Chromatic Polynomial and Counting DP Colorings of a Graph

Hemanshu Kaul

Illinois Institute of Technology
www.math.iit.edu/~kaul
kaul@iit.edu

Joint work with
Jeffrey Mudrock (College of Lake County)

Graph Coloring

- Allocation of colors (limited resource) to vertices (entities) so that pairs of vertices with an edge (conflict) are given different colors.
- Color vertices so that any vertices with an edge between them must get different colors.
- Partition the set of all vertices into independent sets (edge-free sets/ "conflict-free" sets)
- Minimum number of colors needed for such a coloring is called the chromatic number $\chi(G)$ of the graph G.

Graph Coloring

- Allocation of colors (limited resource) to vertices (entities) so that pairs of vertices with an edge (conflict) are given different colors.
- Color vertices so that any vertices with an edge between them must get different colors.
- Partition the set of all vertices into independent sets (edge-free sets/ "conflict-free" sets)
- Minimum number of colors needed for such a coloring is called the chromatic number $\chi(G)$ of the graph G.

List Coloring

- List coloring was introduced independently by Vizing (1976) and Erdős, Rubin, and Taylor (1979), as a generalization of usual graph coloring.
- For graph G suppose each $v \in V(G)$ is assigned a list, $L(v)$, of colors. We refer to L as a list assignment. If all the lists associated with the list assignment L have size k, we say that L is a
- An L-coloring for G is a proper coloring, f, of G such that $f(v) \in L(v)$ for all $v \in V(G)$.
- When an L-coloring for G exists, we say that G is

List Coloring

- List coloring was introduced independently by Vizing (1976) and Erdős, Rubin, and Taylor (1979), as a generalization of usual graph coloring.
- For graph G suppose each $v \in V(G)$ is assigned a list, $L(v)$, of colors. We refer to L as a list assignment. If all the lists associated with the list assignment L have size k, we say that L is a k-assignment.
- An L-coloring for G is a proper coloring, f, of G such that $f(v) \in L(v)$ for all $v \in V(G)$.
- When an L-coloring for G exists, we say that G is

List Coloring

- List coloring was introduced independently by Vizing (1976) and Erdős, Rubin, and Taylor (1979), as a generalization of usual graph coloring.
- For graph G suppose each $v \in V(G)$ is assigned a list, $L(v)$, of colors. We refer to L as a list assignment. If all the lists associated with the list assignment L have size k, we say that L is a k-assignment.
- An L-coloring for G is a proper coloring, f, of G such that $f(v) \in L(v)$ for all $v \in V(G)$.
- When an L-coloring for G exists, we say that G is L-colorable or L-choosable.

List Chromatic Number

- The list chromatic number of a graph G, written $\chi_{\ell}(G)$, is the smallest k such that G is L-colorable whenever $|L(v)| \geq k$ for each $v \in V(G)$.
- When $\chi_{\ell}(G)=k$ we say that G has list chromatic number k or that G is k-choosable.
- We immediately have that if $\chi(G)$ is the typical chromatic number of a graph G, then

But we know the gap between $\chi(G)$ and $\chi_{\ell}(G)$ can be arbitrarily large: $\chi_{\ell}\left(K_{k, t}\right)=k+1$ when $t \geq k^{k}$.

List Chromatic Number

- The list chromatic number of a graph G, written $\chi_{\ell}(G)$, is the smallest k such that G is L-colorable whenever $|L(v)| \geq k$ for each $v \in V(G)$.
- When $\chi_{\ell}(G)=k$ we say that G has list chromatic number k or that G is k-choosable.
- We immediately have that if $\chi(G)$ is the typical chromatic number of a graph G, then

But we know the gap between $\chi(G)$ and $\chi_{\ell}(G)$ can be arbitrarily large: $\chi_{\ell}\left(K_{k, t}\right)=k+1$ when $t \geq k^{k}$.

List Chromatic Number

- The list chromatic number of a graph G, written $\chi_{\ell}(G)$, is the smallest k such that G is L-colorable whenever $|L(v)| \geq k$ for each $v \in V(G)$.
- When $\chi_{\ell}(G)=k$ we say that G has list chromatic number k or that G is k-choosable.
- We immediately have that if $\chi(G)$ is the typical chromatic number of a graph G, then

$$
\chi(G) \leq \chi_{\ell}(G)
$$

But we know the gap between $\chi(G)$ and $\chi_{\ell}(G)$ can be arbitrarily large: $\chi_{\ell}\left(K_{k, t}\right)=k+1$ when $t \geq k^{k}$.

Proper L-coloring

DP-Coloring

- In 2015, Dvořák and Postle introduced DP-coloring (they called it correspondence coloring) of graphs.
- Intuitively, DP-coloring considers the worst-case scenario of how many colors we need in the lists if we no longer can identify the names of the colors. Each vertex still gets a list of colors but identification of which colors are different can vary from edge to edge.

DP-Coloring

- In 2015, Dvořák and Postle introduced DP-coloring (they called it correspondence coloring) of graphs.
- Intuitively, DP-coloring considers the worst-case scenario of how many colors we need in the lists if we no longer can identify the names of the colors. Each vertex still gets a list of colors but identification of which colors are different can vary from edge to edge.
- A cover of G is a pair $\mathcal{H}=(L, H)$ consisting of a graph H and a function $L: V(G) \rightarrow \mathcal{P}(V(H))$ satisfying:
(1) the set $\{L(u): u \in V(G)\}$ is a partition of $V(H)$;
(2) for every $u \in V(G)$, the graph $H[L(u)]$ is complete;
(3) if $E_{H}(L(u), L(v))$ is nonempty, then $u=v$ or $u v \in E(G)$;
(4) if $u v \in E(G)$, then $E_{H}(L(u), L(v))$ is a matching (the matching may be empty).

(DP-) Cover of a Graph

- A cover of G is a pair $\mathcal{H}=(L, H)$ consisting of a graph H and a function $L: V(G) \rightarrow \mathcal{P}(V(H))$ satisfying:
(1) the set $\{L(u): u \in V(G)\}$ is a partition of $V(H)$;
(2) for every $u \in V(G)$, the graph $H[L(u)]$ is complete;
(3) if $E_{H}(L(u), L(v))$ is nonempty, then $u=v$ or $u v \in E(G)$;
(4) if $u v \in E(G)$, then $E_{H}(L(u), L(v))$ is a matching (the matching may be empty).
- Intuition:

Blow up each vertex u in G into a clique of size $|L(u)|$; Add a matching (possibly empty) between any two such cliques for vertices u and v if $u v$ is an edge in G.

(DP-) Cover of a Graph

- Intuition:

Blow up each vertex u in G into a clique of size $|L(u)|$; Add a matching (possibly empty) between any two such cliques for vertices u and v if $u v$ is an edge in G.

- A cover $\mathcal{H}=(L, H)$ is called m-fold if $|L(u)|=m$ for all u.
- Two 2-fold covers of C_{4} : SJ

DP-Chromatic Number of a Graph

- Given $\mathcal{H}=(L, H)$, a cover of G, an \mathcal{H}-coloring of G is an independent set in H of size $|V(G)|$.
smallest m such that G admits an \mathcal{H}-coloring for every m-fold cover \mathcal{H} of G.

DP-Chromatic Number of a Graph

- Given $\mathcal{H}=(L, H)$, a cover of G, an \mathcal{H}-coloring of G is an independent set in H of size $|V(G)|$.
- The DP-chromatic number of a graph $G, \chi_{D P}(G)$, is the smallest m such that G admits an \mathcal{H}-coloring for every m-fold cover \mathcal{H} of G.

DP-Chromatic Number of a Graph

- Given $\mathcal{H}=(L, H)$, a cover of G, an \mathcal{H}-coloring of G is an independent set in H of size $|V(G)|$.
- The DP-chromatic number of a graph $G, \chi_{D P}(G)$, is the smallest m such that G admits an \mathcal{H}-coloring for every m-fold cover \mathcal{H} of G.
- $\chi_{D P}\left(C_{4}\right)>2=\chi_{\ell}\left(C_{4}\right)$:

No independent set of size 4 in this 2 -fo bl cover of C_{4}

DP-Coloring and List Coloring

- Given an m-assignment, L, for a graph G, it is easy to construct an m-fold cover \mathcal{H} of G such that:
G has an \mathcal{H}-coloring if and only if G has a proper L-coloring.

L-colosing

H-cotoring

- $\chi(G) \leq \chi_{\ell}(G) \leq \chi_{D P}(G)$.

The List Color Function

- The chromatic polynomial of $G, P(G, m)$ equals the number of proper colorings of G with colors $[m]$.
- $P(G, L)$ be the number of proper L-colorings of G. The list color function $P_{\ell}(G, m)$ is the minimum value of $P(G, L)$ over all possible m-assignments L for G.
- In general, $P_{\ell}(G, m) \leq P(G, m)$.
- $P\left(K_{2,4}, 2\right)=2$, and yet $P_{\ell}\left(K_{2,4}, 2\right)=0$.
- $P_{\ell}\left(K_{3,26}, 3\right) \leq 3^{8} 2^{12}<3^{1} 2^{26} \leq P\left(K_{3,26}, 3\right)$.

The List Color Function

- The chromatic polynomial of $G, P(G, m)$ equals the number of proper colorings of G with colors $[m]$.
- $P(G, L)$ be the number of proper L-colorings of G. The list color function $P_{\ell}(G, m)$ is the minimum value of $P(G, L)$ over all possible m-assignments L for G.
- In general, $P_{\ell}(G, m) \leq P(G, m)$.
- $P\left(K_{2,4}, 2\right)=2$, and yet $P_{\ell}\left(K_{2,4}, 2\right)=0$.
- $P_{\ell}\left(K_{3,26}, 3\right) \leq 3^{8} 2^{12}<3^{1} 2^{26} \leq P\left(K_{3,26}, 3\right)$.

The List Color Function

- The chromatic polynomial of $G, P(G, m)$ equals the number of proper colorings of G with colors $[m]$.
- $P(G, L)$ be the number of proper L-colorings of G. The list color function $P_{\ell}(G, m)$ is the minimum value of $P(G, L)$ over all possible m-assignments L for G.
- In general, $P_{\ell}(G, m) \leq P(G, m)$.
- $P\left(K_{2,4}, 2\right)=2$, and yet $P_{\ell}\left(K_{2,4}, 2\right)=0$.
- $P_{\ell}\left(K_{3,26}, 3\right) \leq 3^{8} 2^{12}<3^{1} 2^{26} \leq P\left(K_{3,26}, 3\right)$.

The List Color Function

- $P_{\ell}(G, m) \leq P(G, m)$. And for some $G, P_{\ell}(G, m)<P(G, m)$
- $P_{\ell}(G, m)$ need not be a polynomial.

Theorem (Wang, Qian, Yan (2017); improving Thomassen (2009), Donner (1992))

For any connected graph G with t edges,
$P_{\ell}(G, m)=P(G, m)$ for $m>\frac{t-1}{\ln (1+\sqrt{2})} \approx 1.135(t-1)$.

Theorem (Kostochka, Sidorenko (1990); K., Mudrock (2021))

1) $P_{\ell}(G, m)=P(G, m)$ for all m, if G is chordal.
2) $P_{\ell}\left(C_{n}, m\right)=P\left(C_{n}, m\right)=(m-1)^{n}+(-1)^{n}(m-1)$ for all m.
3) $P_{\ell}\left(C_{n} \vee K_{k}, m\right)=P\left(C_{n} \vee K_{k}, m\right)$ for all m.

The List Color Function

- $P_{\ell}(G, m) \leq P(G, m)$. And for some $G, P_{\ell}(G, m)<P(G, m)$
- $P_{\ell}(G, m)$ need not be a polynomial.

Theorem (Wang, Qian, Yan (2017); improving Thomassen (2009), Donner (1992))

For any connected graph G with t edges,
$P_{\ell}(G, m)=P(G, m)$ for $m>\frac{t-1}{\ln (1+\sqrt{2})} \approx 1.135(t-1)$.
Theorem (Kostochka, Sidorenko (1990); K., Mudrock (2021))

1) $P_{\ell}(G, m)=P(G, m)$ for all m, if G is chordal.
2) $P_{\ell}\left(C_{n}, m\right)=P\left(C_{n}, m\right)=(m-1)^{n}+(-1)^{n}(m-1)$ for all m.
3) $P_{\ell}\left(C_{n} \vee K_{k}, m\right)=P\left(C_{n} \vee K_{k}, m\right)$ for all m.

The DP Color Function

- For $\mathcal{H}=(L, H)$, a cover of graph G, we say $P_{D P}(G, \mathcal{H})$ be the number of \mathcal{H}-colorings of G.
- The DP color function, $P_{D P}(G, m)$, is the minimum value of $P_{D P}(G, \mathcal{H})$ where the minimum is taken over all possible m-fold covers \mathcal{H} of G.
- $P\left(C_{4}, 2\right)=P_{\ell}\left(C_{4}, 2\right)=2$, and yet $P_{D P}\left(C_{4}, 2\right)=0$.

The DP Color Function

- For $\mathcal{H}=(L, H)$, a cover of graph G, we say $P_{D P}(G, \mathcal{H})$ be the number of \mathcal{H}-colorings of G.
- The DP color function, $P_{D P}(G, m)$, is the minimum value of $P_{D P}(G, \mathcal{H})$ where the minimum is taken over all possible m-fold covers \mathcal{H} of G.
- $P\left(C_{4}, 2\right)=P_{\ell}\left(C_{4}, 2\right)=2$, and yet $P_{D P}\left(C_{4}, 2\right)=0$.

The DP Color Function

- For $\mathcal{H}=(L, H)$, a cover of graph G, we say $P_{D P}(G, \mathcal{H})$ be the number of \mathcal{H}-colorings of G.
- The DP color function, $P_{D P}(G, m)$, is the minimum value of $P_{D P}(G, \mathcal{H})$ where the minimum is taken over all possible m-fold covers \mathcal{H} of G.
- $P\left(C_{4}, 2\right)=P_{\ell}\left(C_{4}, 2\right)=2$, and yet $P_{D P}\left(C_{4}, 2\right)=0$.
- In general, $P_{D P}(G, m) \leq P_{\ell}(G, m) \leq P(G, m)$.

The DP Color Function

- For $\mathcal{H}=(L, H)$, a cover of graph G, we say $P_{D P}(G, \mathcal{H})$ be the number of \mathcal{H}-colorings of G.
- The DP color function, $P_{D P}(G, m)$, is the minimum value of $P_{D P}(G, \mathcal{H})$ where the minimum is taken over all possible m-fold covers \mathcal{H} of G.
- $P\left(C_{4}, 2\right)=P_{\ell}\left(C_{4}, 2\right)=2$, and yet $P_{D P}\left(C_{4}, 2\right)=0$.
- In general, $P_{D P}(G, m) \leq P_{\ell}(G, m) \leq P(G, m)$.

A Natural Question

We know:

Theorem (Wang, Qian, Yan (2017))
For any connected graph G with t edges,
$P_{\ell}(G, m)=P(G, m)$ for $m>\frac{t-1}{\ln (1+\sqrt{2})} \approx 1.135(t-1)$.

- For every graph G, does $P_{D P}(G, m)=P(G, m)$ for sufficiently large m ?

A Natural Question

We know:

Theorem (Wang, Qian, Yan (2017))
For any connected graph G with t edges,
$P_{\ell}(G, m)=P(G, m)$ for $m>\frac{t-1}{\ln (1+\sqrt{2})} \approx 1.135(t-1)$.

- For every graph G, does $P_{D P}(G, m)=P(G, m)$ for sufficiently large m ?

DP Color Function is different

Theorem (K., Mudrock (2021))
If G is a graph with girth that is even, then there is an N such that $P_{D P}(G, m)<P(G, m)$ whenever $m \geq N$.

Furthermore, for any integer $g \geq 3$ there exists a graph M with girth g and an N such that $P_{D P}(M, m)<P(M, m)$ whenever $m \geq N$.

Tools for DP Color Function - I

Theorem (K., Mudrock (2021))
If G is a graph with girth that is even, then there is an N such that $P_{D P}(G, m)<P(G, m)$ whenever $m \geq N$.

Proposition (K., Mudrock (2021))

Lemma (from Whitney's Broken Circuit Theorem (1932))
G be a connected graph on n vertices and s edges with girth g.

where t is the number of cycles of length g contained in G.

Tools for DP Color Function - I

Theorem (K., Mudrock (2021))
If G is a graph with girth that is even, then there is an N such that $P_{D P}(G, m)<P(G, m)$ whenever $m \geq N$.

Proposition (K., Mudrock (2021))
$P_{D P}(G, m) \leq \frac{m^{n}(m-1)|E(G)|}{m^{E(G) \mid}}$ for all m.

Lemma (from Whitney's Broken Circuit Theorem (1932))
G be a connected graph on n vertices and s edges with girth g. Suppose $P(G, m)=$ Then, for $i=0,1$, where t is the number of cycles of length g contained in G.

Tools for DP Color Function - I

Theorem (K., Mudrock (2021))
If G is a graph with girth that is even, then there is an N such that $P_{D P}(G, m)<P(G, m)$ whenever $m \geq N$.

Proposition (K., Mudrock (2021))
$P_{D P}(G, m) \leq \frac{m^{n}(m-1)|E(G)|}{m^{E(G) \mid}}$ for all m.

Lemma (from Whitney's Broken Circuit Theorem (1932))
G be a connected graph on n vertices and s edges with girth g. Suppose $P(G, m)=\sum_{i=0}^{n}(-1)^{i} a_{i} m^{n-i}$.
Then, for $i=0,1, \ldots, g-2$
$a_{i}=\binom{s}{i}$ and $a_{g-1}=\binom{s}{g-1}-t$,
where t is the number of cycles of length g contained in G.

Siderenko's Conjecture for DP-coloring

Proposition (K., Mudrock (2021))
$P_{D P}(G, m) \leq \frac{m^{n}(m-1)|E(G)|}{m^{|E(G)|}}$ for all m.

- This upper bound is the same as the lower bound on $P(G, m)$ when G is bipartite, as claimed by the well-known Sidorenko's conjecture on counting homomorphisms from bipartite graphs.

Corollary (K., Mudrock (2021))
For any connected graph G,

Siderenko's Conjecture for DP-coloring

Proposition (K., Mudrock (2021))
$P_{D P}(G, m) \leq \frac{m^{n}(m-1) E(G) \mid}{m^{E(G) \mid}}$ for all m.

- This upper bound is the same as the lower bound on $P(G, m)$ when G is bipartite, as claimed by the well-known Sidorenko's conjecture on counting homomorphisms from bipartite graphs.

Corollary (K., Mudrock (2021))
For any connected graph G,
$P_{D P}(G, m)=\frac{m^{|V(G)|}(m-1)|E(G)|}{m^{E(G) \mid}}$ for all m if and only if G is a tree.

A Probabilistic Proof

Proposition (K., Mudrock (2021))
$P_{D P}(G, m) \leq \frac{m^{n}(m-1) E(G) \mid}{m^{E(G)}}$ for all m.

- Form an m-fold cover, (L, H), of G by the following (partially random) process.
- Create cliques of order m in H corresponding to each vertex. Then, uniformly at random choose a perfect matching between any two cliques corresponding to a pair of adjacent vertices in G.
- There are m^{n} ways to select one vertex from each clique. If u and v are in two different cliques connected by a matching, the probability that u and v are not adjacent in H is: $1-1 / m$.
- The expression above is the expected number of (L, H)-colorings of G.

A Probabilistic Proof

Proposition (K., Mudrock (2021))
$P_{D P}(G, m) \leq \frac{m^{n}(m-1)|(G)|}{m^{E(G) \mid}}$ for all m.

- Form an m-fold cover, (L, H), of G by the following (partially random) process.
- Create cliques of order m in H corresponding to each vertex. Then, uniformly at random choose a perfect matching between any two cliques corresponding to a pair of adjacent vertices in G.
- There are m^{n} ways to select one vertex from each clique. If u and v are in two different cliques connected by a matching, the probability that u and v are not adjacent in H is: $1-1 / m$.
- The expression above is the expected number of (L, H)-colorings of G.

A Probabilistic Proof

Proposition (K., Mudrock (2021))
$P_{D P}(G, m) \leq \frac{m^{n}(m-1)|E(G)|}{m^{E(G) \mid}}$ for all m.

- Form an m-fold cover, (L, H), of G by the following (partially random) process.
- Create cliques of order m in H corresponding to each vertex. Then, uniformly at random choose a perfect matching between any two cliques corresponding to a pair of adjacent vertices in G.
- There are m^{n} ways to select one vertex from each clique. If u and v are in two different cliques connected by a matching, the probability that u and v are not adjacent in H is: $1-1 / m$.
- The expression above is the expected number of (L, H)-colorings of G.

A Probabilistic Proof

Proposition (K., Mudrock (2021))
$P_{D P}(G, m) \leq \frac{m^{n}(m-1)|(G)|}{m^{E(G)}}$ for all m.

- Form an m-fold cover, (L, H), of G by the following (partially random) process.
- Create cliques of order m in H corresponding to each vertex. Then, uniformly at random choose a perfect matching between any two cliques corresponding to a pair of adjacent vertices in G.
- There are m^{n} ways to select one vertex from each clique. If u and v are in two different cliques connected by a matching, the probability that u and v are not adjacent in H is: $1-1 / m$.
- The expression above is the expected number of (L, H)-colorings of G.

Tools for DP Color Function - II

Theorem (K., Mudrock (2021))
For any integer $g \geq 3$ there exists a graph M with girth g and an N such that $P_{D P}(M, m)<P(M, m)$ whenever $m \geq N$.

Proposition (K., Mudrock (2021))
Let G be a graph with $e \in E(G)$.
II $m \geq 2$ and $P(G-\{e\}, m)<m_{i} P(G, m)$ then $P_{D P}(G, m)<P(G, m)$.

Theorem (K., Mudrock (2021))
Let G_{2} be any graph and $G_{1}=C_{2 k+2}$ with exactly two vertices
and one edge in common, and denote $G=G_{1} \oplus G_{2}$. Then,
$P_{D P}(G, m)<P(G, m)$ whenever $m \geq \max \left\{2, \chi\left(G_{2}\right)\right\}$

Tools for DP Color Function - II

Theorem (K., Mudrock (2021))
For any integer $g \geq 3$ there exists a graph M with girth g and an N such that $P_{D P}(M, m)<P(M, m)$ whenever $m \geq N$.

Proposition (K., Mudrock (2021))
Let G be a graph with $e \in E(G)$.
If $m \geq 2$ and $P(G-\{e\}, m)<\frac{m}{m-1} P(G, m)$,
then $P_{D P}(G, m)<P(G, m)$.

Theorem (K., Mudrock (2021))
Let G_{2} be any graph and $G_{1}=C_{2 k+2}$ with exactly two vertices and one edge in common, and denote $G=G_{1} \oplus G_{2}$. Then, $P_{D P}(G, m)<P(G, m)$ whenever $m \geq \max \left\{2, \chi\left(G_{2}\right)\right\}$.

Second Natural Question

- For which graphs G does $P_{D P}(G, m)=P(G, m)$ for all m ?
- For which graphs G does there exist N such that $P_{D P}(G, m)=P(G, m)$ for all $m \geq N$?

Theorem (K., Mudrock $(2021))$
If G is chordal, then $P_{D P}(G, m)=P(G, m)$ for every m.

- a straightforward application of perfect elimination ordering.

Second Natural Question

- For which graphs G does $P_{D P}(G, m)=P(G, m)$ for all m ?
- For which graphs G does there exist N such that $P_{D P}(G, m)=P(G, m)$ for all $m \geq N$?

Theorem (K., Mudrock (2021))
If G is chordal, then $P_{D P}(G, m)=P(G, m)$ for every m.

- a straightforward application of perfect elimination ordering.

Tools for DP Color Function - III

- Let $\mathcal{H}=(L, H)$ be an m-fold cover of G. We say that \mathcal{H} has a canonical labeling if it is possible to name the vertices of H so that $L(u)=\{(u, j): j \in[m]\}$ and $(u, j)(v, j) \in E(H)$ for each $j \in[m]$ whenever $u v \in E(G)$.
- When \mathcal{H} has a canonical labeling, G has an \mathcal{H}-coloring if and only if G has a proper m-coloring.
- Trees have a canonical labeling.
- Using canonical labeling, we can develop tools to handle graphs that are close to being a forest.

Tools for DP Color Function - III

- Let $\mathcal{H}=(L, H)$ be an m-fold cover of G. We say that \mathcal{H} has a canonical labeling if it is possible to name the vertices of H so that $L(u)=\{(u, j): j \in[m]\}$ and $(u, j)(v, j) \in E(H)$ for each $j \in[m]$ whenever $u v \in E(G)$.
- When \mathcal{H} has a canonical labeling, G has an \mathcal{H}-coloring if and only if G has a proper m-coloring.
- Trees have a canonical labeling.
- Using canonical labeling, we can develop tools to handle graphs that are close to being a forest.

Tools for DP Color Function - III

- A sharp bound when removing an edge gives us a canonical labeling.

- Next, a sharp bound when removing an induced P_{3}.

Tools for DP Color Function - III

- A sharp bound when removing an edge gives us a canonical labeling.

Lemma (K., Mudrock (2021))
Let $\mathcal{H}=(L, H)$ be an m-fold cover of G with $m \geq 2$.
Suppose $e=u v \in E(G)$. Let $H^{\prime}=H-E_{H}(L(u), L(v))$ so that $\mathcal{H}^{\prime}=\left(L, H^{\prime}\right)$ is an m-fold cover of $G-\{e\}$.
If \mathcal{H}^{\prime} has a canonical labeling, then
$P_{D P}(G, \mathcal{H}) \geq P(G-e, m)-\max \left\{P(G-e, m)-P(G, m), \frac{P(G, m)}{m-1}\right\}$
Moreover, there exists an m-fold cover of $\mathcal{G}, \mathcal{H}^{*}=\left(L, H^{*}\right)$, s.t.
$P_{D P}\left(G, \mathcal{H}^{*}\right)=P(G-e, m)-\max \left\{P(G-e, m)-P(G, m), \frac{P(G, m)}{m-1}\right\}$.

- Next, a sharp bound when removing an induced P_{3}.

Tools for DP Color Function - III

- A sharp bound when removing an edge gives us a canonical labeling.

Lemma (K., Mudrock (2021))
Let $\mathcal{H}=(L, H)$ be an m-fold cover of G with $m \geq 2$.
Suppose $e=u v \in E(G)$. Let $H^{\prime}=H-E_{H}(L(u), L(v))$ so that $\mathcal{H}^{\prime}=\left(L, H^{\prime}\right)$ is an m-fold cover of $G-\{e\}$.
If \mathcal{H}^{\prime} has a canonical labeling, then
$P_{D P}(G, \mathcal{H}) \geq P(G-e, m)-\max \left\{P(G-e, m)-P(G, m), \frac{P(G, m)}{m-1}\right\}$
Moreover, there exists an m-fold cover of $G, \mathcal{H}^{*}=\left(L, H^{*}\right)$, s.t.
$P_{D P}\left(G, \mathcal{H}^{*}\right)=P(G-e, m)-\max \left\{P(G-e, m)-P(G, m), \frac{P(G, m)}{m-1}\right\}$.

- Next, a sharp bound when removing an induced P_{3}.

Tools for DP Color Function - III

Lemma (K., Mudrock (2021))

Let $\mathcal{H}=(L, H)$ be an m-fold cover of G with $m \geq 3$. Let e_{1}, e_{2} be the edges of an induced path P of length two.
Let $G_{0}=G-\left\{e_{1}, e_{2}\right\}, G_{1}=G-e_{1}, G_{2}=G-e_{2}$, and G^{*} be the graph obtained by making P into K_{3}. Suppose \mathcal{H}^{\prime}, the m-fold cover of G_{0} induced by \mathcal{H}, has a canonical labeling. Let

$$
\begin{aligned}
& A_{1}=P\left(G_{0}, m\right)-P(G, m), A_{2}=P\left(G_{0}, m\right)-P\left(G_{2}, m\right)+\frac{1}{m-1} P(G, m), \\
& A_{3}=P\left(G_{0}, m\right)-P\left(G_{1}, m\right)+\frac{1}{m-1} P(G, m), \\
& A_{4}=\frac{1}{m-1}\left(P\left(G_{1}, m\right)+P\left(G_{2}, m\right)+P\left(G^{*}, m\right)-P(G, m)\right), \text { and } \\
& A_{5}=\frac{1}{m-1}\left(P\left(G_{1}, m\right)+P\left(G_{2}, m\right)-\frac{1}{m-2} P\left(G^{*}, m\right)\right) .
\end{aligned}
$$

Then, $P_{D P}(G, \mathcal{H}) \geq P\left(G_{0}, m\right)-\max \left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$.
Moreover, there exists an m-fold cover of G that achieves equality

Unicyclic Graphs

- A unicyclic graph is a connected graph containing exactly one cycle.
- If G is a unicyclic graph on n vertices that contains a cycle on t vertices, then
$P(G, m)=(m-1)^{n}+(-1)^{t}(m-1)^{n-t+1}$

Unicyclic Graphs

- A unicyclic graph is a connected graph containing exactly one cycle.
- If G is a unicyclic graph on n vertices that contains a cycle on t vertices, then $P(G, m)=(m-1)^{n}+(-1)^{t}(m-1)^{n-t+1}$
Theorem (K., Mudrock (2021))
Suppose G is a unicyclic graph on n vertices.
(1) If G contains a cycle on $2 k+1$ vertices, then
$P_{D P}(G, m)=P(G, m)$ for all m.
(2) If G contains a cycle on $2 k+2$ vertices, then
$P_{D P}(G, m)=(m-1)^{n}-(m-1)^{n-2 k-2}$ for all $m \geq 2$.

Theta Graphs

- A Generalized Theta graph $\Theta\left(I_{1}, \ldots, I_{k}\right)$ consists of a pair of end vertices joined by k internally disjoint paths of lengths $l_{1}, \ldots, l_{k} . \Theta\left(l_{1}, l_{2}, l_{3}\right)$ is simply called a Theta graph.
- $P\left(\Theta\left(I_{1}, \ldots, I_{k}\right), m\right)=$
$\frac{\prod_{i=1}^{k}\left((m-1)^{k_{i}+1}+(-1)^{i_{i}+1}(m-1)\right)}{(m(m-1))^{k-1}}+\frac{\left.\prod_{i=1}^{k}\left((m-1)^{)^{i}+(-1}\right)^{l_{i}}(m-1)\right)}{m^{k-1}}$.
- Widely studied for many graph theoretic problems and are the main subject of two classical papers on the chromatic polynomial by Sokal, which include the celebrated result that the zeros of the chromatic polynomials of the Generalized Theta graphs are dense in the whole complex plane with the possible exception of the unit disc around the origin (by including the join of Generalized Theta graphs with K_{2} this extends to all of the complex plane).

Theta Graphs

- A Generalized Theta graph $\Theta\left(I_{1}, \ldots, I_{k}\right)$ consists of a pair of end vertices joined by k internally disjoint paths of lengths $l_{1}, \ldots, l_{k} . \Theta\left(l_{1}, l_{2}, l_{3}\right)$ is simply called a Theta graph.
- $P\left(\Theta\left(I_{1}, \ldots, I_{k}\right), m\right)=$ $\frac{\prod_{i=1}^{k}\left((m-1)_{i}^{i_{i}+1}+(-1)^{i_{i}+1}(m-1)\right)}{(m(m-1))^{k-1}}+\frac{\prod_{i=1}^{k}\left((m-1)^{)_{i}}+(-1)^{l_{i}}(m-1)\right)}{m^{k-1}}$.
- Widely studied for many graph theoretic problems and are the main subject of two classical papers on the chromatic polynomial by Sokal, which include the celebrated result that the zeros of the chromatic polynomials of the Generalized Theta graphs are dense in the whole complex plane with the possible exception of the unit disc around the origin (by including the join of Generalized Theta graphs with K_{2} this extends to all of the complex plane).

Theta Graphs

Extending results of K. and Mudrock (2021),

Theorem (Halberg, K., Liu, Mudrock, Shin, Thomason (2021+))
Let $G=\Theta\left(I_{1}, I_{2}, I_{3}\right)$ and $2 \leq I_{1} \leq I_{2} \leq I_{3}$.
(1) If the parity of I_{1} is different from both I_{2} and I_{3}, then $P_{D P}(G, m)=P(G, m)$ for all m.
(2) If the parity of I_{1} is the same as I_{2} and different from I_{3}, then for $m \geq 2: P_{D P}(G, m)=$
$\frac{1}{m}\left[(m-1)^{l_{1}+l_{2}+l_{3}}+(m-1)^{1_{1}}-(m-1)^{l_{2}+1}-(m-1)^{l_{3}}+(-1)^{l_{3}+1}(m-2)\right]$.
(3) If the parity of l_{1} is the same as I_{3} and different from I_{2}, then for $m \geq 2: P_{D P}(G, m)=$
$\frac{1}{m}\left[(m-1)^{1_{1}+l_{2}+l_{3}}+(m-1)^{h_{1}}-(m-1)^{k_{3}+1}-(m-1)^{l_{2}}+(-1)^{l_{2}+1}(m-2)\right]$.
(4) If l_{1}, l_{2} and l_{3} all have the same parity, then for $m \geq 3$: $P_{D P}(G, m)=$ $\frac{1}{m}\left[(m-1)^{l_{1}+l_{2}+l_{3}}-(m-1)^{1_{1}}-(m-1)^{l_{2}}-(m-1)^{1_{3}}+2(-1)^{1_{1}+l_{2}+l_{3}}\right]$.

Two Fundamental Questions

- For which graphs G does there exist N such that $P_{D P}(G, m)=P(G, m)$ for all $m \geq N$?
- Given a graph G does there always exist an $N \in \mathbb{N}$ and a polynomial $p(m)$ such that $P_{D P}(G, m)=p(m)$ whenever $m \geq N$?

Two Fundamental Questions

- For which graphs G does there exist N such that $P_{D P}(G, m)=P(G, m)$ for all $m \geq N$?
- Given a graph G does there always exist an $N \in \mathbb{N}$ and a polynomial $p(m)$ such that $P_{D P}(G, m)=p(m)$ whenever $m \geq N$?

Generalized Theta Graphs

Theorem (Halberg, K., Liu, Mudrock, Shin, Thomason (2021+))
Let $G=\Theta\left(I_{1}, \ldots, I_{k}\right)$ where $k \geq 2, I_{1} \leq \cdots \leq I_{k}$, and $I_{2} \geq 2$.
(i) If there is aj$\in\{2, \ldots, k\}$ such that l_{1} and l_{j} have the same parity, then there is an $N \in \mathbb{N}$ such that $P_{D P}(G, m)<P(G, m)$ for all $m \geq N$.
(ii) If I_{1} and I_{j} have different parity for each $j \in\{2, \ldots, k\}$, then there is an $N \in \mathbb{N}$ such that $P_{D P}(G, m)=P(G, m)$ for all $m \geq N$.

- Statement (i) does not answer the question of whether $P_{D P}(G, m)$ equals a polynomial for sufficiently large m. To answer that question, we study the DP color function of a class of graphs that contains all Generalized Theta graphs.

Generalized Theta Graphs

Theorem (Halberg, K., Liu, Mudrock, Shin, Thomason (2021+))
Let $G=\Theta\left(I_{1}, \ldots, I_{k}\right)$ where $k \geq 2, I_{1} \leq \cdots \leq I_{k}$, and $I_{2} \geq 2$.
(i) If there is aj$\{2, \ldots, k\}$ such that I_{1} and l_{j} have the same parity, then there is an $N \in \mathbb{N}$ such that $P_{D P}(G, m)<P(G, m)$ for all $m \geq N$.
(ii) If l_{1} and l_{j} have different parity for each $j \in\{2, \ldots, k\}$, then there is an $N \in \mathbb{N}$ such that $P_{D P}(G, m)=P(G, m)$ for all $m \geq N$.

- Statement (i) does not answer the question of whether $P_{D P}(G, m)$ equals a polynomial for sufficiently large m. To answer that question, we study the DP color function of a class of graphs that contains all Generalized Theta graphs.

Graphs with a Feedback Vertex Set of Order One

- A feedback vertex set of a graph is a subset of vertices whose removal makes the resulting induced subgraph acyclic. Clearly, a Generalized Theta graph has a feedback vertex set of size one.

Theorem (Halberg, K., Liu, Mudrock, Shin, Thomason (2021+))
Let G be a graph with a feedback vertex set of order one. Then there exists N and a polynomial $p(m)$ such that
$P_{D P}(G, m)=p(m)$ for all $m \geq N$.

- We consider a decomposition G into a star G_{1} and a spanning forest G_{0}, and then carefully count the number of \mathcal{H}_{0}-colorings of G_{0} that are not \mathcal{H}-colorings of G, where \mathcal{H}_{0} is the m-fold cover of G_{0} induced by a given m-fold cover \mathcal{H} of G.

Graphs with a Feedback Vertex Set of Order One

- A feedback vertex set of a graph is a subset of vertices whose removal makes the resulting induced subgraph acyclic. Clearly, a Generalized Theta graph has a feedback vertex set of size one.

Theorem (Halberg, K., Liu, Mudrock, Shin, Thomason (2021+))
Let G be a graph with a feedback vertex set of order one. Then there exists N and a polynomial $p(m)$ such that
$P_{D P}(G, m)=p(m)$ for all $m \geq N$.

- We consider a decomposition G into a star G_{1} and a spanning forest G_{0}, and then carefully count the number of \mathcal{H}_{0}-colorings of G_{0} that are not \mathcal{H}-colorings of G, where \mathcal{H}_{0} is the m-fold cover of G_{0} induced by a given m-fold cover \mathcal{H} of G.

Connections to Other Important Results

Theorem (Halberg, K., Liu, Mudrock, Shin, Thomason (2021+))
Let G be a graph with a feedback vertex set of order one. Then there exists N and a polynomial $p(m)$ s.t. $P_{D P}(G, m)=p(m)$ for all $m \geq N$.

- There is no explicit formula for the polynomial $p(m)$ but we know its three highest degree terms are the same as $P(G, m)$.
- By extension of results of and answering a question of K. and Mudrock (2021),

Connections to Other Important Results

Theorem (Halberg, K., Liu, Mudrock, Shin, Thomason (2021+))
Let G be a graph with a feedback vertex set of order one. Then there exists N and a polynomial $p(m)$ s.t. $P_{D P}(G, m)=p(m)$ for all $m \geq N$.

- There is no explicit formula for the polynomial $p(m)$ but we know its three highest degree terms are the same as $P(G, m)$.
- By extension of results of and answering a question of K . and Mudrock (2021),

Theorem (Mudrock, Thomason (2021+))
For any graph $G, P(G, m)-P_{D P}(G, m)=O\left(m^{n-3}\right)$ as $m \rightarrow \infty$.

Connections to Other Important Results

Theorem (Halberg, K., Liu, Mudrock, Shin, Thomason (2021+))
Let G be a graph with a feedback vertex set of order one. Then there exists N and a polynomial $p(m)$ s.t. $P_{D P}(G, m)=p(m)$ for all $m \geq N$.

- The graphs above are a partial join of a vertex with a forest. What if we have a complete join?
- By extension of results of and answering a question of K. and Mudrock (2021),
- But, by our theorem for Generalized Theta Graphs, we know this conclusion (i.e., $p(m)=P(G, m)$) cannot hold for all graphs with a feedback vertex set of order one since the Theorem for graphs with a feedback vertex set of order one also applies to Generalized Theta graphs.

Connections to Other Important Results

Theorem (Halberg, K., Liu, Mudrock, Shin, Thomason (2021+))
Let G be a graph with a feedback vertex set of order one. Then there exists N and a polynomial $p(m)$ s.t. $P_{D P}(G, m)=p(m)$ for all $m \geq N$.

- The graphs above are a partial join of a vertex with a forest. What if we have a complete join?
- By extension of results of and answering a question of K. and Mudrock (2021),

Theorem (Mudrock, Thomason (2021+))
There exists N s.t. $P_{D P}\left(K_{1} \vee G, m\right)=P\left(K_{1} \vee G, m\right)$ for $m \geq N$.

- But, by our theorem for Generalized Theta Graphs, we know this conclusion (i.e., $p(m)=P(G, m)$) cannot hold for all graphs with a feedback vertex set of order one since the Theorem for graphs with a feedback vertex set of order one also applies to Generalized Theta graphs.

Thank You!

Questions?

- For which graphs G does there exist N such that $P_{D P}(G, m)=P(G, m)$ for all $m \geq N$?
In particular, also consider the situation when $N=1$.
- Given a graph G does there always exist an $N \in \mathbb{N}$ and a polynomial $p(m)$ such that $P_{D P}(G, m)=p(m)$ whenever $m \geq N$?
- Study the DP color function threshold of $G, \tau_{D P}(G)$, the smallest $N \geq \chi(G)$ such that $P_{D P}(G, m)=P(G, m)$ whenever $m \geq N$.
- For a graph G such that $P_{D P}\left(G, m_{0}\right)=P\left(G, m_{0}\right)$ for some $m_{0} \geq \chi(G)$, is $P_{D P}(G, m)=P(G, m)$ for all $m \geq m_{0}$?
The corresponding question for $P_{\ell}(G, m)$, the list color function, is also open.

Thank You!

Questions?

- For which graphs G does there exist N such that $P_{D P}(G, m)=P(G, m)$ for all $m \geq N$?
In particular, also consider the situation when $N=1$.
- Given a graph G does there always exist an $N \in \mathbb{N}$ and a polynomial $p(m)$ such that $P_{D P}(G, m)=p(m)$ whenever $m \geq N$?
- Study the DP color function threshold of $\mathrm{G}, \tau_{D P}(G)$, the smallest $N \geq \chi(G)$ such that $P_{D P}(G, m)=P(G, m)$ whenever $m \geq N$.
- For a graph G such that $P_{D P}\left(G, m_{0}\right)=P\left(G, m_{0}\right)$ for some $m_{0} \geq \chi(G)$, is $P_{D P}(G, m)=P(G, m)$ for all $m \geq m_{0}$?
The corresponding question for $P_{\ell}(G, m)$, the list color function, is also open.

