Graph Packing and a Generalization of the Theorems of Sauer-Spencer and Brandt

Hemanshu Kaul

Illinois Institute of Technology

www.math.iit.edu/~kaul

kaul@iit.edu

Joint work with Benjamin Reiniger

A Puzzle

Can you fill in the numbers 1, 2, ..., 17 in the 17 circles below without repetition so that no two consecutive numbers are placed in circles with a line segment joining them?

- G₁ = (V₁, E₁) and G₂ = (V₁, E₁), two *n*-vertex graphs are said to pack if there exist injective mappings of the vertex sets into [*n*],
 V_i → [*n*] = {1, 2, ..., n}, *i* = 1, 2,
 - $v_i \rightarrow [n] = \{1, 2, \dots, n\}, i = 1, 2,$ such that the images of the edge sets do not intersect.
- Equivalently, there exists a bijection V₁ ↔ V₂ such that e ∈ E₁ ⇒ e ∉ E₂.
- G_1 is a subgraph of $\overline{G_2}$, the complement of G_2 .
- This definition is easily generalizable to more than two graphs, or to hypergraphs, etc.

G₁ = (V₁, E₁) and G₂ = (V₁, E₁), two *n*-vertex graphs are said to pack if there exist injective mappings of the vertex sets into [*n*],
 V_i → [*n*] = {1, 2, ..., n}, *i* = 1, 2,

such that the images of the edge sets do not intersect.

- Equivalently, there exists a bijection $V_1 \leftrightarrow V_2$ such that $e \in E_1 \Rightarrow e \notin E_2$.
- G_1 is a subgraph of $\overline{G_2}$, the complement of G_2 .
- This definition is easily generalizable to more than two graphs, or to hypergraphs, etc.

- G₁ = (V₁, E₁) and G₂ = (V₁, E₁), two *n*-vertex graphs are said to pack if there exist injective mappings of the vertex sets into [*n*],
 V_i → [*n*] = {1, 2, ..., n}, *i* = 1, 2,
 - $V_i \rightarrow [II] = \{1, 2, \dots, II\}, I = 1, 2,$

such that the images of the edge sets do not intersect.

- Equivalently, there exists a bijection $V_1 \leftrightarrow V_2$ such that $e \in E_1 \Rightarrow e \notin E_2$.
- G_1 is a subgraph of $\overline{G_2}$, the complement of G_2 .
- This definition is easily generalizable to more than two graphs, or to hypergraphs, etc.

G₁ = (V₁, E₁) and G₂ = (V₁, E₁), two *n*-vertex graphs are said to pack if there exist injective mappings of the vertex sets into [*n*],
 V_i → [*n*] = {1, 2, ..., n}, *i* = 1, 2,

such that the images of the edge sets do not intersect.

- Equivalently, there exists a bijection $V_1 \leftrightarrow V_2$ such that $e \in E_1 \Rightarrow e \notin E_2$.
- G_1 is a subgraph of $\overline{G_2}$, the complement of G_2 .
- This definition is easily generalizable to more than two graphs, or to hypergraphs, etc.

A Common Generalization

- Hamiltonian Cycle in graph G: Whether the *n*-cycle C_n packs with \overline{G} .
- The independence number α(G) of an *n*-vertex graph G is at least k if and only if G packs with K_k + K_{n-k}.
- Proper *k*-coloring of *n*-vertex graph *G* : Whether *G* packs with an *n*-vertex graph that is the union of *k* cliques.
- Equitable *k*-coloring of *n*-vertex graph *G* : Whether *G* packs with complement of the Turán Graph *T*(*n*, *k*).
- Turán-type problems : Every graph with more than *ex*(*n*, *H*) edges must pack with *H*.
- Ramsey-type problems.
- "most" problems in Graph Theory.

 In packing problems, each member of a 'large' family of graphs contains each member of another 'large' family of graphs.

- In packing problems, each member of a 'large' family of graphs contains each member of another 'large' family of graphs.
- In subgraph problems, (usually) at least one of the two graphs is fixed.

 In packing problems, each member of a 'large' family of graphs contains each member of another 'large' family of graphs.

Theorem If $e(G_1)e(G_2) < \binom{n}{2}$, then G_1 and G_2 pack.

 In packing problems, each member of a 'large' family of graphs contains each member of another 'large' family of graphs.

Theorem If $e(G_1)e(G_2) < \binom{n}{2}$, then G_1 and G_2 pack.

Proof. Pick a random bijection between $V(G_1)$ and $V(G_2)$, uniformly among the set of all n! such bijections.

Sharp for $G_1 = S_{2m}$, star of order 2m, and $G_2 = mK_2$, matching of size m, where n = 2m.

 In packing problems, each member of a 'large' family of graphs contains each member of another 'large' family of graphs.

Theorem (Bollobás, Eldridge (1978), & Teo, Yap (1990)) If Δ_1 , $\Delta_2 < n - 1$, and $e(G_1) + e(G_2) \le 2n - 2$, then G_1 and G_2 do not pack if and only if they are one of the thirteen specified pairs of graphs.

 In packing problems, each member of a 'large' family of graphs contains each member of another 'large' family of graphs.

Conjecture (Erdős-Sós (1962)) Let *G* be a graph of order *n* and *T* be a tree of size *k*. If $e(G) < \frac{1}{2}n(n-k)$ then *T* and *G* pack.

 In packing problems, each member of a 'large' family of graphs contains each member of another 'large' family of graphs.

Conjecture (Erdős-Sós (1962)) Let *G* be a graph of order *n* and *T* be a tree of size *k*. If $e(G) < \frac{1}{2}n(n-k)$ then *T* and *G* pack.

- Each graph with more than ¹/₂n(k 1) edges contains every tree of size k.
 This says average degree k guarantees every tree of size k.
 - The corresponding minimum degree result is easy.

 In packing problems, each member of a 'large' family of graphs contains each member of another 'large' family of graphs.

Conjecture (Erdős-Sós (1962)) Let *G* be a graph of order *n* and *T* be a tree of size *k*. If $e(G) < \frac{1}{2}n(n-k)$ then *T* and *G* pack.

• Sharp, if true. Take disjoint copies of *k*-cliques. Known only for special classes of trees, etc.

Conjecture (Bollobás, Eldridge (1978), & Catlin (1976)) If $(\Delta_1 + 1)(\Delta_2 + 1) \le n + 1$ then G_1 and G_2 pack.

- If δ(G) > kn-1/k+1, then
 G contains all graphs with maximum degree at most k.
- If true, this conjecture would be sharp: $\Delta_2 K_{\Delta_1+1} + K_{\Delta_1-1}$ and $\Delta_1 K_{\Delta_2+1} + K_{\Delta_2-1}$

Conjecture (Bollobás, Eldridge (1978), & Catlin (1976)) If $(\Delta_1 + 1)(\Delta_2 + 1) \le n + 1$ then G_1 and G_2 pack.

• If true, this conjecture would be a considerable extension of Theorem (Hajnal-Szemerédi (1971)) Every graph G has an equitable k-coloring for $k \ge \Delta(G) + 1$.

Equitable colorings of graphs have been used to

- extend Chernoff-Hoeffding concentration bounds to dependent random variables (Pemmaraju, 2003)
- extend Arnold-Groeneveld order statistics bounds to dependent random variables (Kaul, Jacobson, 2006)

Conjecture (Bollobás, Eldridge (1978), & Catlin (1976)) If $(\Delta_1 + 1)(\Delta_2 + 1) \le n + 1$ then G_1 and G_2 pack.

The conjecture has only been proved when

 $\Delta_1 \leq 2$ [Aigner, Brandt (1993), and Alon, Fischer (1996)],

 $\Delta_1 = 3$ and n is huge [Csaba, Shokoufandeh, Szemerédi (2003)].

Near-packing of degree 1 [Eaton (2000)].

 $G_1 \ d$ -degenerate, max $\{40\Delta_1 \log \Delta_2, 40d\Delta_2\} < n$ [Bollobás, Kostochka, Nakprasit (2008)].

 G_1 contains no $K_{2,t}$ and $\Delta_1 > 17t\Delta_2$ [van Batenburg, Kang (2019)].

Conjecture (Bollobás, Eldridge (1978), & Catlin (1976)) If $(\Delta_1 + 1)(\Delta_2 + 1) \le n + 1$ then G_1 and G_2 pack.

Theorem (Kaul, Kostochka, Yu (2008)) For Δ_1 , $\Delta_2 \ge 300$, If $(\Delta_1 + 1)(\Delta_2 + 1) \le (0.6)n + 1$, then G_1 and G_2 pack.

Theorem (Sauer & Spencer (1978)) If $\Delta_1 \Delta_2 < (0.5)n$, then G_1 and G_2 pack.

Theorem (Sauer & Spencer (1978)) If $2\Delta_1\Delta_2 < n$, then G_1 and G_2 pack.

Classic Results on Graph Packing Theorem (Sauer & Spencer (1978)) If $2\Delta_1\Delta_2 < n$, then G_1 and G_2 pack.

• Sharp: $G_1 = \frac{n}{2}K_2$. $G_2 \supseteq K_{\frac{n}{2}+1}$, or $G_2 = K_{\frac{n}{2},\frac{n}{2}}$ with $\frac{n}{2}$ odd.

Characterization of the extremal graphs for the Sauer-Spencer Theorem.

Theorem (Kaul, Kostochka (2007))

If $2\Delta_1\Delta_2 \leq n$, then G_1 and G_2 do not pack if and only if one of G_1 and G_2 is a perfect matching and the other either is $K_{\frac{n}{2},\frac{n}{2}}$ with $\frac{n}{2}$ odd or contains $K_{\frac{n}{2}+1}$.

Theorem (Brandt (1994))

If G is a graph and T is a tree with $\ell(T)$ leaves, both on n vertices, and $3\Delta(G) + \ell(T) - 2 < n$ then G and T pack.

 A partial step towards the Erdős-Sós conjecture: a graph G contains every tree T with ℓ(T) ≤ 3δ(G) – 2n + 4.

Theorem (Brandt (1994))

If G is a graph and T is a tree with $\ell(T)$ leaves, both on n vertices, and $3\Delta(G) + \ell(T) - 2 < n$ then G and T pack.

Characterization of extremal graphs?

Extremal Graphs for Brandt

Theorem (Brandt (1994))

If G is a graph and T is a tree with $\ell(T)$ leaves, both on n vertices, and $3\Delta(G) + \ell(T) - 2 < n$ then G and T pack.

• Characterization of extremal graphs of Brandt.

Theorem (K., Reiniger (2020+)) If *G* is a graph and *F* is a forest, both on *n* vertices, and $3\Delta(G) + \ell^*(F) \le n$ then *G* and *F* pack unless *n* is even, $G = \frac{n}{2}K_2$, and $F = K_{1,n-1}$.

- ℓ*(F) = ℓ(F) 2 comp(F), where comp(F) denotes the number of non-trivial components of F.
- *l**(*F*) represents the number of "excess leaves" compared to a linear forest.

• For a tree *T*,
$$\ell^*(T) = \ell(T) - 2$$
.

Extremal Graphs for Brandt

Theorem (Brandt (1994))

If G is a graph and T is a tree with $\ell(T)$ leaves, both on n vertices, and $3\Delta(G) + \ell(T) - 2 < n$ then G and T pack.

• Characterization of extremal graphs of Brandt.

Theorem (K., Reiniger (2020+))

If G is a graph and F is a forest, both on n vertices, and $3\Delta(G) + \ell^*(F) \le n$ then G and F pack unless n is even, $G = \frac{n}{2}K_2$, and $F = K_{1,n-1}$.

- ℓ*(F) = ℓ(F) 2 comp(F), where comp(F) denotes the number of non-trivial components of F.
- \$\ell^*(F)\$ represents the number of "excess leaves" compared to a linear forest.

• For a tree
$$T$$
, $\ell^*(T) = \ell(T) - 2$.

Recall, a graph G is *c*-degenerate if every subgraph of it has a vertex of degree at most *c*.
 It is a measure of sparseness of a graph and equivalent to *core number*, or *coloring number*.

Theorem (K., Reiniger (2020+))

Let G be a graph and H a c-degenerate graph, both on n vertices. Let $d_1^{(G)} \ge d_2^{(G)} \ge \cdots \ge d_n^{(G)}$ be the degree sequence of G, and

Let $d_1^{(\alpha)} \ge d_2^{(\alpha)} \ge \cdots \ge d_n^{(\alpha)}$ be the degree sequence of G, and similarly for H.

If $\sum_{i=1}^{\Delta(G)} d_i^{(H)} + \sum_{j=1}^c d_j^{(G)} < n$, then G and H pack.

Theorem (K., Reiniger (2020+))

Let G be a graph and H a c-degenerate graph, both on n vertices. Let $d_1^{(G)} \ge d_2^{(G)} \ge \cdots \ge d_n^{(G)}$ be the degree sequence of G, and similarly for H. If $\sum_{i=1}^{\Delta(G)} d_i^{(H)} + \sum_{j=1}^{c} d_j^{(G)} < n$, then G and H pack.

• This strengthens Sauer-Spencer, since $c \leq \Delta(H)$.

Theorem (K., Reiniger (2020+))

Let G be a graph and H a c-degenerate graph, both on n vertices.

Let $d_1^{(G)} \ge d_2^{(G)} \ge \cdots \ge d_n^{(G)}$ be the degree sequence of G, and similarly for H.

If
$$\sum_{i=1}^{\Delta(G)} d_i^{(H)} + \sum_{j=1}^{c} d_j^{(G)} < n$$
, then G and H pack.

This also strengthens Brandt's theorem:
 if *H* is a tree, then *c* = 1, so the second summation is just Δ(*G*). For the first summation,

$$\sum_{i=1}^{\Delta(G)} d_i^{(H)} = 2\Delta(G) + \sum_{i=1}^{\Delta(G)} \left(d_i^{(H)} - 2
ight) \leq 2\Delta(G) + \ell(H) - 2.$$

Theorem (K., Reiniger (2020+))

Let G be a graph and H a c-degenerate graph, both on n vertices.

Let $d_1^{(G)} \ge d_2^{(G)} \ge \cdots \ge d_n^{(G)}$ be the degree sequence of G, and similarly for H.

- If $\sum_{i=1}^{\Delta(G)} d_i^{(H)} + \sum_{j=1}^c d_j^{(G)} < n$, then G and H pack.
 - This Theorem retains all the Sauer-Spencer extremal graphs:

•
$$H = \frac{n}{2}K_2$$
 and $G \supseteq K_{n/2+1}$

• $H = \frac{\overline{n}}{2}K_2$ and $G = K_{n/2,n/2}$, with n/2 odd

•
$$H \supseteq \overline{K}_{n/2+1}$$
 and $G = \frac{n}{2}K_2$

•
$$H = K_{n/2,n/2}$$
 and $G = \frac{n}{2}K_2$, with $n/2$ odd

And it has an additional family of extremal graphs:

•
$$H = K_{s,n-s}$$
 and $G = \frac{n}{2}K_2$, with *s* odd
(in particular, $H = K_{1,n-1}$ and $G = \frac{n}{2}K_2$)

We do not know whether these are all the extremal graphs.

A Packing Puzzle

Can you fill in the numbers 1, 2, ..., 17 in the 17 circles below without repetition so that no two consecutive numbers are placed in circles with a line segment joining them?

Can you pack P_{17} with this given graph?

Can you pack P_{17} with this given graph?

• Dirac (If $\Delta(G) \le n/2 - 1$, then G packs with C_n) fails to apply.

Can you pack P_{17} with this given graph?

• Sauer-Spencer (and its extension) fails to apply.

Can you pack P_{17} with this given graph?

Bollobas-Eldridge-Catlin (if its true) fails to apply.

Can you pack P_{17} with this given graph?

• Yes! By our result ($G = P_{17}$, H be the given graph which is 2-degenerate, so c = 2.)

• Structural Analysis of a (hypothetical) minimal counterexample.

Think of a bijective mapping f : V(G) → V(H) as the multigraph with vertices V(G) and edges labelled by G (green) or H (red).

Think of a bijective mapping *f* : *V*(*G*) → *V*(*H*) as the multigraph with vertices *V*(*G*) and edges labelled by *G* (green) or *H* (red).

Think of a bijective mapping f : V(G) → V(H) as the multigraph with vertices V(G) and edges labelled by G (green) or H (red).

 A link is a copy of P₃ with one G-edge and one H-edge, that is a green-red (or red-green) path.
 We will also say: uv-link, GH-link, etc.

From a given mapping f, a uv-swap results in a new mapping f' with f'(u) = f(v), f'(v) = f(u), and f' = f otherwise.

That is, *u* and *v* exchange their green-neighbors.

• From a given mapping f, a uv-swap results in a new mapping f' with f'(u) = f(v), f'(v) = f(u), and f' = f otherwise.

That is, *u* and *v* exchange their green-neighbors.

• A quasipacking of *G* with *H* is a bijective mapping *f* whose multigraph is simple except for a single pair of vertices joined by both an *G*-edge and a *H*-edge (the conflicting edge).

Theorem (K., Reiniger (2020+))

Let G be a graph and H a c-degenerate graph, both on n vertices. Let $d_1^{(G)} \ge d_2^{(G)} \ge \cdots \ge d_n^{(G)}$ be the degree sequence of G, and similarly for H. If $\sum_{i=1}^{\Delta(G)} d_i^{(H)} + \sum_{i=1}^{c} d_j^{(G)} < n$, then G and H pack.

Theorem (K., Reiniger (2020+))

Let G be a graph and H a c-degenerate graph, both on n vertices. Let $d_1^{(G)} \ge d_2^{(G)} \ge \cdots \ge d_n^{(G)}$ be the degree sequence of G, and similarly for H.

- If $\sum_{i=1}^{\Delta(G)} d_i^{(H)} + \sum_{j=1}^c d_j^{(G)} < n$, then G and H pack.
 - Consider a pair of graphs (G, H) satisfying the given condition, with H being c-degenerate, each on n vertices, that do not pack; furthermore assume that H is edge-minimal with this property.

Thus for any edge e in H, G and H - e pack, and so there is a quasipacking of H and G with conflicting edge e.

- Consider a pair of graphs (G, H) satisfying the given condition, with H being c-degenerate, each on n vertices, that do not pack; furthermore assume that H is edge-minimal with this property.
 Thus for any edge e in H, G and H e pack, and so there is a quasipacking of H and G with conflicting edge e.
- Let $\underline{u'}$ be a vertex of minimum positive degree in H, let $x' \in N_H(u')$, and consider a quasipacking f of G with H with conflicting edge u'x'. Let $u = f^{-1}(u')$ and $x = f^{-1}(x')$.

• Let $\underline{u'}$ be a vertex of minimum positive degree in H, let $x' \in N_H(u')$, and consider a quasipacking f of G with H with conflicting edge u'x'. Let $u = f^{-1}(u')$ and $x = f^{-1}(x')$.

• There is a *uy*-link for every $y \in V(G) \setminus \{u, x\}$.

Perform a *uy*-swap: since *G* and *H* do not pack, there must be some conflicting edge, and such a conflict must involve an *H*-edge incident to either *u* or *y*. In either case, this along with the conflicting *G*-edge gives a *uy*-link in the original multigraph.

• There is a *uy*-link for every $y \in V(G) \setminus \{u, x\}$.

Perform a *uy*-swap: since *G* and *H* do not pack, there must be some conflicting edge, and such a conflict must involve an *H*-edge incident to either *u* or *y*. In either case, this along with the conflicting *G*-edge gives a *uy*-link in the original multigraph.

- There is a *uy*-link for every $y \in V(G) \setminus \{u, x\}$.
- There are two links from *u* to itself, using the parallel edges *ux* in each order. Thus, there are at least *n* links from *u*.

- There are at least *n* links from *u*.
- The number of *GH*-links from *u* is at most $\sum_{y \in N_G(u)} \text{deg}_H(f(y))$. (sum of red-degrees of green neighbors of *u*)
- The number of *HG*-links from *u* is at most
 ∑deg_G(f⁻¹(z')).
 (sum of green-degrees of red neighbors of *u*)

n

\leq # links from *u*

$$\leq \sum_{y \in N_G(u)} \deg_H(f(y)) + \sum_{z' \in N_H(u')} \deg_G(f^{-1}(z'))$$

$$\leq \sum\limits_{i=1}^{\Delta(G)} d_i^{(H)} + \sum\limits_{j=1}^c d_j^{(G)}$$
, by the choice of u'

Contradiction!

Theorem (K., Reiniger (2020+))

If G is a graph and F is a forest, both on n vertices, and $3\Delta(G) + \ell^*(F) \le n$ then G and F pack unless n is even, $G = \frac{n}{2}K_2$, and $F = K_{1,n-1}$.

- Now, we suppose that *H* is a forest, henceforth called *F*, and that 3∆(*G*) + ℓ*(*F*) = *n*.
 We still assume that *G* and *F* do not pack, and that *F* is edge-minimal with this property.
- If Δ(G) = 1, then it is easy to show that *n* is even, G = ⁿ/₂K₂, and F = K_{1,n-1}. So we can assume that Δ(G) > 1, and seek a contradiction.

• In the current setup, *u*' is a leaf of *F* and *x*' its neighbor.

$n \le \#$ links from u

$$\leq \sum_{y \in N_G(u)} \deg_F(f(y)) + \deg_G(x) \tag{1}$$

$$\leq \sum_{y \in N_G(u)} \left(\deg_F(f(y)) - 2 \right) + 2\Delta(G) + \Delta(G)$$
(2)

$$\leq \sum_{y \in N_G(u)} \max\{\deg_F(f(y)) - 2, 0\} + 3\Delta(G)$$
(3)

$$\leq \sum_{i=1}^{n} \max\{d_i^{(F)} - 2, 0\} + 3\Delta(G) = 3\Delta(G) + \ell^*(F) = n, \quad (4)$$

so we have equality throughout.

• Analyzing each of the four equations above, gives us:

Lemma

For any leaf u' of F and x' its neighbor, and a quasipacking f of G with F with f(u) = u' and f(x) = x' and conflicting edge ux, we have the following.

For every y ∈ V(G) \ {u, x}, there is a unique link from u to y; there is no link from u to x; and there are two links from u to itself.

- 3 For every $w \in N_G(u)$, $\deg_F(f(w)) \ge 2$.
- For every $w \notin N_G(u)$, $\deg_F(f(w)) \le 2$.

Lemma

For any leaf u' of F and x' its neighbor, and a quasipacking f of G with F with f(u) = u' and f(x) = x' and conflicting edge ux, we have the following.

$$I N_G[u] = N_G[x].$$

O $G[N_G[u]]$ is a clique component.

Use appropriately chosen swap operations and the previous lemma to show that the structure of quasipacking looks like:

- We can show that
 - $\{u, x\}, A, B, C, N_A, N_B, N_x$ is a partition of V(G)
 - A, N_A, N_C, C are all empty
 - $N_G[u] = N_G[x] = \{u, x\} \cup B$ forms a clique in G.

Let *G*[*Q*] be the clique component of *G* given by the Lemma 2.
 Let *z* be a vertex of *Q* with smallest *F*-degree larger than 1 (such a choice is possible by Lemma 1).
 Let *z*₁, *z*₂ ∈ *V*(*G*) be two *F*-neighbors of *z*.

- Let G[Q] be the clique component of G given by the Lemma 2. Let z be a vertex of Q with smallest F-degree larger than 1 (such a choice is possible by Lemma 1). Let $z_1, z_2 \in V(G)$ be two F-neighbors of z.
- We can show that $Q \cup \{z_1, z_2\} \setminus \{u, z\}$ is *F*-independent.
- Let $X = f(Q \cup \{z_1, z_2\} \setminus \{u, z\})$. Let $g : V(G) \rightarrow V(F)$ be a bijection such that g(Q) = X. Since G[Q] is a clique component and X is independent, g is a packing if and only if $g|_{G-Q}$ is a packing of G - Qwith F - X.
- Since G and F do not pack, we must have that G Q and F X do not pack.
 We get a contradiction by showing that G Q and F X pack.

Thank You! Questions?

Conjecture (Erdős-Sós (1962)) Let G be a graph of order n and T be a tree of size k. If $e(G) < \frac{1}{2}n(n-k)$ then T and G pack.

Conjecture (Bollobás-Eldridge (1978), & Catlin (1976)) If $(\Delta_1 + 1)(\Delta_2 + 1) \le n + 1$ then G_1 and G_2 pack.

• Characterize all extremal graphs of:

Theorem (K., Reiniger (2020+))

Let G be a graph and H a c-degenerate graph, both on n vertices. Let $d_1^{(G)} \ge d_2^{(G)} \ge \cdots \ge d_n^{(G)}$ be the degree sequence of G, and similarly for H.

If
$$\sum\limits_{i=1}^{\Delta(G)} d_i^{(H)} + \sum\limits_{j=1}^{c} d_j^{(G)} < n,$$
 then G and H pack

Thank You! Questions?

Conjecture (Erdős-Sós (1962)) Let *G* be a graph of order *n* and *T* be a tree of size *k*. If $e(G) < \frac{1}{2}n(n-k)$ then *T* and *G* pack.

Conjecture (Bollobás-Eldridge (1978), & Catlin (1976)) If $(\Delta_1 + 1)(\Delta_2 + 1) \le n + 1$ then G_1 and G_2 pack.

• Characterize all extremal graphs of:

Theorem (K., Reiniger (2020+))

Let G be a graph and H a c-degenerate graph, both on n vertices. Let $d_1^{(G)} \ge d_2^{(G)} \ge \cdots \ge d_n^{(G)}$ be the degree sequence of G, and similarly for H.

If
$$\sum\limits_{i=1}^{\Delta(G)} d_i^{(H)} + \sum\limits_{j=1}^c d_j^{(G)} < n,$$
 then G and H pack