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Mathematical Models

Mathematical Models are ubiquitous in the Sciences,
Engineering, Social Sciences, and beyond. They serve as
conceptual representation of some observed phenomenon that
we seek to understand.

Classical Mechanics: trajectory of a projectile, motion of
planets, etc.
Population Growth: Malthusian model, logistic growth, etc.
Epidemiology: SIS, SIR, SIRS, etc.
Microeconomic models: Consumer Choice Theory, Supply
and Demand, etc.
Financial Markets: Derivative pricing, Risk and Portfolio
management, etc.
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All Models are wrong, but some are useful!

A good model reveals relationships that may not be
apparent superficially.

“Analysis/ Solution” builds strategies/ decisionmaking
processes that are more sophisticated/ powerful than a
naive approach.

Allows for experimentation/ simulation when its impossible
or too expensive in the real world.
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All Models are wrong, but some are useful!

The “wrong” above is also the source of the power of the
modeling process: the first step where we make assumptions/
idealization of the phenomenon under study.

The art of modeling lies in making the right choices in our
setup. These choices act as axioms for our model and drive the
whole modeling process from ‘solution’ to ‘interpretation’ and
‘validation’

Classical Mechanics: assumes mass is ‘fixed’ & acts like a
point, forces act instantaneously, Newton’s laws of motion,
etc. (later: a inertial frame of reference, non-relativistic,
non-quantum.)
Population Growth: Change in population is proportional to
current population, Environmental limit to population, etc.
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Mathematical Modeling Process

Where are ethical concerns important below?



Mathematical Modeling Process

e.g. Algorithmic bias.
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e.g. Bioethics.



Mathematical Modeling Process

e.g. Data bias/Statistical ethics.



Mathematical Modeling Process

Often ‘standardized’, assumed to be unbiased,
or simply ignored.



Inbuilt Bias?

Are our (mathematical/ scientific/ social) assumptions
creating an inbuilt bias that can not be overcome even if we
do everything else perfectly (avoid any bias in our
algorithmic computations, in the statistical/ data collection/
analysis, and in the real-world recommendations)?

How can we understand which choices are ethical?
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Ethical Decision Making

Some perspectives for Ethical standards:

Utilitarian: Which choice will create the most good and
cause least harm?
Rights: Which choice best respects the rights of those who
have a stake?
Fairness/Justice: Which choice treats all people fairly and
equitably?
Common Good: Which choice best serves the community
as a whole?
Virtue: Which choice leads me to act as a person I want to
be (encompassing the ideals above and more)?

Advertisement#1: Look up ‘Markkula Center for Applied Ethics’.
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Two Examples

Are our (mathematical/ scientific/ social) assumptions creating
an inbuilt bias that can not be overcome even if we do
everything else perfectly (avoid any bias in our algorithmic
computations, in the statistical/ data collection/ analysis, and in
the real-world recommendations)?

First, a historical example to illustrate this bias.

Second, an example of our attempt at improving a
mathematical model from an ethical perspective.



Love Canal Controversy (1970s-1980s)

Love Canal, a suburban town in NY close to Niagara Falls.

Historical timeline:
1890s A canal built by W.T. Love for a hydroelectric plant
(never built).
1905 Hooker Electrochemicals (HE) factory established.
1942-1952 HE allowed to dispose 22000 tons of chemical
waste in the canal in fiber and metal barrels.
1953 Canal filled so it was covered by soil and grass grew.
1956 School for 400 children built and soon a town grew.



Love Canal Controversy (1970s-1980s)

Historical timeline (contd.):
1970s Chemical odors noticeable.
1978 Newspaper Articles and NY Dept of Health
investigation. 80+ chemicals including 10 carcinogens
found in soil.
1978 Govt. offers to buy 239 houses closest to the site and
reclocate those residents. Waste site sealed.
1978 NYHD does health inspections and concludes rest of
Love Canal far from the waste site is safe to live in.



Love Canal Controversy (1970s-1980s)

Historical timeline (contd.):
1978 Lois Gibbs, a homemaker organized a residents
association. She sat down with a map of Love Canal and
put a pin on every home with a registered health problem.
She noticed a pattern of narrow paths corresponding to
filled in old streams and swales - the “ wet homes”.
1978 Lois Gibbs and the residents association did a
thorough survey of all residents and with help of Beverly
Paigen (cancer researcher from nearby research institute)
found indisputable evidence that residents in “wet homes”
were 3 times more likely to have miscarriages, birth
defects, asthma, UTIs, etc. than those in “dry homes”.



Love Canal Controversy (1970s-1980s)

Historical timeline (contd.):
1978 Gibbs and Paigen argued that the evacuations
should prioritize residents from wet homes and ultimately
all residents should be evacuated due to the pattern of
widespread contamination. As opposed NYDH’s decision
to buy and evacuate only houses close to the waste site.
1980-81 With media coverage, Gibbs-Paigen prevailed and
most of Love Canal was vacated by 1981.
1980s EPA Superfund sites were created to handle such
sites of environmental disaster.



Difference Between the Two Approaches

Different Models

NYDH Scientists built a precise mathematical model based
on the assumption that toxins spread more or less
homogeneously radially outward from the waste site. This
is traditional scientific practice going back to Galileo, we
start with a simple model and add complexities to it as
needed.

Paigen based her analysis on Gibbs hypothesis that toxins
spread faster through the dried streams and swales.



Difference Between the Two Approaches

“Burden of Proof?”

NYDH scientists: Need strong evidence that Love Canal is
unsafe. “we are objective, we only deal with numbers”

Paigen Need strong evidence to conclude Love Canal is
safe since a mistake could result in damage to human life,
in context of its history and available data.



Precautionary Principle

Paigen’s position is an application of what has become known
as the “Precautionary principle”.

Originated in 1970s (or, even earlier) and formalized in 1992
under the Rio Declaration by representatives of 178 nations.

“Where there are threats of serious or irreversible damage, lack
of full scientific certainty shall not be used as a reason for
postponing cost-effective measures to prevent environmental
degradation.”



Some Guidelines

When doing applied math, the practitioners are not
“outside the system”, scientific objectivity is tricky,
“Standardized” models should not be used blindly in all
situations. Uncertainty of assumptions and evidence
should be considered in the context of “burden of proof”.
Multidisciplinary teams with a variety of relevant
specializations should work together.1

Local stakeholders should be involved in the process and
should be encouraged to be critical.

1Incident of Cesium in the sheep of Cumbria via radioactive cloud from
Chernobyl: soil as a physical transport vs chemical transport.



How is a public transit system designed?2

The urban transit network design problem (UTNDP) has been
well-studied over the past many decades.
The types of problems/ decisions studied include:

Strategic: Building new streets/ transit lines; Designing
transit routes; etc.
Tactical: Allocating exclusive bus lanes; Determining
Transit line frequencies; etc.
Operational: Scheduling traffic lights; Scheduling of
repairs; Determining transit schedule; etc.

2A Public Transit Network Optimization Model for Equitable Access to
Social Services, (with Adam Rumpf), Inaugural ACM Conference on Equity
and Access in Algorithms, Mechanisms, and Optimization (EAAMO ’21).
Advertisement#2: Look up ‘Mechanism Design for Social Good (MD4SG)’.



How is a public transit system designed?

The UTNDP is a bi-level problem.
The upper level corresponds to the transit policy under
consideration which is studied through design decisions with
objectives like (operator and user) costs, and socio-economic
constraints.
The lower level corresponds to the user behavior through the
transit network and the travel choices they make based on the
policy decisions in the upper level.

Conceptually, these are two games tied-in together: the one
between upper and lower levels, and the other within the lower
level. Together they can be expressed as a mathematical
program with equilibrium constraints.



How is a public transit system designed?

The design and decision process in UTNDP is thus modeled as
an optimization problem with underlying game-theoretic
assumptions about user behavior (Wardrop Equilibrium of a
non-cooperative Nash game).

The most common objectives consist of optimizing some
combination of

Operator costs: fleet size, vehicle maintenance, travel
distance, number of stops, profit, etc.
User costs: travel time, waiting time, walking distance,
number of transfers, vehicle crowding, etc.

These are subject to standard constraints of transportation
network flow and design, as well as any budgetary bounds.



How should a public transit system be designed?

Almost all studies under UTNDP framework only consider
factors corresponding to travel times (congestion), user
demand, or operational costs. A major review of urban
transportation network design problems (Farahani et al. EJOR
2013) identified only one paper where environmental/ health
concerns (CO2 emissions) were explicitly included.

What about community access to social services?

Do all communities have equitable access to health care
centers, city offices, parks, museums, etc.?

How can this accessibility be improved and made more
equitable?
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Primary Healthcare Accessibility in Chicago
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Primary Healthcare Centers Accessibility Metric via CTA
in each of the 77 community areas



Community access to social services

Improvement of access to facilities is typically studied in form of
Facility Location Problems.

Build more primary care centers and place them optimally
Build more CTA subway lines
Add more CTA bus lines
Add more CTA buses

Slow!
Needs major financial investments!
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Community access to social services

We look at the problem as an inverse of the facility location
problem.

Rather than changing (or adding) facility locations in a fixed
transit network, we consider changing the transit network
containing fixed facility locations.

Is it possible to do this without changes that are disruptive or
expensive?



Our Modeling Principles

1 The model should be flexible, allowing the planner to
choose any desired social access objective and any
assumptions regarding user behavior.

2 The model must produce solutions that remain at or near
the system’s current cost and performance level while
attempting to optimize the social access objective.

3 The design decisions should consist of measures which
are low-cost, immediate, and easily-implemented.

4 We will assume that travel related to our social access goal
makes up a relatively small proportion of the day-to-day
public transit travel volume. In particular we will assume
that the capacity of the facilities in question is a much more
significant limiting factor than the public transit service
capacity.



The social access maximization problem (SAMP)
max

y
Access(y) (1)

s.t. OperatorCost(y,x) ≤ Boperator (2)
UserCost(x) ≤ Buser (3)
x = TransitAssignment(y) (4)∑
l∈Lz

yl ≤
∑
l∈Lz

y∗l ∀z ∈ Z (5)

ymin
l ≤ yl ≤ ymax

l ∀l ∈ L (6)
yl ∈ Z ∀l ∈ L (7)

Design decision variables are yl , the number of vehicles that
service line l ∈ L, in the set of transit lines under consideration.
Essentially, we are reallocating (changing bus frequency of)
existing buses inbetween existing lines and with some new
express lines.



The social access maximization problem (SAMP)

The overall objective (1) is to maximize Access(y).

Access(y) :=
∑

K minimum elements
of {Ai (y)}

Ai(y)

where K is a model parameter, and Ai(y) is a primary care
accessibility metric of community i .
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The overall objective (1) is to maximize Access(y).

Access(y) :=
∑

K minimum elements
of {Ai (y)}

Ai(y)

where K is a model parameter, and Ai(y) is a primary care
accessibility metric of community i .
This objective refers to the K current least accessibility
metrics.
This generalizes the ideas of maximizing only the current
minimum accessibility metric (the special case of K = 1),
and of maximizing the total (or equivalently the average) of
all accessibility metrics.



The social access maximization problem (SAMP)
Our specific choice of accessibility metric Ai(y) is a
gravity-based metric:

Ai(y) :=
∑

j

Sjd
−β
ij (y)

Fj(y)

where Sj is the quality (patient capacity) of facility j , dij(y)
is the travel time from i to j , β > 0 is a gravitational decay
model parameter, and Fj(y) is a competition-related facility
metric defined by

Fj(y) :=
∑

k

Pkd−βkj (y)

where Pk is the population of community k seeking
service.
Fj(y) can be interpreted as a measure of how crowded
facility j is, and is greater if the facility is close to many
populous communities.



The social access maximization problem (SAMP)

The overall objective (1) is to maximize Access(y).

Access(y) :=
∑

K minimum elements
of {Ai (y)}

Ai(y)

The accessibility metric Ai(y) rewards a community for
being close to many facilities with high quality and low
overcrowding.

The metric, itself, has no direct interpretation in isolation
and is only meant for use in comparing communities
across space or time.



The social access maximization problem (SAMP)

Constraints (2) and (3) give explicit upper bounds of
Boperator and Buser to the operator and user costs,
respectively.

OperatorCost(y,x) ≤ Boperator = (1+ε) (current operator cost)

UserCost(x) ≤ Buser = (1 + ε) (current user cost)

ε ≥ 0 is a model parameter which specifies the allowed
margin of increase in costs.



The social access maximization problem (SAMP)

Constraints (4) implicitly define the user flow vector x as a
result of the decision vector’s effect on the transit
assignment function.

x = TransitAssignment(y)

It is based on a conical congestion function which
increases the costs of arcs as they become more crowded,
serving to discourage flows from exceeding line capacities.
The output is the user-optimal flow (Wardrop Equilibrium)
which corresponds to all users choosing a strategy for
which their expected travel time cannot be improved with a
unilateral change.



The social access maximization problem (SAMP)

Constraints (5) ensure that no new vehicles of any type are
added: ∑

l∈Lz

yl ≤
∑
l∈Lz

y∗l ∀z ∈ Z .

Constraints (6) enforce fleet size bounds for each line:

ymin
l ≤ yl ≤ ymax

l ∀l ∈ L.



The underlying Network

b bb
stop A stop B stop C

line 1

line 2

bc bc bc

bc bc

b
bc

stop node

boarding node

line arc

boarding arc

alighting arc

walking arc

Total 3852 Nodes that correspond to origin-destination pairs,
public transit stops (CTA bus and subway); communities;
primary healthcare centers.

Total 17522 Arcs that correspond to walking routes, and all CTA
bus & subway lines.

Data sources: 2010 Census; CTA General Transit Feed
Specification (GTFS) files; City of Chicago healthcare data.



The SAMP Algorithm
We propose a hybrid tabu search/simulated annealing solution
algorithm for the SAMP.

A natural choice of initial feasible solution (the initial fleet
vector) as well as a natural definition of local moves,
consisting of adding, dropping, and swapping individual
vehicles between compatible lines.
Use an Simulated Annealing acceptance probability when
considering whether to make a suboptimal move.
Tabu rules stored in Short-Term-Memory prevent undoing
recent additions or subtractions from each fleet, and
attractive solutions stored in Long-Term-Memory consist of
a combination of the second-best solutions from
neighborhood searches which were not chosen, and of
suboptimal moves that were previously denied by the SA
criterion.



Computational Results
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Objective value over 500 iterations of the SAMP algorithm



Computational Results

0 100 200 300 400 500

2 · 10−4

2.2 · 10−4

2.4 · 10−4

2.6 · 10−4

Iteration
O
b
je
ct
iv
e

The first 166 iterations consisted entirely of exchanging
vehicles between non-express routes.
The first express route was added during iteration 167, and
the second was added during iteration 186, after which
many more vehicles were added to express routes.
A total of 71 vehicles were diverted from existing lines to
express lines (4.25% of the 1668 total buses in service),
with 14 of the 65 available express routes receiving at least
one vehicle.



Computational Results

Initial Final Rel. Diff.
Mean 4.18299 · 10−5 4.31441 · 10−5 3.14170%
Std. Dev. 1.12720 · 10−5 0.74786 · 10−5 −33.65312%
Median 4.29677 · 10−5 4.17583 · 10−5 −2.81456%
Max 6.71548 · 10−5 6.47152 · 10−5 −3.63287%
Min 1.82806 · 10−5 2.65753 · 10−5 +45.37372%

Table: Summary statistics for the 77 Chicago community area
accessibility metrics before and after running the SAMP
algorithm for 500 iterations.



Computational Results

The overall distribution of accessibility metrics within the
city remained relatively balanced, with approximately half
improving and half worsening while the mean and median
remained roughly the same, both changing by less than
3.2%.
The spread of accessibility levels also narrowed
significantly, with the standard deviation decreasing by
more than 33.6%, the maximum decreasing by less than
3.7%, and the minimum increasing by more than 45.3%.

Overall, Success!



Primary Healthcare Center Locations
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Computational Results
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Computational Results
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Accessibility Metrics after 500 iterations of the SAMP Algorithm



Computational Results
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Relative change in Accessibility Metrics after 500 iterations of
the SAMP Algorithm



Sensitivity to Parameter Values
In the Chicago trials we used ε = 0.01, K = 8, and β = 1.0.
We generated artificial geographical networks to test the
sensitivity of the three parameters.

User Cost Increase Parameter ε
ε > 0 produced similar results with some variations in the
solutions.
Community Inclusion Parameter K
K = 1 resulted in no change.
K ∈ [6,24] produced similar trends.
K = 30 produced a small decrease for the communities
below the median and a significant increase for the
communities above the median.
Gravitational Decay Parameter β
β ∈ [1,2] produced similar results with some variations in
the solutions.



Thank You!

Any Questions? Thoughts?


