1$ and $8k-1$), the Quadratic Reciprocity Law					
	(2/p) and $(3/p)$, Quadratic Congruences with Composite Moduli					
8.	Introducti	on to Cryptography	-	3		
Basics, RSA public key cryptography, the ElGamel Cryptosystem						
9.	Options					
• Recent developments in Primality Testing and Factorization (3)						
•	(5)					
• Certain Diophantine Equations: Pythagorean triples, Fermat's Last Theorem, sums						
	of squares	s, Waring's problem		(5)		
10. Exams & overflow						
Assess	sment:	Homework	10-30%			
		Quizzes/Tests	20-50%			

30-50%

Syllabus prepared by: Michael Pelsmajer, Hemanshu Kaul, and Robert Ellis **Date**: 3/17/06

Final Exam