Graph Packing and a Generalization of the Theorems of Sauer-Spencer and Brandt

Hemanshu Kaul

Illinois Institute of Technology
www.math.iit.edu/~kaul
kaul@iit.edu

Joint work with
Benjamin Reiniger

A Puzzle

Can you fill in the numbers $1,2, \ldots, 17$ in the 17 circles below without repetition so that no two consecutive numbers are placed in circles with a line segment joining them?

Graph Packing

- $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{1}, E_{1}\right)$, two n-vertex graphs are said to pack if there exist injective mappings of the vertex sets into [n],
$V_{i} \rightarrow[n]=\{1,2, \ldots, n\}, i=1,2$,
such that the images of the edge sets do not intersect.
- Equivalently, there exists a bijection $V_{1} \leftrightarrow V_{2}$ such that $e \in E_{1} \Rightarrow e \notin E_{2}$.

- This definition is easily generalizable to more than two graphs, or to hypergraphs, etc.

Graph Packing

- $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{1}, E_{1}\right)$, two n-vertex graphs are said to pack if there exist injective mappings of the vertex sets into [n],
$V_{i} \rightarrow[n]=\{1,2, \ldots, n\}, i=1,2$,
such that the images of the edge sets do not intersect.
- Equivalently, there exists a bijection $V_{1} \leftrightarrow V_{2}$ such that $e \in E_{1} \Rightarrow e \notin E_{2}$.
the complement of G_{2}.
- This definition is easily generalizable to more than two graphs, or to hypergraphs, etc.

Graph Packing

- $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{1}, E_{1}\right)$, two n-vertex graphs are said to pack if there exist injective mappings of the vertex sets into [n],
$V_{i} \rightarrow[n]=\{1,2, \ldots, n\}, i=1,2$,
such that the images of the edge sets do not intersect.
- Equivalently, there exists a bijection $V_{1} \leftrightarrow V_{2}$ such that $e \in E_{1} \Rightarrow e \notin E_{2}$.
- G_{1} is a subgraph of $\overline{G_{2}}$, the complement of G_{2}.
- This definition is easily generalizable to more than two graphs, or to hypergraphs, etc.

Graph Packing

- $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{1}, E_{1}\right)$, two n-vertex graphs are said to pack if there exist injective mappings of the vertex sets into [n], $V_{i} \rightarrow[n]=\{1,2, \ldots, n\}, i=1,2$, such that the images of the edge sets do not intersect.
- Equivalently, there exists a bijection $V_{1} \leftrightarrow V_{2}$ such that $e \in E_{1} \Rightarrow e \notin E_{2}$.
- G_{1} is a subgraph of $\overline{G_{2}}$, the complement of G_{2}.
- This definition is easily generalizable to more than two graphs, or to hypergraphs, etc.

Examples \& Non-Examples

Examples \& Non-Examples

Examples \& Non-Examples

$k_{3,3}$

$3 k_{2}$
Packing?

K_{3}
Packing?

Examples \& Non-Examples

$k_{3,3}$

$2 k_{2}$

$3 k_{2}$

K_{3}

No!

No!

A Common Generalization

- Hamiltonian Cycle in graph G : Whether the n-cycle C_{n} packs with \bar{G}.
- The independence number $\alpha(G)$ of an n-vertex graph G is at least k if and only if G packs with $K_{k}+K_{n-k}$.
- Proper k-coloring of n-vertex graph G : Whether G packs with an n-vertex graph that is the union of k cliques.
- Equitable k-coloring of n-vertex graph G : Whether G packs with complement of the Turán Graph $T(n, k)$.
- Turán-type problems : Every graph with more than ex (n, H) edges must pack with \bar{H}.
- Ramsey-type problems.
- "most" problems in Graph Theory.

A Distinction

- In packing problems, each member of a 'large' family of graphs contains each member of another 'large' family of graphs.

A Distinction

- In packing problems, each member of a 'large' family of graphs contains each member of another 'large' family of graphs.
- In subgraph problems, (usually) at least one of the two graphs is fixed.

A Distinction

- In packing problems, each member of a 'large' family of graphs contains each member of another 'large' family of graphs.

Theorem
If $e\left(G_{1}\right) e\left(G_{2}\right)<\binom{n}{2}$, then G_{1} and G_{2} pack.

A Distinction

- In packing problems, each member of a 'large' family of graphs contains each member of another 'large' family of graphs.

Theorem
If $e\left(G_{1}\right) e\left(G_{2}\right)<\binom{n}{2}$, then G_{1} and G_{2} pack.

Proof. Pick a random bijection between $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$, uniformly among the set of all n ! such bijections.

Sharp for $G_{1}=S_{2 m}$, star of order $2 m$, and $G_{2}=m K_{2}$, matching of size m, where $n=2 m$.

A Distinction

- In packing problems, each member of a 'large' family of graphs contains each member of another 'large' family of graphs.

Theorem (Bollobás, Eldridge (1978), \& Teo, Yap (1990))
If $\Delta_{1}, \Delta_{2}<n-1$, and $e\left(G_{1}\right)+e\left(G_{2}\right) \leq 2 n-2$, then G_{1} and G_{2} do not pack if and only if they are one of the thirteen specified pairs of graphs.

A Distinction

- In packing problems, each member of a 'large' family of graphs contains each member of another 'large' family of graphs.

Conjecture (Erdős-Sós (1962))
Let G be a graph of order n and T be a tree of size k.
If $e(G)<\frac{1}{2} n(n-k)$ then T and G pack.

A Distinction

- In packing problems, each member of a 'large' family of graphs contains each member of another 'large’ family of graphs.

Conjecture (Erdős-Sós (1962))
Let G be a graph of order n and T be a tree of size k. If $e(G)<\frac{1}{2} n(n-k)$ then T and G pack.

- Each graph with more than $\frac{1}{2} n(k-1)$ edges contains every tree of size k.
This says average degree k guarantees every tree of size k. The corresponding minimum degree result is easy.

A Distinction

- In packing problems, each member of a 'large' family of graphs contains each member of another 'large' family of graphs.

Conjecture (Erdős-Sós (1962))
Let G be a graph of order n and T be a tree of size k.
If $e(G)<\frac{1}{2} n(n-k)$ then T and G pack.

- Sharp, if true. Take disjoint copies of k-cliques.

Known only for special classes of trees, etc.

Bollobás-Eldridge-Catlin Conjecture

Conjecture (Bollobás, Eldridge (1978), \& Catlin (1976)) If $\left(\Delta_{1}+1\right)\left(\Delta_{2}+1\right) \leq n+1$ then G_{1} and G_{2} pack.

- If $\delta(G)>\frac{k n-1}{k+1}$, then
G contains all graphs with maximum degree at most k.
- If true, this conjecture would be sharp:
$\Delta_{2} K_{\Delta_{1}+1}+K_{\Delta_{1}-1}$ and $\Delta_{1} K_{\Delta_{2}+1}+K_{\Delta_{2}-1}$

Bollobás-Eldridge-Catlin Conjecture

Conjecture (Bollobás, Eldridge (1978), \& Catlin (1976))
If $\left(\Delta_{1}+1\right)\left(\Delta_{2}+1\right) \leq n+1$ then G_{1} and G_{2} pack.

- If true, this conjecture would be a considerable extension of

Theorem (Hajnal-Szemerédi (1971))
Every graph G has an equitable k-coloring for $k \geq \Delta(G)+1$.
Equitable colorings of graphs have been used to

- extend Chernoff-Hoeffding concentration bounds to dependent random variables (Pemmaraju, 2003)
- extend Arnold-Groeneveld order statistics bounds to dependent random variables (Kaul, Jacobson, 2006)

Bollobás-Eldridge-Catlin Conjecture

Conjecture (Bollobás, Eldridge (1978), \& Catlin (1976)) If $\left(\Delta_{1}+1\right)\left(\Delta_{2}+1\right) \leq n+1$ then G_{1} and G_{2} pack.

- The conjecture has only been proved when
$\Delta_{1} \leq 2$ [Aigner, Brandt (1993), and Alon, Fischer (1996)],
$\Delta_{1}=3$ and n is huge [Csaba, Shokoufandeh, Szemerédi (2003)].
Near-packing of degree 1 [Eaton (2000)].
$G_{1} d$-degenerate, $\max \left\{40 \Delta_{1} \log \Delta_{2}, 40 d \Delta_{2}\right\}<n$
[Bollobás, Kostochka, Nakprasit (2008)].
G_{1} contains no $K_{2, t}$ and $\Delta_{1}>17 t \Delta_{2}$ [van Batenburg, Kang (2019)].

Bollobás-Eldridge-Catlin Conjecture

Conjecture (Bollobás, Eldridge (1978), \& Catlin (1976)) If $\left(\Delta_{1}+1\right)\left(\Delta_{2}+1\right) \leq n+1$ then G_{1} and G_{2} pack.

Theorem (Kaul, Kostochka, Yu (2008))
For $\Delta_{1}, \Delta_{2} \geq 300$,
If $\left(\Delta_{1}+1\right)\left(\Delta_{2}+1\right) \leq(0.6) n+1$, then G_{1} and G_{2} pack.

Theorem (Sauer \& Spencer (1978))
If $\Delta_{1} \Delta_{2}<(0.5) n$, then G_{1} and G_{2} pack.

Classic Results on Graph Packing

Theorem (Sauer \& Spencer (1978))
If $2 \Delta_{1} \Delta_{2}<n$, then G_{1} and G_{2} pack.

Classic Results on Graph Packing

Theorem (Sauer \& Spencer (1978)) If $2 \Delta_{1} \Delta_{2}<n$, then G_{1} and G_{2} pack.

- Sharp: $G_{1}=\frac{n}{2} K_{2} . G_{2} \supseteq K_{\frac{n}{2}+1}$, or $G_{2}=K_{\frac{n}{2}, \frac{n}{2}}$ with $\frac{n}{2}$ odd.

$K_{3,3}$

$2 k_{2}$

$3 k_{2}$

k_{3}

No!

No!

Classic Results on Graph Packing

Characterization of the extremal graphs for the Sauer-Spencer Theorem.

Theorem (Kaul, Kostochka (2007))
If $2 \Delta_{1} \Delta_{2} \leq n$, then
G_{1} and G_{2} do not pack if and only if
one of G_{1} and G_{2} is a perfect matching and the other either is $K_{\frac{n}{2}, \frac{n}{2}}$ with $\frac{n}{2}$ odd or contains $K_{\frac{n}{2}+1}$.

Classic Results on Graph Packing

Theorem (Brandt (1994))
If G is a graph and T is a tree with $\ell(T)$ leaves, both on n vertices, and $3 \Delta(G)+\ell(T)-2<n$ then G and T pack.

- A partial step towards the Erdős-Sós conjecture: a graph G contains every tree T with $\ell(T) \leq 3 \delta(G)-2 n+4$.

Classic Results on Graph Packing

Theorem (Brandt (1994))
If G is a graph and T is a tree with $\ell(T)$ leaves, both on n vertices, and $3 \Delta(G)+\ell(T)-2<n$ then G and T pack.

- Characterization of extremal graphs?

Extremal Graphs for Brandt

Theorem (Brandt (1994))
If G is a graph and T is a tree with $\ell(T)$ leaves, both on n vertices, and $3 \Delta(G)+\ell(T)-2<n$ then G and T pack.

- Characterization of extremal graphs of Brandt.

Theorem (K., Reiniger (2020+))
If G is a graph and F is a forest, both on n vertices, and $3 \Delta(G)+\ell^{*}(F) \leq n$ then G and F pack unless n is even, $G=\frac{n}{2} K_{2}$, and $F=K_{1, n-1}$

- $\ell^{*}(F)=\ell(F)-2 \operatorname{comp}(F)$, where $\operatorname{comp}(F)$ denotes the number of non-trivial components of F.
- $\ell^{*}(F)$ represents the number of "excess leaves" compared to a linear forest.
- For a tree $T, \ell^{*}(T)=\ell(T)-2$.

Extremal Graphs for Brandt

Theorem (Brandt (1994))
If G is a graph and T is a tree with $\ell(T)$ leaves, both on n vertices, and $3 \Delta(G)+\ell(T)-2<n$ then G and T pack.

- Characterization of extremal graphs of Brandt.

Theorem (K., Reiniger (2020+))
If G is a graph and F is a forest, both on n vertices, and $3 \Delta(G)+\ell^{*}(F) \leq n$ then G and F pack unless n is even, $G=\frac{n}{2} K_{2}$, and $F=K_{1, n-1}$.

- $\ell^{*}(F)=\ell(F)-2 \operatorname{comp}(F)$, where comp (F) denotes the number of non-trivial components of F.
- $\ell^{*}(F)$ represents the number of "excess leaves" compared to a linear forest.
- For a tree $T, \ell^{*}(T)=\ell(T)-2$.

A Generalization of Sauer-Spencer \& Brandt

- Recall, a graph G is c-degenerate if every subgraph of it has a vertex of degree at most c. It is a measure of sparseness of a graph and equivalent to core number, or coloring number.

A Generalization of Sauer-Spencer \& Brandt

Theorem (K., Reiniger (2020+))
Let G be a graph and H a c-degenerate graph, both on n vertices.
Let $d_{1}^{(G)} \geq d_{2}^{(G)} \geq \cdots \geq d_{n}^{(G)}$ be the degree sequence of G, and similarly for H .
If $\sum_{i=1}^{\Delta(G)} d_{i}^{(H)}+\sum_{j=1}^{c} d_{j}^{(G)}<n$, then G and H pack.

A Generalization of Sauer-Spencer \& Brandt

Theorem (K., Reiniger (2020+))
Let G be a graph and H a c-degenerate graph, both on n vertices.
Let $d_{1}^{(G)} \geq d_{2}^{(G)} \geq \cdots \geq d_{n}^{(G)}$ be the degree sequence of G, and similarly for H .
If $\sum_{i=1}^{\Delta(G)} d_{i}^{(H)}+\sum_{j=1}^{c} d_{j}^{(G)}<n$, then G and H pack.

- This strengthens Sauer-Spencer, since $c \leq \Delta(H)$.

A Generalization of Sauer-Spencer \& Brandt

Theorem (K., Reiniger (2020+))
Let G be a graph and H a c-degenerate graph, both on n vertices.
Let $d_{1}^{(G)} \geq d_{2}^{(G)} \geq \cdots \geq d_{n}^{(G)}$ be the degree sequence of G, and similarly for H .
If $\sum_{i=1}^{\Delta(G)} d_{i}^{(H)}+\sum_{j=1}^{c} d_{j}^{(G)}<n$, then G and H pack.

- This also strengthens Brandt's theorem: if H is a tree, then $c=1$, so the second summation is just $\Delta(G)$. For the first summation,

$$
\sum_{i=1}^{\Delta(G)} d_{i}^{(H)}=2 \Delta(G)+\sum_{i=1}^{\Delta(G)}\left(d_{i}^{(H)}-2\right) \leq 2 \Delta(G)+\ell(H)-2 .
$$

A Generalization of Sauer-Spencer \& Brandt

Theorem (K., Reiniger (2020+))
Let G be a graph and H a c-degenerate graph, both on n vertices.
Let $d_{1}^{(G)} \geq d_{2}^{(G)} \geq \cdots \geq d_{n}^{(G)}$ be the degree sequence of G, and similarly for H .
If $\sum_{i=1}^{\Delta(G)} d_{i}^{(H)}+\sum_{j=1}^{c} d_{j}^{(G)}<n$, then G and H pack.

- This Theorem retains all the Sauer-Spencer extremal graphs:
- $H=\frac{n}{2} K_{2}$ and $G \supseteq K_{n / 2+1}$
- $H=\frac{n}{2} K_{2}$ and $G=K_{n / 2, n / 2}$, with $n / 2$ odd
- $H \supseteq K_{n / 2+1}$ and $G=\frac{n}{2} K_{2}$
- $H=K_{n / 2, n / 2}$ and $G=\frac{n}{2} K_{2}$, with $n / 2$ odd

And it has an additional family of extremal graphs:

- $H=K_{s, n-s}$ and $G=\frac{n}{2} K_{2}$, with s odd
(in particular, $H=K_{1, n-1}$ and $G=\frac{n}{2} K_{2}$)
We do not know whether these are all the extremal graphs.

A Packing Puzzle

Can you fill in the numbers $1,2, \ldots, 17$ in the 17 circles below without repetition so that no two consecutive numbers are placed in circles with a line segment joining them?

A Packing Puzzle

Can you pack P_{17} with this given graph?

A Packing Puzzle

Can you pack P_{17} with this given graph?

- Dirac (If $\Delta(G) \leq n / 2-1$, then G packs with C_{n}) fails to apply.

A Packing Puzzle

Can you pack P_{17} with this given graph?

- Sauer-Spencer (and its extension) fails to apply.

A Packing Puzzle

Can you pack P_{17} with this given graph?

- Bollobas-Eldridge-Catlin (if its true) fails to apply.

A Packing Puzzle

Can you pack P_{17} with this given graph?

- Yes! By our result ($G=P_{17}, H$ be the given graph which is 2-degenerate, so $c=2$.)

Some Proof Ideas

- Structural Analysis of a (hypothetical) minimal counterexample.

Some Proof Ideas

- Think of a bijective mapping $f: V(G) \rightarrow V(H)$ as the multigraph with vertices $V(G)$ and edges labelled by G (green) or H (red).

Some Proof Ideas

- Think of a bijective mapping $f: V(G) \rightarrow V(H)$ as the multigraph with vertices $V(G)$ and edges labelled by G (green) or H (red).

$G \underset{\text { bjedion }}{\stackrel{\rightharpoonup}{\longrightarrow}}+1$

multigraph

Some Proof Ideas

- Think of a bijective mapping $f: V(G) \rightarrow V(H)$ as the multigraph with vertices $V(G)$ and edges labelled by G (green) or H (red).

$H G-l i n k$
- A link is a copy of P_{3} with one G-edge and one H-edge, that is a green-red (or red-green) path. We will also say: uv-link, GH-link, etc.

Some Proof Ideas

- From a given mapping f, a $u v$-swap results in a new mapping f^{\prime} with $f^{\prime}(u)=f(v), f^{\prime}(v)=f(u)$, and $f^{\prime}=f$ otherwise.
That is, u and v exchange their green-neighbors.

Some Proof Ideas

- From a given mapping f, a $u v$-swap results in a new mapping f^{\prime} with $f^{\prime}(u)=f(v), f^{\prime}(v)=f(u)$, and $f^{\prime}=f$ otherwise.
That is, u and v exchange their green-neighbors.

Some Proof Ideas

- A quasipacking of G with H is a bijective mapping f whose multigraph is simple except for a single pair of vertices joined by both an G-edge and a H-edge (the conflicting edge).

Outline of the Proof - I

Theorem (K., Reiniger (2020+))
Let G be a graph and H a c-degenerate graph, both on n
vertices. Let $d_{1}^{(G)} \geq d_{2}^{(G)} \geq \cdots \geq d_{n}^{(G)}$ be the degree sequence of G, and similarly for H.
If $\sum_{i=1}^{\Delta(G)} d_{i}^{(H)}+\sum_{j=1}^{c} d_{j}^{(G)}<n$, then G and H pack.

Outline of the Proof - I

Theorem (K., Reiniger (2020+))
Let G be a graph and H a c-degenerate graph, both on n
vertices. Let $d_{1}^{(G)} \geq d_{2}^{(G)} \geq \cdots \geq d_{n}^{(G)}$ be the degree sequence
of G, and similarly for H.
If $\sum_{i=1}^{\Delta(G)} d_{i}^{(H)}+\sum_{j=1}^{c} d_{j}^{(G)}<n$, then G and H pack.

- Consider a pair of graphs (G, H) satisfying the given condition, with H being c-degenerate, each on n vertices, that do not pack; furthermore assume that H is edge-minimal with this property.
Thus for any edge e in H, G and H - e pack, and so there is a quasipacking of H and G with conflicting edge e.

Outline of the Proof - I

- Consider a pair of graphs (G, H) satisfying the given condition, with H being c-degenerate, each on n vertices, that do not pack; furthermore assume that H is edge-minimal with this property.
Thus for any edge e in H, G and H - e pack, and so there is a quasipacking of H and G with conflicting edge e.
- Let \underline{u}^{\prime} be a vertex of minimum positive degree in H, let $x^{\prime} \in N_{H}\left(u^{\prime}\right)$, and consider a quasipacking f of G with H with conflicting edge $u^{\prime} x^{\prime}$. Let $u=f^{-1}\left(u^{\prime}\right)$ and $x=f^{-1}\left(x^{\prime}\right)$.

Outline of the Proof - I

- Let \underline{u}^{\prime} be a vertex of minimum positive degree in H, let $x^{\prime} \in N_{H}\left(u^{\prime}\right)$, and consider a quasipacking f of G with H with conflicting edge $u^{\prime} x^{\prime}$. Let $u=f^{-1}\left(u^{\prime}\right)$ and $x=f^{-1}\left(x^{\prime}\right)$.

Outline of the Proof - I

- There is a uy-link for every $y \in V(G) \backslash\{u, x\}$.

Perform a uy-swap: since G and H do not pack, there must be some conflicting edge, and such a conflict must involve an H-edge incident to either u or y. In either case, this along with the conflicting G-edge gives a uy-link in the original multigraph.

Outline of the Proof - I

- There is a uy-link for every $y \in V(G) \backslash\{u, x\}$.

Perform a uy-swap: since G and H do not pack, there must be some conflicting edge, and such a conflict must involve an H-edge incident to either u or y. In either case, this along with the conflicting G-edge gives a uy-link in the original multigraph.

Outline of the Proof - I

- There is a uy-link for every $y \in V(G) \backslash\{u, x\}$.
- There are two links from u to itself, using the parallel edges $u x$ in each order. Thus, there are at least n links from u.

Outline of the Proof - I

- There are at least n links from u.
- The number of GH-links from u is at most $\sum_{y \in N_{G}(u)} \operatorname{deg}_{H}(f(y))$. (sum of red-degrees of green neighbors of u)
- The number of $H G$-links from u is at most

$$
\sum_{z^{\prime} \in N_{H}\left(u^{\prime}\right)} \operatorname{deg}_{G}\left(f^{-1}\left(z^{\prime}\right)\right) .
$$

(sum of green-degrees of red neighbors of u)

Outline of the Proof - I

n
\leq \# links from u
$\leq \sum_{y \in N_{G}(u)} \operatorname{deg}_{H}(f(y))+\sum_{z^{\prime} \in N_{H}\left(u^{\prime}\right)} \operatorname{deg}_{G}\left(f^{-1}\left(z^{\prime}\right)\right)$
$\leq \sum_{i=1}^{\Delta(G)} d_{i}^{(H)}+\sum_{j=1}^{c} d_{j}^{(G)}$, by the choice of u^{\prime}
Contradiction!

Outline of the Proof - II

Theorem (K., Reiniger (2020+))
If G is a graph and F is a forest, both on n vertices, and $3 \Delta(G)+\ell^{*}(F) \leq n$ then G and F pack unless n is even, $G=\frac{n}{2} K_{2}$, and $F=K_{1, n-1}$.

- Now, we suppose that H is a forest, henceforth called F, and that $3 \Delta(G)+\ell^{*}(F)=n$.
We still assume that G and F do not pack, and that F is edge-minimal with this property.
- If $\Delta(G)=1$, then it is easy to show that n is even, $G=\frac{n}{2} K_{2}$, and $F=K_{1, n-1}$.
So we can assume that $\Delta(G)>1$, and seek a contradiction.

Outline of the Proof - II

- In the current setup, u^{\prime} is a leaf of F and x^{\prime} its neighbor.

$$
n \leq \text { \# links from } u
$$

$$
\begin{align*}
& \leq \sum_{y \in N_{G}(u)} \operatorname{deg}_{F}(f(y))+\operatorname{deg}_{G}(x) \tag{1}\\
& \leq \sum_{y \in N_{G}(u)}\left(\operatorname{deg}_{F}(f(y))-2\right)+2 \Delta(G)+\Delta(G) \tag{2}\\
& \leq \sum_{y \in N_{G}(u)} \max \left\{\operatorname{deg}_{F}(f(y))-2,0\right\}+3 \Delta(G) \tag{3}\\
& \leq \sum_{i=1}^{n} \max \left\{d_{i}^{(F)}-2,0\right\}+3 \Delta(G)=3 \Delta(G)+\ell^{*}(F)=n, \tag{4}
\end{align*}
$$

so we have equality throughout.

Outline of the Proof - II

- Analyzing each of the four equations above, gives us:

Lemma
For any leaf u^{\prime} of F and x^{\prime} its neighbor, and a quasipacking f of G with F with $f(u)=u^{\prime}$ and $f(x)=x^{\prime}$ and conflicting edge $u x$, we have the following.
(1) For every $y \in V(G) \backslash\{u, x\}$, there is a unique link from u to y; there is no link from u to x; and there are two links from u to itself.
(2) $\operatorname{deg}_{G}(x)=\operatorname{deg}_{G}(u)=\Delta(G)$.
(3) For every $w \in N_{G}(u), \operatorname{deg}_{F}(f(w)) \geq 2$.
(4) For every $w \notin N_{G}(u), \operatorname{deg}_{F}(f(w)) \leq 2$.

Outline of the Proof - II

Lemma
For any leaf u^{\prime} of F and x^{\prime} its neighbor, and a quasipacking f of G with F with $f(u)=u^{\prime}$ and $f(x)=x^{\prime}$ and conflicting edge $u x$, we have the following.
(1) $N_{G}[u]=N_{G}[x]$.
(2) $G\left[N_{G}[u]\right]$ is a clique component.

Use appropriately chosen swap operations and the previous lemma to show that the structure of quasipacking looks like:

Outline of the Proof - II

- We can show that
- $\{u, x\}, A, B, C, N_{A}, N_{B}, N_{x}$ is a partition of $V(G)$
- A, N_{A}, N_{C}, C are all empty
- $N_{G}[u]=N_{G}[x]=\{u, x\} \cup B$ forms a clique in G.

Outline of the Proof - II

- Let $G[Q]$ be the clique component of G given by the Lemma 2.
Let z be a vertex of Q with smallest F-degree larger than 1 (such a choice is possible by Lemma 1). Let $z_{1}, z_{2} \in V(G)$ be two F-neighbors of z.

Outline of the Proof - II

- Let $G[Q]$ be the clique component of G given by the Lemma 2. Let z be a vertex of Q with smallest F-degree larger than 1 (such a choice is possible by Lemma 1).
Let $z_{1}, z_{2} \in V(G)$ be two F-neighbors of z.
- We can show that $Q \cup\left\{z_{1}, z_{2}\right\} \backslash\{u, z\}$ is F-independent.
- Let $X=f\left(Q \cup\left\{z_{1}, z_{2}\right\} \backslash\{u, z\}\right)$.

Let $g: V(G) \rightarrow V(F)$ be a bijection such that $g(Q)=X$.
Since $G[Q]$ is a clique component and X is independent, g is a packing if and only if $\left.g\right|_{G-Q}$ is a packing of $G-Q$ with $F-X$.

- Since G and F do not pack, we must have that $G-Q$ and $F-X$ do not pack.
We get a contradiction by showing that $G-Q$ and $F-X$ pack.

Thank You!
 Questions?

Conjecture (Erdős-Sós (1962))

Let G be a graph of order n and T be a tree of size k.
If $e(G)<\frac{1}{2} n(n-k)$ then T and G pack.

Conjecture (Bollobás-Eldridge (1978), \& Catlin (1976)) If $\left(\Delta_{1}+1\right)\left(\Delta_{2}+1\right) \leq n+1$ then G_{1} and G_{2} pack.

- Characterize all extremal graphs of:

Theorem (K., Reiniaer (2020+))
Let G be a graph and H a c-degenerate graph, both on n vertices.
Let $d_{1}^{(G)} \geq d_{2}^{(G)} \geq \cdots \geq d_{n}^{(G)}$ be the degree sequence of G, and
similarly for H .
If $\sum_{i=1}^{n^{\prime(C)}} d_{i}^{(H)}+\sum_{i=1}^{c} d^{(C)}<n$, then G and H pack

Thank You!
 Questions?

Conjecture (Erdős-Sós (1962))
Let G be a graph of order n and T be a tree of size k.
If $e(G)<\frac{1}{2} n(n-k)$ then T and G pack.

Conjecture (Bollobás-Eldridge (1978), \& Catlin (1976)) If $\left(\Delta_{1}+1\right)\left(\Delta_{2}+1\right) \leq n+1$ then G_{1} and G_{2} pack.

- Characterize all extremal graphs of:

Theorem (K., Reiniger (2020+))
Let G be a graph and H a c-degenerate graph, both on n vertices.
Let $d_{1}^{(G)} \geq d_{2}^{(G)} \geq \cdots \geq d_{n}^{(G)}$ be the degree sequence of G, and similarly for H .
If $\sum_{i=1}^{\Delta(G)} d_{i}^{(H)}+\sum_{j=1}^{c} d_{j}^{(G)}<n$, then G and H pack.

