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List Coloring

List coloring was introduced independently by Vizing
(1976) and Erdős, Rubin, and Taylor (1979), as a
generalization of usual graph coloring.

For graph G suppose each v ∈ V (G) is assigned a list,
L(v), of colors. We refer to L as a list assignment. An
acceptable L-coloring for G is a proper coloring, f , of G
such that f (v) ∈ L(v) for all v ∈ V (G).

When an acceptable L-coloring for G exists, we say that G
is L-colorable or L-choosable.
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List Chromatic Number

The list chromatic number of a graph G, written χ`(G), is
the smallest k such that G is L-colorable whenever
|L(v)| ≥ k for each v ∈ V (G).

When χ`(G) = k we say that G has list chromatic number
k or that G is k-choosable.

We immediately have that if χ(G) is the typical chromatic
number of a graph G, then

χ(G) ≤ χ`(G).

But we know the gap between χ(G) and χ`(G) can be
arbitrarily large
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Two Types of of Questions

When does χ(G) = χ`(G)?
A graph is chromatic choosable if χ(G) = χ`(G).

How large can be the gap between χ(G) and χ`(G)?

We will ask both these questions in the context of
Cartesian Products of Graphs.
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Theorem (Ohba’s Conjecture: Noel, Reed, Wu (2014))
If χ(G) ≥ |V (G)|−1

2 then, χ`(G) = χ(G).

Conjecture (List Coloring Conjecture)
If G is a line graph of some loopless multigraph, then χ`(G) = χ(G).

Galvin (1995) showed that the List Coloring Conjecture holds for
bipartite multigraphs.
Total graphs and claw free graphs are also conjectured to be
chromatic choosable.
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Cartesian Product of Graphs
The Cartesian Product G�H of graphs G and H is a graph
with vertex set V (G)× V (H).
Two vertices (u, v) and (u′, v ′) are adjacent in G�H if either
u = u′ and vv ′ ∈ E(H) or uu′ ∈ E(G) and v = v ′.

Here’s C5�P3:

Research Focus

I The initial focus of our research is to study the list chromatic
number of the Cartesian product of graphs.

I The Cartesian Product G�H of graphs G and H is a graph
with vertex set V (G )×V (H). Two vertices (u, v) and (u′, v ′)
are adjacent in G�H if either u = u′ and vv ′ ∈ E (H) or
uu′ ∈ E (G ) and v = v ′.

I A picture of a copy of C5�P3 is:

Every connected graph has a unique factorization under the
Cartesian product (that can be found in linear time and space).

χ(G�H) = max{χ(G), χ(H)}.
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List Coloring the Cartesian Product of Graphs

Theorem (Borowiecki, Jendrol, Kral, Miskuf (2006))
χ`(G�H) ≤ min{χ`(G) + Col(H),Col(G) + χ`(H)} − 1.

Col(G), the coloring number of a graph G, is the smallest integer
d for which there exists an ordering, v1, v2, . . . , vn, of the
elements in V (G) such that each vertex vi has at most d − 1
neighbors among v1, v2, . . . , vi−1.

An easy inductive argument proves this theorem.
Borowiecki et al. showed that their bound is tight for certain
factors (G = H = Kk ,(2k)k(k+kk )), but in general, by a result
of Alon, is exponential in the list-chromatic number, and not
necessarily exact.
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Motivating Questions - Type I

Question: Can we characterize situations where G�H is
chromatic choosable?

Question: For what (chromatic choosable) graphs G is
G�Pn chromatic choosable?

Question: For which classes of graphs containing G and
H can we improve on known bounds for χ`(G�H)?
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Motivating Questions - Type II
For fixed G, a:
χ`(G�Ka,b) ≤ χ`(G) + Col(Ka,b)− 1 = χ`(G) + a

Question: Does there always exist a b such that this
upper bound is attained?

Theorem (Borowiecki, Jendrol, Kral, Miskuf (2006))
χ`(G�Ka,b) = χ`(G) + a, whenever b ≥ (χ`(G) + a− 1)a|V (G)|

Question: Can we improve the lower bound on b?

Question: For which graphs G, can we give a
characterization of such b?
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Motivating Questions - Type II
When G = K1, G�Ka,b = Ka,b, and we know
Theorem (Folklore, 1970s) χ`(Ka,b) = a + 1 iff b ≥ aa

When b ≥ a, we know χ`(Ka,b) ≤ Col(Ka,b) = a + 1.
So, for fixed a, this theorem tells us the smallest value of b
such that χ`(Ka,b) is as large as possible (i.e., far from
being chromatic-choosable).
Question: For which G, can we have a similar result for
G�Ka,b?

We can construct a sequence of graphs with increasing list
chromatic number starting from chromatic number 2:
χ(Ka,aa ) = χ(K1,1) = 2 = χ`(K1,1) < 3 = χ`(K2,4) < 4 =

χ`(K3,27) < . . . < a + 1 = χ`(Ka,aa )

Question: Can we construct such a sequence starting
from chromatic number k > 2?
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How can we prove these?
Corollary (K. and Mudrock)

χ`(C2t+1�K1,s) =

{
3 if s < 22t+1 − 2
4 if s ≥ 22t+1 − 2.

Corollary (K. and Mudrock)

χ`(Kn�K1,s) =

{
n if s < n!

n + 1 if s ≥ n!.

Corollary (K. and Mudrock)

χ`((Kn ∨ C2t+1)�K1,s) =

{
n + 3 if s < 1

3 (n + 3)!(4t − 1)

n + 4 if s ≥ 1
3 (n + 3)!(4t − 1).

Corollary (K. and Mudrock)
χ`(C2t+1�K2,b) = 5 if and only if b ≥ 9(9t − 1)2.

Corollary (K. and Mudrock)
χ`(Kn�Ka,b) = n + a if and only if b ≥

(
(n+a−1)!
(a−1)!

)a



Strong Chromatic Choosability
We introduce the notion of strong chromatic choosability:
List assignment, L, for G is a bad k-assignment for G if G is
not L-colorable and |L(v)| = k for each v ∈ V (G).
List assignment, L, is constant if L(v) is the same for each
v ∈ V (G).
A constant (and bad) 2-assignment for a C5:

Strong k-Critical Graphs Continued

A list assignment, L, for a graph G is called constant if L(v)
is the exact same list of colors for each v ∈ V (G).
A constant 2-assignment of a copy of C5:

Note that the above list assignment is also a bad
2-assignment.

Jeff Mudrock Using Strong Criticality and Unique List Colorability to Bound the List Chromatic Number of the Cartesian Product of Graphs

A graph G is said to be strong k-chromatic choosable if
χ(G) = k and every bad (k − 1)-assignment for G is
constant.
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Strong Chromatic Choosability
A graph G is said to be strong k-chromatic choosable if
χ(G) = k and if every bad (k − 1)-assignment for G is constant.

Proposition (K. and Mudrock, 2021)
Let G be a strong k-chromatic choosable graph. Then
(i) χ(G) = k = χ`(G) (i.e. G is chromatic choosable),
(ii) χ(G − {v}) ≤ χ`(G − {v}) < k for any v ∈ V (G),
(iii) k = 2 if and only if G is K2,
(iv) k = 3 if and only if G is an odd cycle,
(v) G ∨Kp is strong (k + p)-chromatic choosable for any p ∈ N.

This family contains strong k -critical graphs, studied by
Steibitz, Tuza, and Voigt (2008), for color criticality in the
context of list coloring.
Strong k -critical graph is k -critical and every bad
(k − 1)-assignment is constant.
We are essentially relaxing edge-criticality in strong
k -critical graphs to vertex-criticality.
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Strong Chromatic Choosability
There are many infinite families of graphs that satisfy these
notions.
Are there strongly chromatic choosable graphs which are not
strongly critical?

Yes, we can construct examples of strong k -chromatic
choosable graphs which are not strongly k -critical for each
k ≥ 4.

Lemma (K. and Mudrock, 2021)
Let G be a strong k-chromatic choosable graph. Let
A,B ⊆ V (G) such that A ∪ B = V (G) and C = A ∩ B with
|A|, |B| > |C|, 0 < |C| ≤ 3 when k is even and 0 < |C| ≤ 4
when k is odd. Form G′ by adding vertices u and s to G, and
edges so that u is adjacent to every vertex in A and s is
adjacent to every vertex in B. If χ(G′) > k, then G′ is strong
(k + 1)-chromatic choosable.
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Strong Chromatic Choosability

The graph below is strong 4-chromatic choosable, but it is not
strong 4-critical.

Strong Chromatic Choosability Continued

The graph below is strong 4-chromatic choosable, but it is
not strong 4-critical.

Jeff Mudrock On Strongly Chromatic Choosable Graphs with an Application to List Coloring the Cartesian Product of Graphs



Unique List Colorabliltiy

Theorem (Akbari, Mirrokni, Sadjad (2006))
Let G be a graph with n vertices and m edges and
f : V (G)→ N be a function such that

∑
v∈V (G) f (v) = m + n.

If there is a list assignment, L, for G such that |L(v)| = f (v) for
each v ∈ V (G) and G has a unique L-coloring, then G is
f -choosable.

We say that G is f-choosable if G is L-colorable whenever
|L(v)| = f (v) for each v ∈ V (G).

This result helps us to prove something about
f -choosability by finding one list assignment with the
needed properties (Tough!).



Unique List Colorabliltiy

Theorem (Akbari, Mirrokni, Sadjad (2006))
Let G be a graph with n vertices and m edges and
f : V (G)→ N be a function such that

∑
v∈V (G) f (v) = m + n.

If there is a list assignment, L, for G such that |L(v)| = f (v) for
each v ∈ V (G) and G has a unique L-coloring, then G is
f -choosable.

We say that G is f-choosable if G is L-colorable whenever
|L(v)| = f (v) for each v ∈ V (G).

This result helps us to prove something about
f -choosability by finding one list assignment with the
needed properties (Tough!).



Unique List Colorabliltiy

Theorem (Akbari, Mirrokni, Sadjad (2006))
Let G be a graph with n vertices and m edges and
f : V (G)→ N be a function such that

∑
v∈V (G) f (v) = m + n.

If there is a list assignment, L, for G such that |L(v)| = f (v) for
each v ∈ V (G) and G has a unique L-coloring, then G is
f -choosable.

We say that G is f-choosable if G is L-colorable whenever
|L(v)| = f (v) for each v ∈ V (G).

This result helps us to prove something about
f -choosability by finding one list assignment with the
needed properties (Tough!).



Important Implication of the Akbari et al.

From the Akbari et al. (2006) result, we may deduce the
following lemma which is a key ingredient in the proof of our
main result.

Lemma
Suppose G is a strong k-chromatic choosable graph with n
vertices and m edges.
Let L be a list assignment with |L(v)| ≥ k − 1 for all v and L is a
not a constant (k − 1)-assignment for G.
If m ≤ n(k − 2) then G has at least two L-colorings.



Important Implication of the Akbari et al.
An Important Application of the Akbari et al. Result
Continued

Jeff Mudrock Using Strong Criticality and Unique List Colorability to Bound the List Chromatic Number of the Cartesian Product of Graphs



The Edge Condition

We say a strong k -chromatic choosable graph with n vertices
and m edges satisfies the edge condition if m ≤ n(k − 2).

All strongly chromatic choosable graphs we have
encountered thus far satisfy the edge condition.

Moreover, any strongly chromatic choosable graph which
satisfies the edge condition will remain a strongly
chromatic choosable graph satisfying the edge condition
when joined to a complete graph.
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The Edge Condition
Unfortunately, we suspect there exist strong k -chromatic
choosable graphs which do not satisfy the edge condition for
each k ≥ 4. We have constructed examples in the cases of
k = 4,5,6,7.
On the bright side, we have the following result.

Lemma (K. and Mudrock, 2021)
Suppose that G is a strong k-chromatic choosable graph which
does not satisfy the edge condition.
Then, for sufficiently large p,
G ∨ Kp is a strong (k + p)-chromatic choosable graph which
satisfies the edge condition.

Above, p needs to satisfy p(2k + p − 3)/2 ≥ m − n(k − 2).
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Main Results - Part 1

Theorem (K. and Mudrock, 2021)
Let M be a strong k-chromatic choosable graph which satisfies
the edge condition,
and let H be a graph which contains a Hamilton path,
w1,w2, . . . ,wm, such that wi has at most ρ neighbors among
w1, . . . ,wi−1. Then,

χ`(M�H) ≤ k + ρ− 1.

This result improves upon the Borowiecki et al. bound when H
is a path, grid, power of a path, cycle, complete graph, etc.



Proof of Main Result

We always use fixed colors for the first m − 2 copies of M. We
then use a loaded inductive hypothesis to possibly modify how
we will color the (m − 1)st copy of M in M�H.

The loaded induction:

Lemma (K. and Mudrock, 2021)
Let M and H satisfy the hypotheses of the theorem, and let
G = M�H.
Let L be an arbitrary (k + ρ− 1)-assignment for G. Then, there
exist two L-colorings of G, c1 and c2, with the property that
there exists a vertex, v, in the mth copy of M in G such that
c1(v) 6= c2(v), and for any u not in the mth copy of M in G,
c1(u) = c2(u).



Chromatic Choosable Grid-like Graphs

Corollary (K. and Mudrock, 2021)
Suppose that M is a strong k-chromatic choosable graph which
satisfies the edge condition. Then, M�Pn is chromatic
choosable.

This Corollary shows that the bound in our main result is tight.
Note that this is where ρ = 1.

What about ρ > 1?



The List Color Function

For k ∈ N, let P(G, k) denote the number of proper
colorings of G with colors from {1, . . . , k}.

It is known that P(G, k) is a polynomial in k of degree
|V (G)|. We call P(G, k) the chromatic polynomial of G.

The list color function of G, P`(G, k), is the minimum
number of k -list colorings of G where the minimum is taken
over all k -list assignments for G.

Recall, P(K2,4,2) = 2, and yet P`(K2,4,2) = 0
For every graph G and each k ∈ N, P`(G, k) ≤ P(G, k).
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Some Results on the List Color Function
Theorem (Kostochka and Sidorenko (1990))
If G is a chordal graph (i.e. all cycles contained in G with 4 or
more vertices have a chord), then P`(G, k) = P(G, k) for each
k ∈ N.

P`(G, k) need not be a polynomial.

Theorem (Thomassen (2009))
For any graph G, P`(G, k) = P(G, k) provided k > |V (G)|10.

Theorem (Wang, Qian, Yan (2017))
For any connected graph G with m edges, P`(G, k) = P(G, k)
provided k > m−1

ln(1+
√

2)
≈ 1.135(m − 1).
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Main Results - Part 2

Theorem (K. and Mudrock, 2020)
χ`(G�Ka,b) = χ`(G) + a, whenever b ≥ (P`(G, χ`(G) + a− 1))a

If G has at least one edge, then
P`(G, χ`(G) + a− 1) < (χ`(G) + a− 1)|V (G)|; giving a
(significant) improvement over the Borowiecki et al. bound.

We can in fact prove:

Theorem (K. and Mudrock, 2020)
Suppose H is a bipartite graph with partite sets A and B where
|A| = a and |B| = b. Let δ = minv∈B dH(v).
If b ≥ (P`(G, χ`(G) + δ − 1))a, then χ`(G�H) ≥ χ`(G) + δ.
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χ`(G�Ka,b) = χ`(G) + a, whenever b ≥ (P`(G, χ`(G) + a− 1))a

Theorem (K. and Mudrock, 2020)
If G is a strong k-chromatic choosable graph and k ≥ a + 1,
then χ`(G�Ka,b) = χ`(G) + a if and only if
b ≥ (P`(G, χ`(G) + a− 1))a.

The proof idea is:
If L is a (χ`(G) + a− 1)-assignment for G�Ka,b, there is at most
one proper L-coloring of the copies of G corresponding to the
partite set of size a that leads to a bad assignment for a given
“bottom” copy of G.
We show if two such colorings existed, we could obtain a proper
a-coloring of G.
A simple counting argument completes the proof that there
exists a proper L-coloring of G�Ka,b when
b < (P`(G, χ`(G) + a− 1))a.



Main Results - Part 2
Theorem (K. and Mudrock, 2020)
χ`(G�Ka,b) = χ`(G) + a, whenever b ≥ (P`(G, χ`(G) + a− 1))a

Theorem (K. and Mudrock, 2020)
If G is a strong k-chromatic choosable graph and k ≥ a + 1,
then χ`(G�Ka,b) = χ`(G) + a if and only if
b ≥ (P`(G, χ`(G) + a− 1))a.

The proof idea is:
If L is a (χ`(G) + a− 1)-assignment for G�Ka,b, there is at most
one proper L-coloring of the copies of G corresponding to the
partite set of size a that leads to a bad assignment for a given
“bottom” copy of G.
We show if two such colorings existed, we could obtain a proper
a-coloring of G.
A simple counting argument completes the proof that there
exists a proper L-coloring of G�Ka,b when
b < (P`(G, χ`(G) + a− 1))a.



Main Results - Part 2
Theorem (K. and Mudrock, 2020)
χ`(G�Ka,b) = χ`(G) + a, whenever b ≥ (P`(G, χ`(G) + a− 1))a

Theorem (K. and Mudrock, 2020)
If G is a strong k-chromatic choosable graph and k ≥ a + 1,
then χ`(G�Ka,b) = χ`(G) + a if and only if
b ≥ (P`(G, χ`(G) + a− 1))a.

The proof idea is:
If L is a (χ`(G) + a− 1)-assignment for G�Ka,b, there is at most
one proper L-coloring of the copies of G corresponding to the
partite set of size a that leads to a bad assignment for a given
“bottom” copy of G.
We show if two such colorings existed, we could obtain a proper
a-coloring of G.
A simple counting argument completes the proof that there
exists a proper L-coloring of G�Ka,b when
b < (P`(G, χ`(G) + a− 1))a.



Some Applications
Theorem (K. and Mudrock, 2020)
If G is a strong k-chromatic choosable graph and k ≥ a + 1,
then χ`(G�Ka,b) = χ`(G) + a if and only if
b ≥ (P`(G, χ`(G) + a− 1))a.

Corollary (K. and Mudrock, 2020)
χ`(C2t+1�K2,b) = 5 if and only if
b ≥ (P`(C2t+1,4))2 = (32t+1 − 3)2 = 9(9t − 1)2.

Corollary (K. and Mudrock, 2020)
For n ≥ a + 1, χ`(Kn�Ka,b) = n + a if and only if

b ≥ (P`(Kn,n + a− 1))a =
(
(n+a−1)!
(a−1)!

)a



Some Applications
Theorem (K. and Mudrock, 2020)
If G is a strong k-chromatic choosable graph and k ≥ a + 1,
then χ`(G�Ka,b) = χ`(G) + a if and only if
b ≥ (P`(G, χ`(G) + a− 1))a.

Corollary (K. and Mudrock, 2020)
χ`(C2t+1�K2,b) = 5 if and only if
b ≥ (P`(C2t+1,4))2 = (32t+1 − 3)2 = 9(9t − 1)2.

Corollary (K. and Mudrock, 2020)
For n ≥ a + 1, χ`(Kn�Ka,b) = n + a if and only if

b ≥ (P`(Kn,n + a− 1))a =
(
(n+a−1)!
(a−1)!

)a



Some Applications
Theorem (K. and Mudrock, 2020)
If G is a strong k-chromatic choosable graph and k ≥ a + 1,
then χ`(G�Ka,b) = χ`(G) + a if and only if
b ≥ (P`(G, χ`(G) + a− 1))a.

Corollary (K. and Mudrock, 2020)
χ`(C2t+1�K2,b) = 5 if and only if
b ≥ (P`(C2t+1,4))2 = (32t+1 − 3)2 = 9(9t − 1)2.

Corollary (K. and Mudrock, 2020)
For n ≥ a + 1, χ`(Kn�Ka,b) = n + a if and only if

b ≥ (P`(Kn,n + a− 1))a =
(
(n+a−1)!
(a−1)!

)a



Some Applications
Theorem (K. and Mudrock, 2020)
If G is a strong k-chromatic choosable graph and k ≥ a + 1, then
χ`(G�Ka,b) = χ`(G) + a if and only if b ≥ (P`(G, χ`(G) + a− 1))a.

Corollary (K. and Mudrock, 2020)
For n ≥ a + 1, χ`(Kn�Ka,b) = n + a if and only if

b ≥ (P`(Kn,n + a− 1))a =
(
(n+a−1)!
(a−1)!

)a

This corollary shows the bound in the Theorem is sharp for
all a.

We can construct an arbitrarily long sequence of graphs
with increasing list chromatic number starting from
chromatic number n:
χ(Kn�Ka,b) = χ(Kn) = n = χ`(Kn�K0,1) < n + 1 =
χ`(Kn�K1,n!) < n + 2 = χ`(Kn�K2,((n+1)!)2) < . . .
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Some Applications
Theorem (K. and Mudrock, 2021)
Suppose that G is a strong k-chromatic choosable graph with

k ≥ 2. Then, χ`(G�K1,s) =

{
k if s < P`(G, k)

k + 1 if s ≥ P`(G, k).

Note we can think of a star in the second factor as a graph
that is far from having a Hamilton path.
Recall:Theorem (K. and Mudrock, 2021) Let M be a strong
k -chromatic choosable graph which satisfies the edge condition,
and let H be a graph which contains a Hamilton path, Then
χ`(M�H) ≤ k + ρ− 1.

This shows the exact transition from chromatic choosability
for G�K1,s.

The theorem is particularly useful (fun!) when we know
P`(G, k).
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Counting List Colorings

We want know (or provide bounds on) P`(G, k) for a strong
k -chromatic choosable graph G.

Theorem (K. and Mudrock, 2021)
If G is a strong k-chromatic-choosable graph, then

P`(G,m) ≥ m max
v∈V (G)

P`(G − {v},m − 1) ≥ m

whenever m ≥ k.



Counting List Colorings
Armed with the fact that P`(C2t+1, k) = P(C2t+1, k) (can be
proved using an elementary counting argument), the
following Corollary is now easy to prove.

Corollary (K. and Mudrock, 2021)
For any n, k , t ∈ N,

P`(Kn ∨C2t+1, k) = P(Kn ∨C2t+1, k) = P(Kn, k)P(C2t+1, k − n).

Moreover,
P`(C2t+1 ∨ Kn, k) = P(C2t+1 ∨ Kn, k)

=
[
(k − n − 1)2t+1 − (k − n − 1)

]∏n−1
i=0 (k − i).

We will now apply our main result to strongly chromatic
choosable graphs of which we have a good understanding
of the list color function.
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Some More Applications

Corollary (K. and Mudrock, 2021)
For any t ∈ N, we have that:

χ`(C2t+1�K1,s) =

{
3 if s < 22t+1 − 2
4 if s ≥ 22t+1 − 2.

Borowiecki et al. only gives us that χ`(C2t+1�K1,s) = 4
when s ≥ 32t+1.
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χ`(Kn�K1,s) =

{
n if s < n!

n + 1 if s ≥ n!.

Borowiecki et al. only gives us that χ`(Kn�K1,s) = n + 1
when s ≥ nn.
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Some More Applications

Corollary (K. and Mudrock, 2021)
For any t ,n ∈ N, we have that:

χ`((Kn ∨ C2t+1)�K1,s) =

{
n + 3 if s < 1

3(n + 3)!(4t − 1)

n + 4 if s ≥ 1
3(n + 3)!(4t − 1).

Borowiecki et al. only gives us that
χ`((Kn ∨ C2t+1)�K1,s) = n + 4 when s ≥ (n + 3)n+2t+1.
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Generalizing from Stars

Theorem (K. and Mudrock, 2021)
Let G be a strong k-chromatic choosable graph satisfying the
edge condition, and
B be a subdivision of K1,s with s < P`(G, k).
Then, χ`(G�B) = k.

Theorem (K. and Mudrock, 2021)
Let G is a strong k-chromatic choosable graph with k ≥ 2. Let
T be a rooted tree with root v0.
Suppose that v0 has at most P`(G, k)− 1 children, and
each v ∈ V (T )− {v0} has at most P ′`(G, k − 1)− 1 children
Then, χ`(G�T ) = k. That is, G�T is chromatic choosable.
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Main Results - Part 3
Theorem (K. and Mudrock, 2021)
Let M be a strong k-chromatic choosable graph which satisfies
the edge condition. Then, for any ρ ∈ N, there exists H such
that χ`(M�H) = k + ρ− 1.

For each ρ ∈ N we define the H = SM,B′,ρ graph inductively. Let
SM,B′,1 = B′, a subdivision of K1,P`(M,k)−1. Then, for ρ ≥ 2 we
construct SM,B′,ρ as: Take P`(M, k + ρ− 2) disjoint copies of
SM,B′,ρ−1 and join a single vertex to these copies.

This in fact gives the sharpness for the following generalization
of the first main theorem:

Theorem (K. and Mudrock, 2021)
Let M be a strong k-chromatic choosable graph which satisfies
the edge condition, and H be a (M, ρ)-Cartesian
accommodating graph. Then χ`(M�H) ≤ k + ρ− 1.
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Thank You!
Questions?
For what graphs G, is G�Pn chromatic choosable for all n ∈ N?

Determine when G�H will be chromatic choosable based upon
some property of the factors.

Define fa(G) as the smallest b s.t. χ`(G�Ka,b) = χ`(G) + a.

For what graphs does fa(G) = (P`(G, χ`(G) + a− 1))a?

Does there exist a strongly chromatic-choosable graph M such
that fa(M) < (P`(M, χ`(M) + a− 1))a?

Is it the case that fa(Kn) =
(

(n+a−1)!
(a−1)!

)a
for each n,a?

Is it always the case that P`(G, k) = P(G, k) when G is strong
chromatic choosable?

(Thomassen 2009) Does there exist a graph G and a natural
number k > 2 such that P`(G, k) = 1?

(Mohar 2001) Let G be a ∆(G) + 1-edge-critical graph. Then
prove that L(G) is strong (∆(G) + 1)-chromatic choosable.
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