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Graph Coloring

Allocation of colors (limited resource) to vertices (entities)
so that pairs of vertices with an edge (conflict) are given
different colors.

Color vertices so that any vertices with an edge between
them must get different colors.
Partition the set of all vertices into independent sets
(edge-free sets/ “conflict-free” sets)

Minimum number of colors needed for such a coloring is
called the chromatic number χ(G) of the graph G.
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List Coloring

List coloring was introduced independently by Vizing
(1976) and Erdős, Rubin, and Taylor (1979), as a
generalization of usual graph coloring.

For graph G suppose each v ∈ V (G) is assigned a list,
L(v), of colors. We refer to L as a list assignment. If all the
lists associated with the list assignment L have size k , we
say that L is a k -assignment.

An L-coloring for G is a proper coloring, f , of G such that
f (v) ∈ L(v) for all v ∈ V (G).

When an L-coloring for G exists, we say that G is
L-colorable or L-choosable.
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List Chromatic Number

The list chromatic number of a graph G, written χ`(G), is
the smallest k such that G is L-colorable whenever
|L(v)| ≥ k for each v ∈ V (G).

When χ`(G) = k we say that G has list chromatic number
k or that G is k-choosable.

We immediately have that if χ(G) is the typical chromatic
number of a graph G, then

χ(G) ≤ χ`(G).

But we know the gap between χ(G) and χ`(G) can be
arbitrarily large: χ`(Kk ,t ) = k + 1 when t ≥ kk .
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A Different Perspective



























































































































































































































































































































































































































































































































































































































































































































DP-Coloring
In 2015, Dvořák and Postle introduced DP-coloring (they
called it correspondence coloring) of graphs.
Intuitively, DP-coloring considers the worst-case scenario
of how many colors we need in the lists if we no longer can
identify the names of the colors. Each vertex still gets a list
of colors but identification of which colors are different can
vary from edge to edge.

A cover of G is a pair H = (L,H) consisting of a graph H
and a function L : V (G)→ P(V (H)) satisfying:

(1) the set {L(u) : u ∈ V (G)} is a partition of V (H);
(2) for every u ∈ V (G), the graph H[L(u)] is complete;
(3) if EH(L(u),L(v)) is nonempty, then u = v or uv ∈ E(G);
(4) if uv ∈ E(G), then EH(L(u),L(v)) is a matching (the
matching may be empty).
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Add a matching (possibly empty) between any two such
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DP-Chromatic Number of a Graph
Given H = (L,H), a cover of G, an H-coloring of G is an
independent set in H of size |V (G)|.
The DP-chromatic number of a graph G, χDP(G), is the
smallest m such that G admits an H-coloring for every
m-fold cover H of G.
χDP(C4) > 2 = χ`(C4):
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DP-Coloring and List Coloring
Given an m-assignment, L, for a graph G, it is easy to
construct an m-fold cover H of G such that:
G has an H-coloring if and only if G has a proper
L-coloring.

χ(G) ≤ χ`(G) ≤ χDP(G).




























































































































































































































































































































































The List Color Function

The chromatic polynomial of G, P(G,m) equals the
number of proper colorings of G with colors [m].

P(G,L) be the number of proper L-colorings of G.
The list color function P`(G,m) is the minimum value of
P(G,L) over all possible m-assignments L for G.

In general, P`(G,m) ≤ P(G,m).

P(K2,4,2) = 2, and yet P`(K2,4,2) = 0.
P`(K3,26,3) ≤ 38212 < 31226 ≤ P(K3,26,3).
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The List Color Function
P`(G,m) ≤ P(G,m). And for some G, P`(G,m) < P(G,m)

P`(G,m) need not be a polynomial.

Theorem (Wang, Qian, Yan (2017); improving Thomassen
(2009), Donner (1992))
For any connected graph G with t edges,
P`(G,m) = P(G,m) for m > t−1

ln(1+
√

2)
≈ 1.135(t − 1).

Theorem (Kostochka, Sidorenko (1990); K., Mudrock
(2021))
1) P`(G,m) = P(G,m) for all m, if G is chordal.
2) P`(Cn,m) = P(Cn,m) = (m − 1)n + (−1)n(m − 1) for all m.
3) P`(Cn ∨ Kk ,m) = P(Cn ∨ Kk ,m) for all m.
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DP Color Function is different

Theorem (K., Mudrock (2021))
If G is a graph with girth that is even, then there is an N such
that PDP(G,m) < P(G,m) whenever m ≥ N.

Furthermore, for any integer g ≥ 3 there exists a graph M with
girth g and an N such that PDP(M,m) < P(M,m) whenever
m ≥ N.



Tools for DP Color Function - I

Theorem (K., Mudrock (2021))
If G is a graph with girth that is even, then there is an N such
that PDP(G,m) < P(G,m) whenever m ≥ N.

Proposition (K., Mudrock (2021))
PDP(G,m) ≤ mn(m−1)|E(G)|

m|E(G)| for all m.

Lemma (from Whitney’s Broken Circuit Theorem (1932))
G be a connected graph on n vertices and s edges with girth g.
Suppose P(G,m) =

∑n
i=0(−1)iaimn−i .

Then, for i = 0,1, . . . ,g − 2
ai =

(s
i

)
and ag−1 =

( s
g−1

)
− t ,

where t is the number of cycles of length g contained in G.
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Siderenko’s Conjecture for DP-coloring

Proposition (K., Mudrock (2021))
PDP(G,m) ≤ mn(m−1)|E(G)|

m|E(G)| for all m.

This upper bound is the same as the lower bound on
P(G,m) when G is bipartite, as claimed by the well-known
Sidorenko’s conjecture on counting homomorphisms from
bipartite graphs.

Corollary (K., Mudrock (2021))
For any connected graph G,
PDP(G,m) = m|V (G)|(m−1)|E(G)|

m|E(G)| for all m if and only if G is a tree.
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A Probabilistic Proof

Proposition (K., Mudrock (2021))
PDP(G,m) ≤ mn(m−1)|E(G)|

m|E(G)| for all m.

Form an m-fold cover, (L,H), of G by the following
(partially random) process.
Create cliques of order m in H corresponding to each
vertex. Then, uniformly at random choose a perfect
matching between any two cliques corresponding to a pair
of adjacent vertices in G.
There are mn ways to select one vertex from each clique.
If u and v are in two different cliques connected by a
matching, the probability that u and v are not adjacent in H
is: 1− 1/m.
The expression above is the expected number of
(L,H)-colorings of G.
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Tools for DP Color Function - II

Theorem (K., Mudrock (2021))
For any integer g ≥ 3 there exists a graph M with girth g and an
N such that PDP(M,m) < P(M,m) whenever m ≥ N.

Proposition (K., Mudrock (2021))
Let G be a graph with e ∈ E(G).
If m ≥ 2 and P(G − {e},m) < m

m−1P(G,m),
then PDP(G,m) < P(G,m).

Theorem (K., Mudrock (2021))
Let G2 be any graph and G1 = C2k+2 with exactly two vertices
and one edge in common, and denote G = G1 ⊕G2. Then,
PDP(G,m) < P(G,m) whenever m ≥ max{2, χ(G2)}.
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Second Natural Question

For which graphs G does PDP(G,m) = P(G,m) for all m?
For which graphs G does there exist N such that
PDP(G,m) = P(G,m) for all m ≥ N?

Theorem (K., Mudrock (2021))
If G is chordal, then PDP(G,m) = P(G,m) for every m.

a straightforward application of perfect elimination ordering.
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Tools for DP Color Function - III

Let H = (L,H) be an m-fold cover of G. We say that H has
a canonical labeling if it is possible to name the vertices of
H so that L(u) = {(u, j) : j ∈ [m]} and (u, j)(v , j) ∈ E(H) for
each j ∈ [m] whenever uv ∈ E(G).
When H has a canonical labeling, G has an H-coloring if
and only if G has a proper m-coloring.
Trees have a canonical labeling.

Using canonical labeling, we can develop tools to handle
graphs that are close to being a forest.
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Tools for DP Color Function - III

A sharp bound when removing an edge gives us a
canonical labeling.

Lemma (K., Mudrock (2021))
Let H = (L,H) be an m-fold cover of G with m ≥ 2.
Suppose e = uv ∈ E(G). Let H ′ = H − EH(L(u),L(v)) so that
H′ = (L,H ′) is an m-fold cover of G − {e}.
If H′ has a canonical labeling, then
PDP(G,H) ≥ P(G − e,m)−max

{
P(G − e,m)− P(G,m), P(G,m)

m−1

}
Moreover, there exists an m-fold cover of G, H∗ = (L,H∗), s.t.
PDP(G,H∗) = P(G − e,m)−max

{
P(G − e,m)− P(G,m), P(G,m)

m−1

}
.

Next, a sharp bound when removing an induced P3.
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Let H = (L,H) be an m-fold cover of G with m ≥ 2.
Suppose e = uv ∈ E(G). Let H ′ = H − EH(L(u),L(v)) so that
H′ = (L,H ′) is an m-fold cover of G − {e}.
If H′ has a canonical labeling, then
PDP(G,H) ≥ P(G − e,m)−max
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Tools for DP Color Function - III
Lemma (K., Mudrock (2021))
Let H = (L,H) be an m-fold cover of G with m ≥ 3. Let e1,e2
be the edges of an induced path P of length two.
Let G0 = G − {e1,e2}, G1 = G − e1, G2 = G − e2, and G∗ be
the graph obtained by making P into K3. Suppose H′, the
m-fold cover of G0 induced by H, has a canonical labeling. Let

A1 = P(G0,m)− P(G,m),A2 = P(G0,m)− P(G2,m) +
1

m − 1
P(G,m),

A3 = P(G0,m)− P(G1,m) +
1

m − 1
P(G,m),

A4 =
1

m − 1
(P(G1,m) + P(G2,m) + P(G∗,m)− P(G,m)) , and

A5 =
1

m − 1

(
P(G1,m) + P(G2,m)− 1

m − 2
P(G∗,m)

)
.

Then, PDP(G,H) ≥ P(G0,m)−max{A1,A2,A3,A4,A5}.
Moreover, there exists an m-fold cover of G that achieves equality
above.



Unicyclic Graphs

A unicyclic graph is a connected graph containing exactly
one cycle.
If G is a unicyclic graph on n vertices that contains a cycle
on t vertices, then
P(G,m) = (m − 1)n + (−1)t (m − 1)n−t+1

Theorem (K., Mudrock (2021))
Suppose G is a unicyclic graph on n vertices.

(1) If G contains a cycle on 2k + 1 vertices, then
PDP(G,m) = P(G,m) for all m.

(2) If G contains a cycle on 2k + 2 vertices, then
PDP(G,m) = (m − 1)n − (m − 1)n−2k−2 for all m ≥ 2.
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Theta Graphs

A Generalized Theta graph Θ(l1, . . . , lk ) consists of a pair
of end vertices joined by k internally disjoint paths of
lengths l1, . . . , lk . Θ(l1, l2, l3) is simply called a Theta graph.
P(Θ(l1, . . . , lk ),m) =∏k

i=1((m−1)li+1+(−1)li+1(m−1))
(m(m−1))k−1 +

∏k
i=1((m−1)li +(−1)li (m−1))

mk−1 .

Widely studied for many graph theoretic problems and are the
main subject of two classical papers on the chromatic
polynomial by Sokal, which include the celebrated result that the
zeros of the chromatic polynomials of the Generalized Theta
graphs are dense in the whole complex plane with the possible
exception of the unit disc around the origin (by including the join
of Generalized Theta graphs with K2 this extends to all of the
complex plane).
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Theta Graphs
Extending results of K. and Mudrock (2021),

Theorem (Halberg, K., Liu, Mudrock, Shin, Thomason (2021+))

Let G = Θ(l1, l2, l3) and 2 ≤ l1 ≤ l2 ≤ l3.

(1) If the parity of l1 is different from both l2 and l3, then
PDP(G,m) = P(G,m) for all m.

(2) If the parity of l1 is the same as l2 and different from l3, then for
m ≥ 2: PDP(G,m) =
1
m
[
(m − 1)l1+l2+l3 + (m − 1)l1 − (m − 1)l2+1 − (m − 1)l3 + (−1)l3+1(m − 2)

]
.

(3) If the parity of l1 is the same as l3 and different from l2, then for
m ≥ 2: PDP(G,m) =
1
m
[
(m − 1)l1+l2+l3 + (m − 1)l1 − (m − 1)l3+1 − (m − 1)l2 + (−1)l2+1(m − 2)

]
.

(4) If l1, l2 and l3 all have the same parity, then for m ≥ 3: PDP(G,m) =
1
m
[
(m − 1)l1+l2+l3 − (m − 1)l1 − (m − 1)l2 − (m − 1)l3 + 2(−1)l1+l2+l3

]
.



Two Fundamental Questions

For which graphs G does there exist N such that
PDP(G,m) = P(G,m) for all m ≥ N?

Given a graph G does there always exist an N ∈ N and a
polynomial p(m) such that PDP(G,m) = p(m) whenever
m ≥ N?



Two Fundamental Questions

For which graphs G does there exist N such that
PDP(G,m) = P(G,m) for all m ≥ N?

Given a graph G does there always exist an N ∈ N and a
polynomial p(m) such that PDP(G,m) = p(m) whenever
m ≥ N?



Generalized Theta Graphs

Theorem (Halberg, K., Liu, Mudrock, Shin, Thomason (2021+))

Let G = Θ(l1, . . . , lk ) where k ≥ 2, l1 ≤ · · · ≤ lk , and l2 ≥ 2.

(i) If there is a j ∈ {2, . . . , k} such that l1 and lj have the same
parity, then there is an N ∈ N such that PDP(G,m) < P(G,m)
for all m ≥ N.

(ii) If l1 and lj have different parity for each j ∈ {2, . . . , k}, then
there is an N ∈ N such that PDP(G,m) = P(G,m) for all m ≥ N.

Statement (i) does not answer the question of whether
PDP(G,m) equals a polynomial for sufficiently large m. To
answer that question, we study the DP color function of a
class of graphs that contains all Generalized Theta graphs.
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Graphs with a Feedback Vertex Set of Order One

A feedback vertex set of a graph is a subset of vertices whose
removal makes the resulting induced subgraph acyclic. Clearly, a
Generalized Theta graph has a feedback vertex set of size one.

Theorem (Halberg, K., Liu, Mudrock, Shin, Thomason (2021+))

Let G be a graph with a feedback vertex set of order one. Then
there exists N and a polynomial p(m) such that
PDP(G,m) = p(m) for all m ≥ N.

We consider a decomposition G into a star G1 and a
spanning forest G0, and then carefully count the number of
H0-colorings of G0 that are not H-colorings of G, where H0
is the m-fold cover of G0 induced by a given m-fold cover H
of G.
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Connections to Other Important Results

Theorem (Halberg, K., Liu, Mudrock, Shin, Thomason (2021+))

Let G be a graph with a feedback vertex set of order one. Then there
exists N and a polynomial p(m) s.t. PDP(G,m) = p(m) for all m ≥ N.

There is no explicit formula for the polynomial p(m) but we
know its three highest degree terms are the same as
P(G,m).
By extension of results of and answering a question of K.
and Mudrock (2021),

Theorem (Mudrock, Thomason (2021+))

For any graph G, P(G,m)− PDP(G,m) = O(mn−3) as m→∞.
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Theorem (Halberg, K., Liu, Mudrock, Shin, Thomason (2021+))

Let G be a graph with a feedback vertex set of order one. Then there
exists N and a polynomial p(m) s.t. PDP(G,m) = p(m) for all m ≥ N.

The graphs above are a partial join of a vertex with a
forest. What if we have a complete join?
By extension of results of and answering a question of
K. and Mudrock (2021),

Theorem (Mudrock, Thomason (2021+))

There exists N s.t. PDP(K1 ∨G,m) = P(K1 ∨G,m) for m ≥ N.
But, by our theorem for Generalized Theta Graphs, we
know this conclusion (i.e., p(m) = P(G,m)) cannot hold for
all graphs with a feedback vertex set of order one since the
Theorem for graphs with a feedback vertex set of order one
also applies to Generalized Theta graphs.
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Thank You!
Questions?

For which graphs G does there exist N such that
PDP(G,m) = P(G,m) for all m ≥ N?
In particular, also consider the situation when N = 1.

Given a graph G does there always exist an N ∈ N and a
polynomial p(m) such that PDP(G,m) = p(m) whenever m ≥ N?

Study the DP color function threshold of G, τDP(G), the smallest
N ≥ χ(G) such that PDP(G,m) = P(G,m) whenever m ≥ N.

For a graph G such that PDP(G,m0) = P(G,m0) for some
m0 ≥ χ(G), is PDP(G,m) = P(G,m) for all m ≥ m0?
The corresponding question for P`(G,m), the list color function,
is also open.
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