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The General Problem

Analysis of longitudinal data of “social interactions”
to identify persistent patterns or substructures/ communities.

“Social Interactions” are represented as edges over a set of
(fixed) vertices, the population under consideration.

Longitudinal data means that these edges are time dependent,
interactions change as time goes by.
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The General Problem

Traditionally, dynamic is made static:

1. Focus on one particular point in time.
Which time? How to incorporate the evolution of interactions?

2. Aggregate the data into a single weighted graph.
One such weighted graph can arise from many sequences of such
data.
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Types of Interactions

Interval based interaction stream, for example friendships in a
social network.

Instantaneous interaction, for example email communications.
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Dynamic Network Data

Collected data comes from GPS sensors, digital recording of
emails, or human observation of animals grooming:
the instantaneous times at which the interactions were
observed to be present.

Temporal Errors: Data Collection/ Sampling error.

Topological Errors:
Representing continuous behavior discretely leads to
missing interactions that should be present and
recording spurious interactions that are not meaningful.
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A dynamic network is a time series of network snapshots.
Each snapshot represents a state of the system over an
interval of time such as a minute, a day, or a year in the life of
the system.

The duration of the snapshot represents the temporal scale of
the dynamic network since all the interactions are lumped
together discarding their order in time.
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Temporal Scale of Dynamic Networks
Online communications: Even though individual
communications last only seconds or minutes, aggregation at
the level of hours or days might be needed to find the correct
timescale.
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(a) ω = 1 day (b) ω = 5 days (c) ω = 12 days

Figure 14: Network radius time series for the Enron dataset at three levels of aggregation: (a)
fine level of aggregation, ω = 1 day, (c) coarse level of aggregation, ω = 12 days, (b) the
right level of aggregation, ω = 5 days.

like to achieve when we aggregate at the right scale. We would like to smooth out only the

noise, without affecting the quality of the actual signal (information) in the data.

6.1.3.3 Comparison with Graphscope and FFT Method.

Graphscope analysis on the Enron dataset partitions the time line on intervals that

vary from 2 weeks to 6 weeks, during the eventful period of November 2001-May 2002.

Some of the major events are captured using this partitions. There are however, several

important events that get smoothed out and can not be spotted when analyzing the time

series aggregated at such coarse levels (Figure 18 (a)). Since GraphScope focuses on

variations of graph compression levels, it is the magnitude of change in the graph structure

that drives the time line partitioning. TWIN analyzes the regularity of compression levels

Enron Email is a publicly available dataset of e-mails sent between
employees of the Enron corporation. Each email address represents
a vertex and an email exchange represents an edge.
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Figure 14: Network radius time series for the Enron dataset at three levels of aggregation: (a)
fine level of aggregation, ω = 1 day, (c) coarse level of aggregation, ω = 12 days, (b) the
right level of aggregation, ω = 5 days.

like to achieve when we aggregate at the right scale. We would like to smooth out only the

noise, without affecting the quality of the actual signal (information) in the data.

6.1.3.3 Comparison with Graphscope and FFT Method.

Graphscope analysis on the Enron dataset partitions the time line on intervals that

vary from 2 weeks to 6 weeks, during the eventful period of November 2001-May 2002.

Some of the major events are captured using this partitions. There are however, several

important events that get smoothed out and can not be spotted when analyzing the time

series aggregated at such coarse levels (Figure 18 (a)). Since GraphScope focuses on

variations of graph compression levels, it is the magnitude of change in the graph structure

that drives the time line partitioning. TWIN analyzes the regularity of compression levels

Enron Email Dataset.
Event 1 represents the time when Karl Rove sold off his energy
stocks,
Event 2 represents the unsuccessful attempt of Dynegy to acquire the
bankrupt Enron,
Event 3 represents the resignation of Enron’s CEO.
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Temporal Scale of Dynamic Networks

Animal social interactions:

For example, grooming interactions of baboons usually have a
temporal scale ranging from seconds to minutes,
mother to infant or peer to peer relationships have a scale
extending over years,
an individual troop membership, splitting or formation of new
troops extends from years to decades.
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Temporal Scale of Dynamic Networks
Human social interactions: Patterns of interaction of
conversations, friendships, and kinship occupy different
temporal scales.

Temporal Scale of Dynamic Networks 8

Effect of Temporal Scale

J. Moody, D.  McFarland, and S. Bender-deMoll, ”Dynamic Network Visualization, AJS ’05 
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Temporal Scale of Dynamic Networks
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(a) (b)

Figure 15: Network density for the Reality Mining dataset (a) and Haggle dataset (b) at
three levels of aggregation: too fine level of aggregation(top picture), the right level of
aggregation (middle picture) and too coarse level of aggregation (bottom picture).

of different metrics on the graph, and therefore, it is the rate of change, not the magnitude,

that will have the most effect in the aggregation.

A nice feature of the Graphscope heuristic is the fact that it generates a non-uniform

partitioning of the time line. The non-uniform partitioning is a more realistic representation

of real-world interaction streams which are commonly characterized by bursty behavior (3;

32). On the other hand, Graphscope determines this partitioning for a fixed aggregation step

and it does not take into account the effect the aggregation step has on the computation of

the compression cost. The estimation of persistent structures leading to the low compression

costs is highly sensitive to the size of aggregation level. TWIN overcomes this dependency

Reality Mining network consists of social interactions among 90 MIT students and
faculty over a nine month period with spatial proximity between people (through
bluetooth connection) implying a social interaction.

Haggle Infocomm network consists of social interactions among attendees at an IEEE

Infocom conference. There were 41 participants and the duration of the conference

was 4 days.
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Dynamic Network

A temporal stream of edges is a sequence of edges (over a
fixed vertex set V = {1, . . . ,N}) ordered by their time labels:

E = {(ij , t)|ij ∈ V × V , t ∈ [1, . . . ,T ]}
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Dynamic Network

Let P be a partition of the timeline [1, . . . ,T ]:

P = p1,p2, . . . ,pk = [t0, t1), [t1, t2), . . . , [tk ,T ]

A dynamic network is a sequence of graphs defined over the
edge-stream E and a fixed partition P of [T ]:

〈G1,G2, . . . ,Gi , . . .G|P|〉

with E(Gi) = {(ij , t)|t ∈ pi} and
each Gi is associated with the i th interval pi in P.
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Dynamic Network
Dynamic Network
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Some Related Work

Empirical Evidence:

Fourier Transform Analysis of Graph parameters
Clauset, A. and Eagle, N.: Persistence and periodicity in a dynamic proximity network,
DIMACS 2007.

Dynamic Network Visualization
Moody, J., McFarland, D., and Bender-deMoll, S.: Dynamic network visualization,
American Journal of Sociology, 2005.

Empirical Analysis of Graph Parameters
Krings, G., Karsai, M., Bernharsson, S., Blondel, V. D., and Saramaki, J.: Effects of time
window size and placement on the structure of aggregated networks, CoRR 2012.
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Some Related Work

Heuristics:

Change detection in interaction streams
Sun, J., Faloutsos, C., Papadimitriou, S., and Yu, P. S.: Graphscope: parameter-free
mining of large time-evolving graphs, Proc. 13th ACM SIGKDD, 2007.

Community detection in Biological Data
Berger-Wolf, T., Tantipathananandh, C., and Kempe, D.: Dynamic Community
Identification, In: Link Mining: Models, Algorithms, and Applications, 2010.

Temporal scale detection via linear Graph functions
Sulo, R., Berger-Wolf, T., and Grossman, R.: Meaningful selection of temporal
resolution for dynamic networks, Proc. 8th Workshop on Mining and Learning with
Graphs, 2010.
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Axioms

What properties should a temporal scale satisfy?

Motivated by axiomatic approaches to “Clustering”:

Impossibility result of Kleinberg 2002.

Quality-based axioms of Ackerman, Ben-David 2008.
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Axioms

Q, a (quality) function that gives a numerical value to a
particular partition of the timeline and the corresponding
dynamic network indicating its “quality”.

What properties must Q satisfy?
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Axioms

Within Interval Order Invariance:

For an optimal partition, permutations of interactions within the
same interval do not drastically change the quality of the
dynamic graph.
Some interactions are observed happening in a particular order might be an artifact of

looking at them at too fine of a temporal resolution.
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Axioms

Across Interval Order Criticality:

For an optimal partition, permutations of edges across different
intervals will change the quality of the partition.
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Axioms

Measure Unit Invariance:

Uniform scaling of the oversampling factor does not change the
quality of the dynamic network.

Axiomatic Approach for TSI problem

� Scale Invariance Axiom

.  .  ..  .  . .  .  .. . . . . .
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Axioms

Constant Stream:

The constant stream (same set of edges at each moment of
time) has no time scale, the optimal partition is the whole
timeline.
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Axioms

Stream with no Temporal Scale:

The quality function is the same for any partition of the stream
with no temporal scale, a temporal version of the Erdos-Renyi
random graph (noise).
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Axioms

Temporal Shift Invariance:

A shift of the time line of a temporal stream, does not drastically
change the quality of the dynamic network. The optimal
partition of the stream is independent of the time line’s starting
point.
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A Persistence Based Approach

Interactions observed fleetingly are often not interesting and
they usually indicate that the data collection process is noisy.

Interactions that persist for a while, truly represent what is more
essential for the underlying system.

What is, then, the “right” temporal scale that can capture the
persistence of structure in time, while smoothing out temporal
and topological noise?
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A Persistence Based Approach

Instead of a global quality function (for the the whole partition of
the timeline), we will use a local quality function, q, for intervals
within the partition.

Axioms:

(a) Internal Consistency: q(pi) ≈ q(p∗)

(b) Local Monotonicity: q(pi) ≥ q(pj)
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[p2] Local Monotonicity: Let p∗ be an interval in an optimal (with respect to q) partition

P∗ of temporal stream Et. Consider two “big enough” subintervals pi, pj ⊆ p∗, such

that |pi|, |pj | > |p∗|/2 and |pi| ≥ |pj | (Figure 29(b)). Then, with high probability, the

bigger subinterval has higher quality:

∀pi, pj ⊆ p∗ s.t. |pi|, |pj | > |p∗|/2, |pi| ≥ |pj |, Pr[q(pi, E
i
t) ≥ q(pj , E

j
t )] ≥ 1− δ

We could think of q1 and q2 as estimations of the rate of change of the edge probability

function. Intuitively, we would expect that during an interval with“optimal persistence”,

the parameters of the edge probability functions stay the same throughout the interval, and

therefore its rate of change is essentially constant. In this sense, we hope both q1 and q2

can capture well at least property p1.

pi

p∗

(a)

pj

pi

pj

pi

p∗

(b)

Figure 29: Illustration of the internal consistency and local monotonicity properties.
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A Persistence Based Approach

Local temporal persistence is measured via changes in edge
frequency values as a proxy.

The network structure that persists over time is a manifestation
of more or less the same set of edges occurring consistently.

At greater computational cost, “edge” can be replaced by any
fixed substructure.
Using edges minimizes any assumptions about any
substructures in the data.
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A Persistence Based Approach

High persistence of network structure implies persistence of
edge frequency values, but the converse is not necessarily true.

52Temporal Scale of Dynamic Networks

DAPPER Heuristic 

� Frequency and Persistence

✔

✗
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A Persistence Based Approach

freq(p) is the frequency vector (of length |E |) representing the
number of times each edge occurs in the interval p of the
partition.

fd(pi) is the difference (via an lp norm) between freq(pi and
freq(pi+1), frequency vectors of consecutive intervals - not
disjoint, overlap is controlled by local parameter w .
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A Persistence Based Approach

Let LM be the set of local maxima:

LM = {i : fd(i) ≥ fd(j), i − r ≤ j ≤ i + r}

where r is the radius for locality.
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A Persistence Based Approach

Two types of intervals (l , r) whose quality we want to capture:

Type 1: (l , r) ∩ LM = ∅. There are no local maxima inside
interval (l , r).

The quality function q1 of Type 1 intervals:

q1 =
min{fd(l), fd(r)} −min{fd(x) : l < x < r}

r − l
.

A rectangle with left side x = l , right side x = r , top
y = min{fd(l), fd(r)}, and bottom y = min{fd(x) : l < x < r}.
q1 is the slope of its diagonal.
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A Persistence Based Approach

Type 2: (l , r) ∩ LM 6= ∅. There are local maxima inside interval
(l , r).

Let m ∈ LM be the value in (l , r) such that fd(m) is maximized.
The quality function q2 of Type 2 intervals:

q2 :=
min{fd(l), fd(r)} − fd(m)

r − l
.

A rectangle with left side at x = l , right side at x = r , bottom at
y = fd(m) and top at y = min{fd(l), fd(r)}.
Intuitively, when this box is deeper, we have a better interval.



Introduction Axioms Algorithm

Algorithm

1. Generate potential breakpoints using local maxima:

(i) Compute Type 1 Intervals

(ii) Compute Type 2 Intervals
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Algorithm

2. Synchronize Type 1 and Type 2 intervals to generate a
partition:

(i) Take the union of Type 1 and Type 2 intervals and their
corresponding q values.
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Algorithm

2. Synchronize Type 1 and Type 2 intervals to generate a
partition:

(ii) Sort the intervals by their q-values in non-increasing order,
with ties broken arbitrarily.
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Algorithm

2. Synchronize Type 1 and Type 2 intervals to generate a
partition:

(iii) Initialize the set of breakpoints B := ∅.
Iterate: Starting with the interval with the highest quality value
(either q1 or q2), add the endpoints of the corresponding
interval. Let [l , r ] be the next unprocessed interval. If the
endpoints of the unprocessed interval fall inside any of the
intervals already added to B, ignore the interval and move to
the next unprocessed interval.
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Algorithm

2. Synchronize Type 1 and Type 2 intervals to generate a
partition:

(iv) When the procedure quits: if B = {b1, . . . ,bk} with
b1 < . . . < bk , then our final answer is the set of intervals
[0,b1), [b1,b2), . . . , [bk ,T ].
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(a) ω = 1 (b) ω = 2

(c) ω = 3

Figure 26: Partitioning of the DynMix stream by the DAPPER heuristic. The red vertical
lines represent the partitioning points along the time line.

(regions with very low and stable frequency difference values), DAPPER still over-partitions

at ω = 1. This problem seems to be corrected as the value of ω is increased and we notice

that for ω = 4 (40 minute intervals), we see a clear separation between the day and night

frequency patterns (Figure 27(c)). Also, note that some of the finer partitions at this scale,

do indeed correspond to intervals of length 20 minutes, 30 minutes, 50 minutes and about

3-4 hours. The results map consistently to the temporal organization of the conference and
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(a) ω = 1 (b) ω = 2
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Figure 26: Partitioning of the DynMix stream by the DAPPER heuristic. The red vertical
lines represent the partitioning points along the time line.

(regions with very low and stable frequency difference values), DAPPER still over-partitions

at ω = 1. This problem seems to be corrected as the value of ω is increased and we notice

that for ω = 4 (40 minute intervals), we see a clear separation between the day and night

frequency patterns (Figure 27(c)). Also, note that some of the finer partitions at this scale,

do indeed correspond to intervals of length 20 minutes, 30 minutes, 50 minutes and about

3-4 hours. The results map consistently to the temporal organization of the conference and

Synthetic data generated by using two alternating probability
distributions: the beta distribution and gaussian distribution (behaves
like noise) - alternating every 20 steps. Captured by the Algorithm.
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in this sense, DAPPER captures the right scale of the underlying dynamics of the Haggle

dataset.

(a) ω = 1 (b) ω = 2

(c) ω = 4

Figure 27: Partitioning of the Haggle stream by the DAPPER heuristic. The red vertical
lines represent the partitioning points along the time line.
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in this sense, DAPPER captures the right scale of the underlying dynamics of the Haggle

dataset.

(a) ω = 1 (b) ω = 2

(c) ω = 4

Figure 27: Partitioning of the Haggle stream by the DAPPER heuristic. The red vertical
lines represent the partitioning points along the time line.

Haggle (IEEE conference) data stream over a 4 day period: For
w = 4 (40 minute intervals), we see a clear separation between the
day and night frequency patterns, some of the finer partitions
correspond to intervals of length 20 minutes, 30 minutes, 50 minutes
(talk periods) and about 3-4 hours (morning/afternoon sessions).
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Future Work/ Open Questions

Conjecture: There is no global quality function that satisfies all
the axioms.

Find a global quality function that captures “many” of the
axioms.

Show that the solution of our algorithm satisfies “some” of the
global axioms.

In any algorithm, how can we determine the threshold value of
window size (w) beyond which temporal scaling is
meaningless/ useless?

How to determine best-fit subgraph within each interval in order
to minimize topological errors?

New Algorithms. New applications.
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