
Introduction Computational Study Graph Knapsack

Resource Allocation under Dependencies
with application in transportation networks

Hemanshu Kaul

Illinois Institute of Technology

www.math.iit.edu/∼kaul

kaul@math.iit.edu

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Transportation Network

Transportation Network: A network of roads and highways
(edges or links) connecting locations and intersections (vertices
or nodes) under study.

Problem: Given a total budget, how to choose a collection of
transportation projects to implement on the given network so as
to improve its overall performance?

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Transportation Network

Transportation Network: A network of roads and highways
(edges or links) connecting locations and intersections (vertices
or nodes) under study.

Problem: Given a total budget, how to choose a collection of
transportation projects to implement on the given network so as
to improve its overall performance?

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Improving a Transportation Network

Characteristics of a transportation network:

the overall structure of the network - the nodes and the
links

capacity, maximum speed (and other characteristics) of
each link

What is a project?

Remove a link (e.g. change a 2-way street into 1-way)

Add a new link (new road/highway)

Change an existing link by modifying its characteristics

Each project has a cost associated with it.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Improving a Transportation Network

Characteristics of a transportation network:

the overall structure of the network - the nodes and the
links

capacity, maximum speed (and other characteristics) of
each link

What is a project?

Remove a link (e.g. change a 2-way street into 1-way)

Add a new link (new road/highway)

Change an existing link by modifying its characteristics

Each project has a cost associated with it.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Improving a Transportation Network

Characteristics of a transportation network:

the overall structure of the network - the nodes and the
links

capacity, maximum speed (and other characteristics) of
each link

What is a project?

Remove a link (e.g. change a 2-way street into 1-way)

Add a new link (new road/highway)

Change an existing link by modifying its characteristics

Each project has a cost associated with it.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Benefit of a Transportation Project

Benefit of a Transportation Project measure benefits gained by
the transportation network as viewed from economic (the
transportation agency and the user costs), social (traffic
mobility and safety), and environmental (vehicle emissions)
dimensions.

Typically computed as net reductions in cost concerning

preservation, expansion, and maintenance of physical
facilities (such as pavement, preservation, expansion, and
travel safety hardware),

vehicle operation, travel time, crashes,

and, vehicle emissions

during the service life-cycle of the facility after project
implementation.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Benefit of a Transportation Project

Previous Research: Measure the impact of a project on the
growth or reduction in traffic volume on the network links within
the project physical range.
The cost computations are based on this local change in traffic
volume.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Benefit of a Transportation Project

Previous Research: Measure the impact of a project on the
growth or reduction in traffic volume on the network links within
the project physical range.
The cost computations are based on this local change in traffic
volume.

Criticism: Local changes in a transportation network can lead
to agglomerative changes in its global behavior.

For instance, expanding the capacity of a single roadway link
typically improves traffic operations of the link. However, it may
lead to better or worse traffic conditions elsewhere, leading to a
much larger or smaller overall network-level gain.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Modeling a Transportation Network

Transportation Network is N = (G, (S,T),O-D,u), where

G is a directed graph corresponding to the physical
network,
(S,T) are source and sink pairs, vertices in S correspond
to starting points of the traffic (sources like suburbs and
other residential areas) and those in T correspond to
destinations of the traffic (sinks like downtown and other
office locations),
O-D is the demand matrix, for each (s, t) ∈ S × T there is
a traffic demand from s to t which is summarized in the
O-D matrix
each edge (transportation link) e has an upper bound,
u(e), on its traffic capacity.

We think of each of these (s, t) traffic flows as a distinct commodity flow, i.e., the traffic

flow in this transportation network is modeled as a multi-commodity network flow.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Modeling a Transportation Network

Transportation Network is N = (G, (S,T),O-D,u), where

G is a directed graph corresponding to the physical
network,
(S,T) are source and sink pairs, vertices in S correspond
to starting points of the traffic (sources like suburbs and
other residential areas) and those in T correspond to
destinations of the traffic (sinks like downtown and other
office locations),
O-D is the demand matrix, for each (s, t) ∈ S × T there is
a traffic demand from s to t which is summarized in the
O-D matrix
each edge (transportation link) e has an upper bound,
u(e), on its traffic capacity.

We think of each of these (s, t) traffic flows as a distinct commodity flow, i.e., the traffic

flow in this transportation network is modeled as a multi-commodity network flow.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Modeling a Transportation Network

Transportation Network is N = (G, (S,T),O-D,u), where

G is a directed graph corresponding to the physical
network,
(S,T) are source and sink pairs, vertices in S correspond
to starting points of the traffic (sources like suburbs and
other residential areas) and those in T correspond to
destinations of the traffic (sinks like downtown and other
office locations),
O-D is the demand matrix, for each (s, t) ∈ S × T there is
a traffic demand from s to t which is summarized in the
O-D matrix
each edge (transportation link) e has an upper bound,
u(e), on its traffic capacity.

We think of each of these (s, t) traffic flows as a distinct commodity flow, i.e., the traffic

flow in this transportation network is modeled as a multi-commodity network flow.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Modeling a Transportation Network

Transportation Network is N = (G, (S,T),O-D,u), where

G is a directed graph corresponding to the physical
network,
(S,T) are source and sink pairs, vertices in S correspond
to starting points of the traffic (sources like suburbs and
other residential areas) and those in T correspond to
destinations of the traffic (sinks like downtown and other
office locations),
O-D is the demand matrix, for each (s, t) ∈ S × T there is
a traffic demand from s to t which is summarized in the
O-D matrix
each edge (transportation link) e has an upper bound,
u(e), on its traffic capacity.

We think of each of these (s, t) traffic flows as a distinct commodity flow, i.e., the traffic

flow in this transportation network is modeled as a multi-commodity network flow.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Modeling a Transportation Network

Transportation Network is N = (G, (S,T),O-D,u), where

G is a directed graph corresponding to the physical
network,
(S,T) are source and sink pairs, vertices in S correspond
to starting points of the traffic (sources like suburbs and
other residential areas) and those in T correspond to
destinations of the traffic (sinks like downtown and other
office locations),
O-D is the demand matrix, for each (s, t) ∈ S × T there is
a traffic demand from s to t which is summarized in the
O-D matrix
each edge (transportation link) e has an upper bound,
u(e), on its traffic capacity.

We think of each of these (s, t) traffic flows as a distinct commodity flow, i.e., the traffic

flow in this transportation network is modeled as a multi-commodity network flow.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Modeling a Transportation Network

Transportation Network is N = (G, (S,T),O-D,u), where

G is a directed graph corresponding to the physical
network,
(S,T) are source and sink pairs, vertices in S correspond
to starting points of the traffic (sources like suburbs and
other residential areas) and those in T correspond to
destinations of the traffic (sinks like downtown and other
office locations),
O-D is the demand matrix, for each (s, t) ∈ S × T there is
a traffic demand from s to t which is summarized in the
O-D matrix
each edge (transportation link) e has an upper bound,
u(e), on its traffic capacity.

We think of each of these (s, t) traffic flows as a distinct commodity flow, i.e., the traffic

flow in this transportation network is modeled as a multi-commodity network flow.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Benefit of a Transportation Project
[S. Kapoor, H. Kaul, Z. Li, and M. Pelsmajer]
Given

a portfolio of n projects labeled by [n] = {1, . . . ,n}
a total budget W

the building cost wi of each of the n projects

Denote by N(I) the modified network obtained from the original
network N by making the modifications corresponding to the
collection of projects I ⊆ [n].

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Benefit of a Transportation Project
[S. Kapoor, H. Kaul, Z. Li, and M. Pelsmajer]
Given

a portfolio of n projects labeled by [n] = {1, . . . ,n}
a total budget W
the building cost wi of each of the n projects

Denote by N(I) the modified network obtained from the original
network N by making the modifications corresponding to the
collection of projects I ⊆ [n].

Define unadjusted benefit of I, D(I), as the minimum value of
C(x) subject to the usual multicommodity flow constraints on
this network N(I) using the O-D demands.

C(x) is a nonlinear objective function that models the total cost
(travel time, ecological cost, vehicle operating cost, travel time,
maintenance cost, etc.) of traffic flow in this network.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Benefit of a Transportation Project

min C(x)

subject to
∑

k

xk (e) ≤ u(e) capacity constraint for each edge e

∑

e:h(e)=u

xk (e) =
∑

e:t(e)=u

xk (e) preservation of flow for each k and each u 6∈ S ∪ T

∑

e:t(e)=u

xk (e) = ODk traffic outflow for each k and each u ∈ S

∑

e:h(e)=u

xk (e) = ODk traffic inflow for each k and each u ∈ T

xk (e) ≥ 0

Note: k indicates an s, t-traffic flow, a commodity flow.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Benefit of a Transportation Project

Define the benefit of a project collection I as B(I) = D − D(I),
where D is defined analogously to D(I) for the original network
N.
The change in the life-cycle cost of the whole transportation
network after implementation of projects in I.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Selection of Projects

Selection of Transportation Projects: We want to pick a
collection of projects I such that its benefit B(I) as calculated
above is maximum while the total cost does not exceed the
given budget.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Selection of Projects

Previous Research: Choose projects such that the chosen
projects have largest sum of individual benefits while their total
cost does not exceed the total budget, W .
This is simply the classical 0-1 Knapsack problem.

max
n

∑

i=1

B(i)xi

subject to
∑

i

wixi ≤ W

xi ∈ {0,1}

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Selection of Projects

Criticism: We have to choose multiple projects for
implementation simultaneously, which means that such projects
cannot be considered independent of each other.
It may happen that two projects which are individually beneficial
to the network, will together negate either of their benefits.

The overall benefits of a collection of projects may be greater
than, equal to, or smaller than the sum of individual benefits.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Selection of Projects with Interdependencies

[S. Kapoor, H. Kaul, Z. Li, and M. Pelsmajer]
If we have the computing resources to calculate the benefit of
each possible collection of projects, we could simply pick the
collection with largest value.
However this is not computationally feasible even for small
values of n since there are a total of as many as 2n different
collections.

So we are limited to computation of benefits of collections of up
to r projects at a time, where r is small fixed integer.
Note this only requires calculation of benefits of up to
n + n2 + . . .+ nr different collections of projects.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Selection of Projects with Interdependencies

We would like to calculate B([t]) = B({1,2, . . . , t}) explicitly but
that may not be possible/ allowed because t > r .
In that case we estimate its value using the computed values of
B(I) where |I| ≤ r as follows:

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Selection of Projects with Interdependencies

B({1, . . . , t}) =
n
∑

i=1
B({i}) +

∑

I⊆[t] : |I|≤2
∆I +

∑

I⊆[t] : |I|≤3
∆I + . . .+∆[t],

where ∆ values give an Inclusion-Exclusion-formula type
description of the difference between the combined benefit of
the projects and the sum of the lower order benefits,

∆{i ,j} = B({i , j}) − (B({i}) + B({j})),

∆{i ,j ,k} = B({i , j , k}) − (B({i , j}) + B({i , k}) + B({j , k})) +
(B({i}) + B({j}) + B({k})),
and so on.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Selection of Projects with Interdependencies

When t > r , we estimate the B({1, . . . , t}) by using only the first
r terms in this formula.

Thus we use the information about the dependency between up
to r projects at a time to give a more realistic value of the
benefit of a larger collection of projects.

Lets explicitly illustrate the situation when r = 2.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Graph Knapsack Problem

[S. Kapoor, H. Kaul, and M. Pelsmajer]

Given a set of items V = {v1, ..., vn} (projects) and a knapsack
of limited capacity W (the budget).

To each item we associate a benefit b(vi) (benefit of that
project) and a positive weight wj (cost of that project).

To each pair (r = 2) of items we associate a benefit b(vivj) .
b(e) = b(uv) = ∆{u,v} = B(u, v)− (B(u) + B(v)),
difference between the benefit of the two corresponding
projects together and the sum of individual project benefits.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Graph Knapsack Problem

So we have graph G with vertices corresponding to projects
and edges corresponding to pairs of projects. Both vertices and
edges have benefits, while vertices also have cost associated
with them.

For a graph G defined on V , the benefit of a subgraph
H = (VH ,EH) is

b(H) =
∑

v∈VH
b(v) +

∑

e∈EH
b(e)

while its weight is

w(H) =
∑

v∈VH
w(v).

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Graph Knapsack Problem

For example:

b(K2) = b(u) + b(v) + b(uv)
= B(u) + B(v) + (B(u, v)− B(u)− B(v))
= B(u, v)

b(K3) = b(u) + b(v) + b(w) + b(uv) + b(vw) + b(wu)
= B(u) + B(v) + B(w) + (B(u, v)− B(u)− B(v)) + (B(v ,w)−
B(v) − B(w)) + (B(w ,u)− B(w)− B(u))
= B(u, v) + B(v ,w) + B(w ,u)− (B(u) + B(v) + B(w))

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Graph Knapsack Problem

Given a subset of vertices S, we consider the subgraph
induced by S, termed G[S].

The Graph Knapsack Problem (GKP) asks for a subset of
vertices, S ⊆ V so as to maximize the benefit of the induced
subgraph, b(G[S]) with the budget restriction that its weight
w(G[S]) is less than W .

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Graph Knapsack Problem

We can formulate the problem as a 0-1 Quadratic Program:

maximize
∑

i
b(vi)xi +

∑

vi vj∈E(G)

b(vivj)xi xj

such that
∑

i w(vi)xi ≤ W
xi ∈ {0,1}

Replacing the term xixj by an integer variable xij ∈ {0,1} and

adding the constraints xij ≤
xi+xj

2 and xij ≥
xi+xj−1

2 provides an
integer linear program (ILP) for the problem.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Hypergraph Knapsack Problem

When r > 2, the underlying structure considers r -wise
dependencies, that is it forms a r -uniform hypergraph.

The definitions given above generalize in a straightforward
manner to the Hypergraph Knapsack Problem (HKP).

Let H = (V ,E) be a hypergraph.
For any subset S of vertices in H, let w(S) =

∑

v∈S w(v) and
let b(S) =

∑

v∈S b(v) +
∑

e∈E:e⊆S b(e).

As before HKP asks for a subset of vertices S that maximizes
the benefit with the restriction that its weight is less than W .

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Computational Study

[Z. Li, S. Kapoor, H. Kaul, and E. Veliou, B. Zhou, S. Lee, 2012],
to be published in The Journal of the Transportation Research Board.

Ongoing traffic improvement project in the financial district
portion of the Chicago Central Business District (CBD), the
Chicago Loop Area bounded by East Wacker Drive, West
Wacker Drive, North Wacker Drive, South Wacker Drive, West
Roosevelt Road, East Roosevelt Road and South Lakeshore
Drive.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Computational Study

Travel demand data from Chicago Metropolitan Agency for
Planning (CMAP) with information on hourly travel demand for
a typical day for approximately 2000 internal and external traffic
analysis zones (TAZs) for the entire Chicago Metropolitan Area.

The data for Chicago Loop Area covering 19 TAZs, including 10
internal and 9 external TAZs, was extracted from the city data.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Computational Study

The highway network within the study area is comprised of 486
freeway, expressway, arterial, and collector links (highway
segments) and 205 nodes (intersections).

The Google earth photo images were used to accurately create
link-node connectivity for through and left/right turning
movements.

Details of travel lane widths and speed limits were also
obtained to help determine the link capacities and base free
flow travel times.

Further, the in-flow nodes and out-flow nodes that act as the
sources and sinks of the 100 internal-internal O-D pairs and 81
external-external O-D pairs were identified.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Computational Study

There were a total of 6 projects under consideration.

TABLE Major Investment Projects Proposed for Chicago Loop Area during 2011-2015

Project Name Scope Cost

1 Lower Wacker Drive Congress Parkway to Randolph Street $60M
2 Upper Wacker Drive Congress Parkway to Randolph Street $80M
3 Interchange Congress Parkway and Chicago River $60M
4 Congress Parkway Modernization Wells Street to Michigan Avenue $15M
5 Michigan Avenue Resurfacing Congress Parkway to Roosevelt Road $3M
6 Lake Shore Drive Resurfacing Randolph Street to Roosevelt Road $6M

Total $224M

Considering data availability of candidate projects proposed for
possible implementation in the study area, the analysis period
for the computational study was set from 2011-2015.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Computational Results

TABLE Benefits, Costs, Benefit-to-Cost ratios, and Best Sub-Collection of Projects

Budget Level
($224M)

Benefits Costs Benefit-to-Cost
Ratio

Best Sub-Collection
of Projects

10% 6,357,902 1,642,568 3.87 4+5+6

20% 6,357,902 1,642,568 3.87 4+5+6

30% 6,357,902 1,642,568 3.87 4+5+6

40% 12,283,083 4,744,517 2.59 156+4

50% 12,283,083 4,744,517 2.59 156+4

60% 12,374,624 5,778,500 2.14 2+456

70% 18,185,954 7,846,466 2.32 156+3+4

80% 18,522,072 8,880,449 2.09 124+5+6

90% 18,522,072 8,880,449 2.09 124+5+6

100% 18,548,533 11,982,398 1.55 14+23+56

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Computational Results

FIGURE Comparison of total benefits of project selection with and without project

interdependency considerations.

SUMMARY AND CONCLUSION

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

35,000,000

40,000,000

A
n
n
u
al

 B
en

ef
it

s
o
f

S
el

ec
te

d
 P

ro
je

ct
s

(D
o

ll
ar

s/
Y

ea
r)

Annual Costs of Project Selected for Implementation

Benefits_Original Knapsack Model Benefits_Hypergraph Knapsack Model

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Computational Results

Main observations:

The network-wide benefits with project interdependency
considerations tend to be lower than the corresponding
benefits without interdependency considerations by 38-64
percent.

The network-wide benefits with project interdependency
considerations begin to flatten out when the annualized
budget reach approximately $7.5M. No additional benefits
are generated with higher levels of investment budgets.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Approximation Algorithms

Algorithm A for a maximization problem MAX achieves an
approximation factor α if

for all inputs G, we have: OPT (G)
A(G) ≤ α,

where A(G) is the value of the output generated by the
algorithm A,
and OPT (G) is the optimal value.

A α-approximation algorithm for MAX is a polynomial time
algorithm that achieves the approximation factor α.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Graph Knapsack Problem

[S. Kapoor, H. Kaul, and M. Pelsmajer]

Graph Knapsack Problem: Given an instance GKP(G,b,w ,W),
where G = (V ,E) is an undirected graph with n vertices,
w : V → Z

+ is a weight function, b : E ∪ V → Z is a benefit
function on vertices and edges, and W is a weight bound.

maximize b(G[S])
such that
weight(S) ≤ W

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Graph Knapsack Problem

Relationship to Large Subgraph Problems

From a graph theoretic point of view, it is related to the
maximum clique problem. We can reduce the clique problem to
the graph-knapsack problem.

Given a graph G, suppose we wish to determine if G contains a
clique of size t . We define an instance of GKP on G with
W = t , wi = 1, bi = 0, be = 1 for e ∈ E(G).
Graph G has a Kt iff GKP has benefit at least

(t
2

)

.

We may note that, unless P = NP, achieving an approximation
ratio better than n1−ǫ is impossible for the clique problem.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Graph Knapsack Problem

Relationship to Large Subgraph Problems

GKP also generalizes the Dense k-Subgraph problem, which
requires finding an k-vertex induced subgraph of an
edge-weighted graph with maximum density.

This corresponds to GKP with edges of benefit 1 while vertices
have zero benefit, and the weight of each vertex is 1 with
W = k .

For the dense k-subgraph problem, an approximation factor of
n1/3 has been achieved.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Graph Knapsack Problem

Relationship to other Knapsack Problems

The idea of using discrete structures like graphs, digraphs,
posets to generalize the classical knapsack problem by
modeling some sort of dependency among the items is not a
new one.

However all such generalizations of the Knapsack problem
restrict the choice of subset of items that can be picked.
While our model does not restrict the choices directly, instead it
modifies the benefit function so that the benefit on the edge
between a pair of items could act as a penalty (if its negative) or
an inducement (if its positive) towards the choice of those two
items.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Graph Knapsack Problem

Relationship to other Knapsack Problems

The Knapsack Problem with Conflict Graph is a knapsack
problem where each edge in the underlying conflict graph on
the items introduces the constraint that at most one of those
two items can be chosen.
This can be modeled as the Graphical Knapsack problem by
putting large negative benefit on the edges of the conflict graph
and using that as the underlying graph for GKP.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Graph Knapsack Problem

Relationship to other Knapsack Problems

The Constrained Knapsack Problem in which dependencies
between items are given by a graph. In the first version, an item
can be selected only if at least one of its neighbors is also
selected. In the second version, an item can be selected only
when all its neighbors are also selected.
These can also be modeled as GKP.

Also, Precedence-Constrained Knapsack Problem,
Subset-Union Knapsack, etc.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Graph Knapsack Problem

The Quadratic Knapsack Problem (QKP) is the appropriate
problem for comparison with GKP. They are essentially the
same problem when benefits are non-negative.

maximize
n
∑

i=1

n
∑

j=1
bijxixj

such that
n
∑

i=1
wixi ≤ W

xi ∈ {0,1}

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Graph Knapsack Problem

No approximation algorithms or FPTAS are known for the
general QKP. The focus has been on exact methods.

Rader and Woeginger (2002) developed a FPTAS for the case
when all benefits are non-negative and the underlying graph is
so-called edge series-parallel.
They also show that when QKP has both negative and
non-negative benefits, it can not have a constant factor
approximation unless P = NP.

Note that the Hypergraph Knapsack Problem (HKP) can not be
reduced to the QKP or some version of it.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Greedy Algorithm

Fix an integer t . The greedy algorithm can be defined naturally
as:

1 Initialize S = ∅
2 Pick a subset T of V (G)− S of cardinality at most t such

that its benefit (the sum of the benefits of the vertices and
edges induced by T in S ∪ T) to weight ratio is highest

3 Update S = S ∪ T if weight of S ∪ T satisfies the budget
constraint, and then go to step 2. Otherwise pick
whichever of S or T has larger benefit as the final solution.

When t = 1, the worst case benefit ratio can be made arbitrarily
bad.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Greedy Algorithm

The difficulty in analyzing this greedy algorithm:

Handling two kinds of “weights”
Each step depends on partial solution from previous steps
in an involved manner due to edges that go across.

Main idea:
An arbitrary instance of GKP with greedy solution A and
optimal solution O defines a new instance of GKP which
has disjoint greedy and optimal solutions with its greedy
solution same as A and benefit of its optimal solution no
worse than b(O).

Apply averaging arguments on this new instance, and use
the disjointness of the two solutions and their relation to
original instance to get the bound on the ratio of original
benefits.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Greedy Algorithm

S. Kapoor, H. Kaul, and M. Pelsmajer, 2011+

The greedy algorithm is a (16 min(n,W)/t)-factor polynomial
time (O(2t+1

(n+1
t+1

)

)-running time) approximation algorithm for
GKP(G,b,w ,W) with n vertices, when b is a non-negative
function.

For t = log n we get a (8n
logn)-factor (and (8W

log n)-factor) linear
quasipolynomial-time algorithm.

This analysis is sharp.
We can give an instance of GKP where ratio of the optimal
solution to the greedy solution is Ω(n

t).

No such results are known for Quadratic Knapsack Problem.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Greedy Algorithm

S. Kapoor, H. Kaul, and M. Pelsmajer, 2011+

The greedy algorithm is a (4 min(n,W)W/t)-factor polynomial
time (O(2t+1

(n+1
t+1

)

)-running time) approximation algorithm for
GKP(G,b,w ,W) with n vertices, when b can take both
negative and non-negative values.

This analysis is sharp.
We can give an instance of GKP where ratio of the optimal
solution to the greedy solution is Ω(n2

t) where W = Θ(n).

Again, no such results are known for Quadratic Knapsack
Problem.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Greedy Algorithm

Why the extra factor of W when negative benefits are possible?

When benefits are non-negative, we can show that
w(v) ≤ W/2 for all v which implies that W/w(A) ≤ 2.

When benefits are negative, this ratio can be as bad as
essentially W .

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Greedy Algorithm for Hypergraph Knapsack

The definition of the greedy algorithm works for Hypergraph
Knapsack problem as well.

However, taking t < r (where r is the largest size of an edge in
the underlying hypergraph) can make the worst case benefit
ratio arbitrarily bad.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Greedy Algorithm for Hypergraph Knapsack

S. Kapoor, H. Kaul, and M. Pelsmajer, 2011+

The greedy algorithm is a
(

16
(

min(n,W)
t−r+1

)r−1
)

-factor

polynomial time (O(2t
(n

t

)

)-running time) approximation
algorithm for HKP(H,b,w ,W) with n vertices and r -uniform
edges, when b is a non-negative function.

This analysis is essentially sharp.
We can give an instance of HKP where ratio of the optimal

solution to the greedy solution is Ω((n−r+1)r−1

t r−1).

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Greedy Algorithm for Hypergraph Knapsack

S. Kapoor, H. Kaul, and M. Pelsmajer, 2011+

The greedy algorithm is a
(

4W
(

min(n,W)
t−r+1

)r−1
)

-factor

polynomial time (O(2t
(n

t

)

)-running time) approximation
algorithm for HKP(H,b,w ,W) with n vertices and r -uniform
edges, when b can take both negative and non-negative values.

This analysis is essentially sharp.
We can give an instance of HKP where ratio of the optimal

solution to the greedy solution is Ω((n−r+1)r−1n
t r−1).

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

FPTAS for bounded tree-width graphs

Given a graph G = (V ,E), a tree decomposition of width k of G
consists of a tree T whose nodes correspond to a collection of
subsets of V (G), X1,X2, . . . ,Xr such that

1 V (G) = ∪Xi ,
2 for each uv ∈ E(G), there is an i s.t. u, v ∈ Xi ,
3 for all u, v ,w ∈ V (T) with v lying on a u − w -path in T ,

Xu ∩ Xw ⊂ Xv , and
4 |Xi | ≤ k + 1.

Many commonly arising families of graphs have bounded
tree-width.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

FPTAS for bounded tree-width graphs

S. Kapoor, H. Kaul, and M. Pelsmajer

Let G be a graph with tree-width at most k . Then
GKP(G,b,w ,W) can be approximated to within a factor of

(1 + ǫ) in time O(2k n9 log n
ǫ2).

This result extends to HKP with hypergraph of bounded
tree-width.
Both based on a pseudo-polynomial dynamic programming
algorithm with lots of book-keeping.

Previous result:
[Rader and Woeginger, 2002] FPTAS for QKP when the
underlying graph is series-parallel, which is a family of graphs
with tree-width at most 2.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Randomized Approximation Algorithm for GKP

S. Kapoor and H. Kaul, 2011+

A polynomial-time randomized algorithm that approximates
GKP to the factor O(n1/2wmax) when b is non-negative.

Main Tools:

Greedy Algorithm (useful when W < n1/2)

Hyperbolic relaxation of GKP

Chernoff-Hoeffding tail bounds

Kim-Vu polynomial concentration

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Randomized Approximation Algorithm for GKP

Solve the relaxation of the hyperbolic program (HP∗) to get
optimal solution x∗

u

maximize
∑

uv∈E(G)

b(uv)xuv

such that
∑

i w(u)xu ≤ W
xuxv ≥ x2

uv

Generate a random 0-1 solution Y , Yu = 1 with probability√
x∗

u/λ

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Randomized Approximation Algorithm for GKP

Choose a scaling factor λ so that E[w(Y)] ≤ λW

Lemma
∑

u w(u)
√

x∗
u ≤ 2

√
wmaxWn1/4, where wmax = maxu w(u).

Take λ = 2
√

wmaxn1/4.

Use Chernoff-Hoeffding to show the concentration of the weight
around its mean, so the budget can be satisfied w.h.p.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Randomized Approximation Algorithm for GKP

Define
ε0 = E[b(Y)], i.e., OPT (HP∗)/λ, a measure of global solution.

ε1 = maxv (
∑

u∈N(v) P[Yu = 1]), a measure of dense local
neighborhood solution.

ε2 = maxuv∈E(G) b(uv), a measure of most beneficial edge.

J-H. Kim, Van Vu, 2001

P[E[Y]− Y > t2] < 2e2 exp
(

−t/32(2εε′)1/4 + log n
)

where ε = max{ε0, ε1, ε2}, and ε′ = max{ε1, ε2}.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Randomized Approximation Algorithm for GKP
When ε2 > ε1 and ε0 < ε2 log4 n, max buv works as a good
solution

When ε2 > ε1 and ε0 > ε2 log4 n, Kim-Vu applies to Y , the
randomized solution

When ε1 > ε2 and ε0 > ε1 log4 n, Kim-Vu applies to Y , the
randomized solution

When ε1 > ε2 and ε0 < ε1 log4 n, a different randomized
solution based on the dense local neighborhood solution:
center of the neighborhood is picked with probability 1,
neighbors are picked by solving a classical Knapsack on
the neighborhood, and nothing else is picked,
which is shown to be concentrated via Chernoff-Hoeffding.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Generalizing the Randomized Approximation Algo

We can extend this approach to solving the following class of
quadratic integer programs where X ∈ Z n,X = (X1, . . .Xn):

max X T QX + cT X

subject to

aT
i X ≤ Wi , i = 1, . . . p

Xi ∈ {0,1}

for bounded number of constraints p and non-negative
coefficients in Q and c and in the constraint matrix.

Hemanshu Kaul

Introduction Computational Study Graph Knapsack

Extremal Problems on Maximum induced subgraphs

Classical results of F.Chung, P. Erdos, and J. Spencer (1985)
on maximum number of edges in an induced subgraph on k
vertices within a given graph on n vertices and m edges.

Preliminary results (with D. West) on extending these extremal
results to graphs with bounded chromatic number (t-partite), a
generalization of the Zarankiewicz problem.

Hemanshu Kaul

	Introduction
	Computational Study
	Graph Knapsack

