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most n, with maximum degree A; and A, respectively.

(G; and G- are said to pack if there exist injective
mappings of the vertex sets into [n],
Vi—[n]={1,2,....,n},i=1,2,

such that the images of the edge sets do not intersect.

We may assume |V;| = |V2| = n by adding isolated

vertices.



I Introduction

Let G = (V, Eq) and G5 = (Vs, E5) be graphs of order at
most n, with maximum degree A; and A, respectively.

(G; and G- are said to pack if there exist injective
mappings of the vertex sets into [n],
Vi—[n]={1,2,....,n},i=1,2,

such that the images of the edge sets do not intersect.

# there exists a bijection V; < V45 such that
ec F1 = e & L.

# (1 is a subgraph of Gs. |
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I A Common.Generalization

#» Hamiltonian Cycle in graph G : Whether the n-cycle
C,, packs with G.

# Existence of a subgraph H in G : Whether 4 packs
with G.

#® Equitable k-coloring of graph & : (A proper k-coloring
of G such that sizes of all color classes differ by at most 1)
Whether G packs with k cliques of order n/k.

# Turan-type problems : Every graph with more than
ex(n, H) edges must pack with H.

#» Ramsey-type problems.

#» “most” problems in Extremal Graph Theory. |
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I A Distinction

In packing problems, each member of a ‘large’ family of
graphs contains each member of another ‘large’ family

of graphs.

Theorem [Bollobas + Eldridge, 1978, & Teo + Yap, 1990]:
If A1, Ao <n—1,and e(G) + e(Gs) < 2n — 2, then G,
and G5 do not pack if and only if they are one of the
thirteen specified pairs of graphs.

—



I A Distinction

In packing problems, each member of a ‘large’ family of
graphs contains each member of another ‘large’ family
of graphs.

Theorem: If ¢(G1)e(G2) < (3), then G and G5 pack.

Proof. Pick a random bijection between V' (G,) and V (G5),
uniformly among the set of all n! such bijections.

Sharp for G1 = So,,,, Star of order 2m, and Gy = mKo,

matching of size m, where n = 2m.



I A Distinction

In packing problems, each member of a ‘large’ family of
graphs contains each member of another ‘large’ family
of graphs.

Erd0s-Sos Conjecture (1963) : Let G be a graph of
order n and 7" be a tree of size k.
If e(G) < $n(n — k) then T and G pack.

Each graph with more than sn(k — 1) edges contains every
tree of size k.

This says average degree k guarantees every tree of size k. The corresponding

minimum degree result is easy (induction on k).
Sharp, if true. Take disjoint copies of k-cliques. _l



I A Distinction

In packing problems, each member of a ‘large’ family of
graphs contains each member of another ‘large’ family
of graphs.

Tree Packing Conjecture (Gyarfas ~ 1968) : Any family
of trees 75, ..., T, where T; has order i, can be packed.

In other words, any family of trees T, ..., T,
decomposes K,,.

Known only for special classes of trees, and for a sequence of

n/+/2 such trees (Bollobas, 1983).
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Theorem [Sauer + Spencer, 1978] :
If 2A1Ay < n, then G; and G5 pack.

If 5(G) > Bl Dl then

G contains all graphs with maximum degree at most k.

—



I Sauer.and Spencer’s Packing Theorem

Theorem [Sauer + Spencer, 1978] :
If 2A1Ay < n, then G; and G5 pack.

This Is sharp.

For n even.

G = 5 K5, a perfect matching on n vertices.
Go 2 Knyq, OF

G = K» » wWith 5 odd.

Then, 2A1As = n, and G; and G5 do not pack.

—



I Sauer.and Spencer’s Packing Theorem

K33 3K No Packin
G = Kg)g with % odd Go = %KQ
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I Extending the Sauer-Spencer Theorem

Theorem 1 [Kaul + Kostochka, CPC 20071

If 2A1As < n, then

G1 and G5 do not pack if and only if

one of G; and G, Is a perfect matching and the other
either Is K» » with 3 odd or contains K= ;.

This result characterizes the extremal graphs for the
Sauer-Spencer Theorem.

To appear in Combinatorics, Probability and Computing.

—
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I Extending the Sauer-Spencer Theorem

Theorem 1 [Kaul + Kostochka, CPC 2007
|f A1Ay < %n, then
G1 and G5 do not pack if and only if

one of G; and G, Is a perfect matching and the other
either Is K» » with 3 odd or contains K= ;.

A1A9 < 2n is sharp exactly when one of Ay, Ay is
small.

Can we improve the bound on A;As, If both A; and A,

are large ?



I Extending the Sauer-Spencer Theorem

Theorem 1 [Kaul + Kostochka, CPC 2007

If A1A, < %n, then

G1 and G5 do not pack if and only if

one of G; and G, Is a perfect matching and the other
either Is K» » with 3 odd or contains K= ;.

Bollobas-Eldridge Graph Packing Conjecture :
If (A1 +1)(As+1) <n+1then G, and G, pack.

Theorem 1 can be thought of as a small step towards

this longstanding conjecture.
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kn—
If 6(G) > 5=, then

G contains all graphs with maximum degree at most k.
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I Bollobas-Eldridge Conjecture

Bollobas-Eldridge Graph Packing Conjecture [1978]
If (A1 +1)(A2+1) <n+1then G; and G, pack.

If true, this conjecture would be sharp.

| Card

G

i Gt

G,

n:(d1+1)(d2+1)—2, Al :dl,AQZdQ.

B



I Bollobas-Eldridge Conjecture

Bollobas-Eldridge Graph Packing Conjecture [1978]
If (A1 +1)(A2+1) <n+1then G; and G, pack.

If true, this conjecture would be a considerable extension
of the Hajnal-Szemerédi theorem on equitable colorings :
Every graph GG has an equitable k-coloring for k > A(G) + 1.

Equitable colorings of graphs have been used to

#» extend Chernoff-Hoeffding concentration bounds to
dependent random variables (Pemmaraju, 2003)

» extend Arnold-Groeneveld order statistics bounds to

dependent random variables (Kaul + Jacobson, 2006) |



I Bollobas-Eldridge Conjecture

Bollobas-Eldridge Graph Packing Conjecture [1978]
If (A1 +1)(A2+1) <n+1then G; and G, pack.

The conjecture has only been proved when
A1 < 2 [Aigner + Brandt (1993), and Alon + Fischer (1996)],

A; = 3 and n is huge [Csaba + Shokoufandeh + Szemerédi
(2003)].

Near-packing of degree 1 [Eaton (2000)].

B



I Reformulating the Conjecture

Let us consider a refinement of the Bollobas-Eldridge
Conjecture.

Conjecture : Forafixed 0 < e <1.
If (A1 +1)(A2+1) < 5(1+4¢€) + 1, then Gy and G2 pack.

For ¢ = 0, this Is essentially the Sauer-Spencer Theorem,
while ¢ = 1 gives the Bollobas-Eldridge conjecture.

For any ¢ > 0 this would improve the Sauer-Spencer result

(in a different way than Theorem 1).



I Towards the Bollobas-Eldridge Conjecture

Theorem 2 [Kaul + Kostochka + Yu, Combinatorica
2008+]:

Fore=0.2,and A¢, Ay > 300,
If (A1 +1)(A2+1) < 5(1+4¢€) + 1, then Gy and G2 pack.

—



I Towards the Bollobas-Eldridge Conjecture

Theorem 2 [Kaul + Kostochka + Yu, Combinatorica
2008+]:

Fore=0.2,and A¢, Ay > 300,

If (A1 +1)(A2+1) < 5(1+4¢€) + 1, then Gy and G2 pack.

In other words,

Theorem 2 [Kaul + Kostochka + Yu, Combinatorica
2008+]:

For A{, Ay > 300,

If (A1 +1)(A2+1) < (0.6)n+ 1, then G; and G2 pack.

—



I Some ldeas for the Proofs

We have to analyze the ‘minimal’ graphs that do not
pack (under the given condition on A; and A»).

(G1,G9) Is a critical pair If G; and G5 do not pack, but for
each e; € F(Gy), G1 — e; and G» pack, and for each
eo € E(G9), G1 and Go — ey pack.

G1 and G5 do not pack, but removing one edge from
either GG; or G, allows them to pack.

—



I Some ldeas for the Proofs

Each bijection f : Vi — V, generates a (multi)graph Gy,
with
V(Gs) = {(u,f(u)) : ue Vy}

(u,f(u)) « (v, f(u')) & uu’ € E1 or f(u)f(u') € E

Every vertex has two kinds of neighbors :
green from (; and red from G,.

—



I Some ldeas for the Proofs

Each bijection f : Vi — V, generates a (multi)graph Gy,
with
V(Gs) = {(u,f(u)) : ue Vy}

(u,f(u)) « (v, f(u')) & uu’ € E1 or f(u)f(u') € E

Every vertex has two kinds of neighbors :
green from (; and red from G,.

1]
_ gives

Gy G, et |
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f/(U):< f(ui+1) ’ u:ulalgrLSk_l




I Some ldeas for the Proofs

(uq,...,ur)-sSWitch means replace f by f’, with

f/(u):< fluir1) , u=u;, 1<1<k—1

green-neighbors of v; — green-neighbors of w;_4

—



I Some ldeas for the Proofs

(uq,...,ur)-sSWitch means replace f by f’, with

f/(U):< f(ui+1) ’ u:ulalgrLSk_l

o/ui\oo )o?'

(Ug, b, Uy)—switch

Us : b u2<g




I Some ldeas for the Proofs

(uq,...,ur)-sSWitch means replace f by f’, with

f/(u):< fluir1) , u=u;, 1<1<k—1

(U, B)—switch




I Some ldeas for the Proofs

An important structure that we utilize in our proof is -

(u1,u2;1,2)-link Is a path of length two (in G'¢) from w; to
us Whose first edge is in £; and the second edge is In
Eo.

A green-red path of length two from u; to ws.

—



I Some ldeas for the Proofs

An important structure that we utilize in our proof is -

(u1,u2;1,2)-link Is a path of length two (in G'¢) from w; to
us Whose first edge is in £; and the second edge is In
Eo.

A green-red path of length two from u; to ws.

For e € E1, an e-packing (quasi-packing) of (G1,G2) IS a
bijection f between V; and V5 such that e Is the only
edge in £ that shares its incident vertices with an edge

from E.

Such a packing exists for every edge e in a critical pair. |



I Outline of the Proof of Theorem 2

Key Lemma : Let uq,...,u; be vertices of G. If

# for any i, there is no red-green path from u; to u;1,
and

® forl<i<j<k, ifuu;isarededge,then u;iiujyg
IS either a red edge or is not an edge.

then a (uq, ..., u;)-switch does not create new
conflicting edges.

—
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Key Lemma : Let uq,...,u; be vertices of GG. If

# for any i, there is no red-green path from u; to u;,, and

#® forl <i<j <k, Ifuu;isarededge, then u;qu;q IS
either a red edge or is not an edge.

then a (uq, ..., us)-switch does not create new conflicting

edges.
o \OO 0(7' 0
> K
(W, W, Ug)—switch
O U




I Outline of the Proof of Theorem 2

Key Lemma : Let uq,...,u; be vertices of GG. If

# for any ¢, there is no red-green path from u; to u,;,, and

#® forl <i<j <k, Ifuu;isarededge, then u;qu;q IS
either a red edge or is not an edge.

then a (uq, ..., us)-switch does not create new conflicting
edges.
Uy - U

(U, B)—switch

Uy th
Gf Q



I Using the Key Lemma

Consider a critical pair (G, Gs).

There Is a bijection between V(G;) and V(Gs) with
exactly one conflicting edge.

Why Is the Key Lemma useful?



I Using the Key Lemma

Why Is the Key Lemma useful?

Uy
//, ‘\\ //
7 ~N 7
7 N 7
/7 N /7
/ \ /
/ \ /
/ \ /
/ u2 /
I * I
U, ' . |
4\ r - switch  ug, !
\ / \ /
\ / \ /
\ / \ /
\ / \ /
N 7 N 4
N 7 N 7
\\ // \\ ’/
.- - .- -
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I Structure.of Counterexamples |

A
C B

A = vertices with only green-red paths from «*
B = vertices with only red-green paths from «*
C' = vertices with both types of paths from «*

Al >n(1l—¢), |B| >n(l—c¢), |C| <ne. |




I Structure.of Counterexamples II

u*

.

/ \
/ \

B

No red-green paths from u* to A.

No green-red paths from u* to B. |

A



I Structure.of Counterexamples II

Unique red-green paths from A to B.

(u*,a,c,b) — switch |



I The Primary Inequality

Let N be the number of pairs of vertices in A x B with
exactly one red-green path between them.



I The Primary Inequality

Let N be the number of pairs of vertices in A x B with
exactly one red-green path between them.

Lower Bound on N : |A| |B| — |A|(A1A2 — |B]), a
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of central vertices on the unigue red-green paths.
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I The Primary Inequality

Let N be the number of pairs of vertices in A x B with
exactly one red-green path between them.

Lower Bound on NV : |A| |B| — |A|(A1Ay — |B]), a
counting argument.

Upper Bound on N : MA{As, where M Is the number
of central vertices on the unique red-green paths.

Compare the lower bound and the upper bound of V.
A [B] — |A[(A1A2 — |B]) < MA1 A
Get an inequality for ¢, leading to a contradiction.

Need an upper bound on M ! |



I Outline of the Proof of Theorem 1

Theorem 1 [Kaul + Kostochka, CPC 20071
If A1A, < %n, then
G1 and G5 do not pack if and only if

one of G; and G, Is a perfect matching and the other
either Is K» » with 3 odd or contains K= ;.

B



I Outline of the Proof of Theorem 1

The Key Lemma — this is the idea of the proof of the
Sauer-Spencer Theorem.

Lemma 1l : Let (G, G2) be a critical pair and 2A1 A5 < n.
Given any e € F1, In a e—packing of (G, G2) with
e = ujuy, the following statements are true.

(1) For every u # uf, there exists either a unique
(u1,u; 1,2)—link or a unique (uy,u; 2, 1)—link,

(i) there is no (uy,u);1,2)—link or (uy,u);2,1)—link,

() 2degg, (u1)degg, (u1) = n.

. o4 |
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I Outline of the Proof of Theorem 1

The Key Lemma — this is the idea of the proof of the
Sauer-Spencer Theorem.

Lemma 1l : Let (G, G2) be a critical pair and 2A1 A5 < n.
Given any e € F1, In a e—packing of (G, G2) with
e = ujuy, the following statements are true.

(1) For every u # uf, there exists either a unique
(u1,u; 1,2)—link or a unique (uy,u; 2, 1)—link,

(i) there is no (uy,u);1,2)—link or (uy,u);2,1)—link,

() 2degg, (u1)degg, (u1) = n.

c—o ”1.\/3i |




I Outline of the Proof of Theorem 1

Lemma 2 : If 2A;A, = n and (G, Gs) IS a critical pair,
then every component of G; is either Ka, o, with A;
odd, or an isolated vertex, or Ka, 1,1 =1, 2.

Lemma 2 allows us to settle the case of : A; or A, = 1.

If Ay =1, I.e., Gy Is a matching. Then A; = 3.

If G'; contains K, a,, then simply G; = K%’%.
K= » cannot pack with a matching iff the matching is
perfect and 3 Is odd.

If G, consists of K=, and 3 — 1 isolated vertices, then it

does not pack with a matching iff the matching is perfect. |



I Outline of the Proof of Theorem 1

Now, we have to give a packing for all remaining pairs
of graphs, to eliminate their possibility.

The following Lemma says Ka, A, eXists only when
K, A, does, and vice-versa.

Lemma 3 : Let A, Ay > 1 and 2A1As =n. If (G1,G2) IS
a critical pair and the conflicted edge in a
guasi-packing belongs to a component H of G-
Isomorphic to K, a,, then every component of G4

sharing vertices with H IS K, a,.

Now, we pack such graphs. |



I Outline of the Proof of Theorem 1

Lemma 4 : Suppose that A;, A, > 1 and odd, and
2A1A9 = n. If G consists of Ay copies of K, A, and G
consists of A; copies of Ka, a,, then Gy and G pack.




I Outline of the Proof of Theorem 1

Lets eliminate the only remaining possibility.

Lemma5: Let A, Ay > 1and 2A:Ay = n. If every
non-trivial component of G; IS Ka..1, i = 1,2, then G,
and G5 pack.

This would complete the proof of Theorem 1.

B
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