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Introduction

Let G1 = (V1, E1) and G2 = (V2, E2) be graphs of order at
most n, with maximum degree ∆1 and ∆2, respectively.
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Introduction

Let G1 = (V1, E1) and G2 = (V2, E2) be graphs of order at
most n, with maximum degree ∆1 and ∆2, respectively.

G1 and G2 are said to pack if there exist injective
mappings of the vertex sets into [n],
Vi → [n] = {1, 2, . . . , n}, i = 1, 2,
such that the images of the edge sets do not intersect.

We may assume |V1| = |V2| = n by adding isolated
vertices.
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Introduction

Let G1 = (V1, E1) and G2 = (V2, E2) be graphs of order at
most n, with maximum degree ∆1 and ∆2, respectively.

G1 and G2 are said to pack if there exist injective
mappings of the vertex sets into [n],
Vi → [n] = {1, 2, . . . , n}, i = 1, 2,
such that the images of the edge sets do not intersect.

there exists a bijection V1 ↔ V2 such that
e ∈ E1 ⇒ e 6∈ E2.

G1 is a subgraph of G2.
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Examples and Non-Examples
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A Common Generalization

Hamiltonian Cycle in graph G : Whether the n-cycle
Cn packs with G.
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A Common Generalization
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Existence of a subgraph H in G : Whether H packs
with G.

Equitable k-coloring of graph G : (A proper k-coloring
of G such that sizes of all color classes differ by at most 1)
Whether G packs with k cliques of order n/k.
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A Common Generalization

Hamiltonian Cycle in graph G : Whether the n-cycle
Cn packs with G.

Existence of a subgraph H in G : Whether H packs
with G.

Equitable k-coloring of graph G : (A proper k-coloring
of G such that sizes of all color classes differ by at most 1)
Whether G packs with k cliques of order n/k.

Turán-type problems : Every graph with more than
ex(n,H) edges must pack with H.

Ramsey-type problems.

“most” problems in Extremal Graph Theory.
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A Distinction

In packing problems, each member of a ‘large’ family of
graphs contains each member of another ‘large’ family
of graphs.
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A Distinction

In packing problems, each member of a ‘large’ family of
graphs contains each member of another ‘large’ family
of graphs.

In subgraph problems, (usually) at least one of the two
graphs is fixed.
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A Distinction

In packing problems, each member of a ‘large’ family of
graphs contains each member of another ‘large’ family
of graphs.

Theorem : If e(G1) < n − 1 and e(G2) < n − 1, then G1

and G2 pack.
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A Distinction

In packing problems, each member of a ‘large’ family of
graphs contains each member of another ‘large’ family
of graphs.

Theorem [Bollobas + Eldridge, 1978, & Teo + Yap, 1990]:
If ∆1, ∆2 < n − 1, and e(G1) + e(G2) ≤ 2n − 2, then G1

and G2 do not pack if and only if they are one of the
thirteen specified pairs of graphs.
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A Distinction

In packing problems, each member of a ‘large’ family of
graphs contains each member of another ‘large’ family
of graphs.

Theorem: If e(G1)e(G2) <
(

n
2

)

, then G1 and G2 pack.

Proof. Pick a random bijection between V (G1) and V (G2),
uniformly among the set of all n! such bijections.

Sharp for G1 = S2m, star of order 2m, and G2 = mK2,
matching of size m, where n = 2m.
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A Distinction

In packing problems, each member of a ‘large’ family of
graphs contains each member of another ‘large’ family
of graphs.

Erdős-Sos Conjecture (1963) : Let G be a graph of
order n and T be a tree of size k.
If e(G) < 1

2n(n − k) then T and G pack.

Each graph with more than 1

2
n(k − 1) edges contains every

tree of size k.

This says average degree k guarantees every tree of size k. The corresponding

minimum degree result is easy (induction on k).

Sharp, if true. Take disjoint copies of k-cliques.

Known only for special classes of trees, etc.
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A Distinction

In packing problems, each member of a ‘large’ family of
graphs contains each member of another ‘large’ family
of graphs.

Tree Packing Conjecture (Gyarfas ∼ 1968) : Any family
of trees T2, . . . , Tn, where Ti has order i, can be packed.

In other words, any family of trees T2, . . . , Tn

decomposes Kn.

Known only for special classes of trees, and for a sequence of
n/

√
2 such trees (Bollobas, 1983).
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Sauer and Spencer’s Packing Theorem

Theorem [Sauer + Spencer, 1978] :
If 2∆1∆2 < n , then G1 and G2 pack.

No Packing
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Sauer and Spencer’s Packing Theorem

Theorem [Sauer + Spencer, 1978] :
If 2∆1∆2 < n , then G1 and G2 pack.

If δ(G) > (2k−1)(n−1)+1
2k

, then
G contains all graphs with maximum degree at most k.

No Packing

Graph Packing – p.7/23



Sauer and Spencer’s Packing Theorem

Theorem [Sauer + Spencer, 1978] :
If 2∆1∆2 < n , then G1 and G2 pack.

This is sharp.

For n even.

G1 = n
2K2 , a perfect matching on n vertices.

G2 ⊇ Kn

2
+1, or

G2 = Kn

2
,n

2

with n
2 odd.

Then, 2∆1∆2 = n, and G1 and G2 do not pack.

No Packing
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Sauer and Spencer’s Packing Theorem

K3,3 3 K2 No Packing

G1 = Kn

2
, n

2
with n

2
odd G2 = n

2
K2

3K
2 2 K No Packing

G1 = n
2
K2 G2 ⊇ Kn

2
+1
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Extending the Sauer-Spencer Theorem

Theorem 1 [Kaul + Kostochka, CPC 2007 ]:
If 2∆1∆2 ≤ n , then
G1 and G2 do not pack if and only if
one of G1 and G2 is a perfect matching and the other
either is Kn

2
,n

2

with n
2 odd or contains Kn

2
+1.

This result characterizes the extremal graphs for the
Sauer-Spencer Theorem.

To appear in Combinatorics, Probability and Computing.
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Theorem 1 [Kaul + Kostochka, CPC 2007 ]:
If ∆1∆2 ≤ 1

2n , then
G1 and G2 do not pack if and only if
one of G1 and G2 is a perfect matching and the other
either is Kn

2
,n
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with n
2 odd or contains Kn

2
+1.

Graph Packing – p.9/23



Extending the Sauer-Spencer Theorem

Theorem 1 [Kaul + Kostochka, CPC 2007 ]:
If ∆1∆2 ≤ 1

2n , then
G1 and G2 do not pack if and only if
one of G1 and G2 is a perfect matching and the other
either is Kn

2
,n

2

with n
2 odd or contains Kn

2
+1.

∆1∆2 ≤ 1
2n is sharp exactly when one of ∆1, ∆2 is

small.

Can we improve the bound on ∆1∆2, if both ∆1 and ∆2

are large ?

Graph Packing – p.9/23



Extending the Sauer-Spencer Theorem

Theorem 1 [Kaul + Kostochka, CPC 2007 ]:
If ∆1∆2 ≤ 1

2n , then
G1 and G2 do not pack if and only if
one of G1 and G2 is a perfect matching and the other
either is Kn

2
,n

2

with n
2 odd or contains Kn

2
+1.

Bollobás-Eldridge Graph Packing Conjecture :
If (∆1 + 1)(∆2 + 1) ≤ n + 1 then G1 and G2 pack.

Theorem 1 can be thought of as a small step towards
this longstanding conjecture.
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Bollobás-Eldridge Conjecture

Bollobás-Eldridge Graph Packing Conjecture [1978] :
If (∆1 + 1)(∆2 + 1) ≤ n + 1 then G1 and G2 pack.
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Bollobás-Eldridge Conjecture

Bollobás-Eldridge Graph Packing Conjecture [1978] :
If (∆1 + 1)(∆2 + 1) ≤ n + 1 then G1 and G2 pack.

If δ(G) > kn−1
k+1 , then

G contains all graphs with maximum degree at most k.
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Bollobás-Eldridge Conjecture

Bollobás-Eldridge Graph Packing Conjecture [1978] :
If (∆1 + 1)(∆2 + 1) ≤ n + 1 then G1 and G2 pack.

If true, this conjecture would be sharp.

Kd +1

Kd2+1

K
2−1

d1

G2

2

d

1G

2d +1Kd2

K

K

K

Kd −11

+1

1d +1

1d +1

1d

n = (d1 + 1)(d2 + 1) − 2, ∆1 = d1, ∆2 = d2.
Graph Packing – p.10/23



Bollobás-Eldridge Conjecture

Bollobás-Eldridge Graph Packing Conjecture [1978] :
If (∆1 + 1)(∆2 + 1) ≤ n + 1 then G1 and G2 pack.

If true, this conjecture would be a considerable extension
of the Hajnal-Szemerédi theorem on equitable colorings :
Every graph G has an equitable k-coloring for k ≥ ∆(G) + 1.

Equitable colorings of graphs have been used to

extend Chernoff-Hoeffding concentration bounds to
dependent random variables (Pemmaraju, 2003)

extend Arnold-Groeneveld order statistics bounds to
dependent random variables (Kaul + Jacobson, 2006)
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Bollobás-Eldridge Conjecture

Bollobás-Eldridge Graph Packing Conjecture [1978] :
If (∆1 + 1)(∆2 + 1) ≤ n + 1 then G1 and G2 pack.

The conjecture has only been proved when

∆1 ≤ 2 [Aigner + Brandt (1993), and Alon + Fischer (1996)],

∆1 = 3 and n is huge [Csaba + Shokoufandeh + Szemerédi

(2003)].

Near-packing of degree 1 [Eaton (2000)].
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Reformulating the Conjecture

Let us consider a refinement of the Bollobás-Eldridge
Conjecture.

Conjecture : For a fixed 0 ≤ ǫ ≤ 1.
If (∆1 + 1)(∆2 + 1) ≤ n

2 (1 + ǫ) + 1, then G1 and G2 pack.

For ǫ = 0, this is essentially the Sauer-Spencer Theorem,
while ǫ = 1 gives the Bollobás-Eldridge conjecture.

For any ǫ > 0 this would improve the Sauer-Spencer result
(in a different way than Theorem 1).
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Towards the Bollobás-Eldridge Conjecture

Theorem 2 [Kaul + Kostochka + Yu, Combinatorica
2008+]:
For ǫ = 0.2 , and ∆1, ∆2 ≥ 300 ,
If (∆1 + 1)(∆2 + 1) ≤ n

2 (1 + ǫ) + 1, then G1 and G2 pack.
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Towards the Bollobás-Eldridge Conjecture

Theorem 2 [Kaul + Kostochka + Yu, Combinatorica
2008+]:
For ǫ = 0.2 , and ∆1, ∆2 ≥ 300 ,
If (∆1 + 1)(∆2 + 1) ≤ n

2 (1 + ǫ) + 1, then G1 and G2 pack.

In other words,

Theorem 2 [Kaul + Kostochka + Yu, Combinatorica
2008+]:
For ∆1, ∆2 ≥ 300 ,
If (∆1 + 1)(∆2 + 1) ≤ (0.6)n + 1, then G1 and G2 pack.
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Some Ideas for the Proofs

We have to analyze the ‘minimal’ graphs that do not
pack (under the given condition on ∆1 and ∆2).

(G1, G2) is a critical pair if G1 and G2 do not pack, but for
each e1 ∈ E(G1), G1 − e1 and G2 pack, and for each
e2 ∈ E(G2), G1 and G2 − e2 pack.

G1 and G2 do not pack, but removing one edge from
either G1 or G2 allows them to pack.
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Some Ideas for the Proofs

Each bijection f : V1 → V2 generates a (multi)graph Gf ,
with

V(Gf ) = {(u, f(u)) : u ∈ V1}

(u, f(u)) ↔ (u′, f(u′)) ⇔ uu′ ∈ E1 or f(u)f(u′) ∈ E2

Every vertex has two kinds of neighbors :
green from G1 and red from G2.
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Some Ideas for the Proofs

Each bijection f : V1 → V2 generates a (multi)graph Gf ,
with

V(Gf ) = {(u, f(u)) : u ∈ V1}

(u, f(u)) ↔ (u′, f(u′)) ⇔ uu′ ∈ E1 or f(u)f(u′) ∈ E2

Every vertex has two kinds of neighbors :
green from G1 and red from G2.

G1 Gf

 f

G2

gives
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Some Ideas for the Proofs

(u1, . . . , uk)-switch means replace f by f ′, with

f ′(u) =















f(u) , u 6= u1, u2, . . . , uk

f(ui+1) , u = ui , 1 ≤ i ≤ k − 1

f(u1) , u = uk
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Some Ideas for the Proofs

(u1, . . . , uk)-switch means replace f by f ′, with

f ′(u) =















f(u) , u 6= u1, u2, . . . , uk

f(ui+1) , u = ui , 1 ≤ i ≤ k − 1

f(u1) , u = uk

green-neighbors of ui −→ green-neighbors of ui−1
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Some Ideas for the Proofs

(u1, . . . , uk)-switch means replace f by f ′, with

f ′(u) =















f(u) , u 6= u1, u2, . . . , uk

f(ui+1) , u = ui , 1 ≤ i ≤ k − 1

f(u1) , u = uk

(u1,u2,u3)−switch

u3 u2

u3

u2 u1

u1

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

Graph Packing – p.15/23



Some Ideas for the Proofs

(u1, . . . , uk)-switch means replace f by f ′, with

f ′(u) =















f(u) , u 6= u1, u2, . . . , uk

f(ui+1) , u = ui , 1 ≤ i ≤ k − 1

f(u1) , u = uk

u1

u2

(u1 , u2)−switch

Gf
Gf ’

u2

u1
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Some Ideas for the Proofs

An important structure that we utilize in our proof is -

(u1, u2; 1, 2)-link is a path of length two (in Gf ) from u1 to
u2 whose first edge is in E1 and the second edge is in
E2.

A green-red path of length two from u1 to u2.
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Some Ideas for the Proofs

An important structure that we utilize in our proof is -

(u1, u2; 1, 2)-link is a path of length two (in Gf ) from u1 to
u2 whose first edge is in E1 and the second edge is in
E2.

A green-red path of length two from u1 to u2.

For e ∈ E1, an e-packing (quasi-packing) of (G1, G2) is a
bijection f between V1 and V2 such that e is the only
edge in E1 that shares its incident vertices with an edge
from E2.

Such a packing exists for every edge e in a critical pair.
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Outline of the Proof of Theorem 2

Key Lemma : Let u1, . . . , uk be vertices of G. If

for any i, there is no red-green path from ui to ui+1,
and

for 1 ≤ i < j ≤ k, if uiuj is a red edge, then ui+1uj+1

is either a red edge or is not an edge.

then a (u1, . . . , uk)-switch does not create new
conflicting edges.
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Outline of the Proof of Theorem 2

Key Lemma : Let u1, . . . , uk be vertices of G. If

for any i, there is no red-green path from ui to ui+1, and

for 1 ≤ i < j ≤ k, if uiuj is a red edge, then ui+1uj+1 is
either a red edge or is not an edge.

then a (u1, . . . , uk)-switch does not create new conflicting
edges.

(u1,u2,u3)−switch

u3 u2
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u2 u1
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Outline of the Proof of Theorem 2

Key Lemma : Let u1, . . . , uk be vertices of G. If

for any i, there is no red-green path from ui to ui+1, and

for 1 ≤ i < j ≤ k, if uiuj is a red edge, then ui+1uj+1 is
either a red edge or is not an edge.

then a (u1, . . . , uk)-switch does not create new conflicting
edges.

u1

u2

(u1 , u2)−switch

Gf
Gf ’

u2

u1
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Using the Key Lemma

Consider a critical pair (G1, G2).

There is a bijection between V (G1) and V (G2) with
exactly one conflicting edge.

Why is the Key Lemma useful?
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Using the Key Lemma

Why is the Key Lemma useful?

1

u2

u3

u4

u4

u1

u2

u3switch

u
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�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
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Structure of Counterexamples I

A
C B

u*

N2(u*)N1(u*)

�
�
�
�

�
�
�
�
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Structure of Counterexamples I

A
C B

u*

N2(u*)N1(u*)

�
�
�
�

�
�
�
�

A = vertices with only green-red paths from u∗

B = vertices with only red-green paths from u∗

C = vertices with both types of paths from u∗

|A| ≥ n(1 − ǫ), |B| ≥ n(1 − ǫ), |C| ≤ nǫ.
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Structure of Counterexamples II

(u*)2N

u*

BA

�
�
�
��

�
�
�

�
�
�
�

�
�
�
�

(u*)1N

No red-green paths from u∗ to A.

No green-red paths from u∗ to B.
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Structure of Counterexamples II

a b

(u*)2N

u*

BA

N1(u*)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

c

Unique red-green paths from A to B.
(u∗, a, c, b) − switch

Graph Packing – p.20/23



The Primary Inequality

Let N be the number of pairs of vertices in A × B with
exactly one red-green path between them.
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The Primary Inequality

Let N be the number of pairs of vertices in A × B with
exactly one red-green path between them.

Lower Bound on N : |A| |B| − |A|(∆1∆2 − |B|), a
counting argument.

Upper Bound on N : M∆1∆2, where M is the number
of central vertices on the unique red-green paths.
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The Primary Inequality

Let N be the number of pairs of vertices in A × B with
exactly one red-green path between them.

Lower Bound on N : |A| |B| − |A|(∆1∆2 − |B|), a
counting argument.

Upper Bound on N : M∆1∆2, where M is the number
of central vertices on the unique red-green paths.

Compare the lower bound and the upper bound of N .
|A| |B| − |A|(∆1∆2 − |B|) ≤ M∆1∆2

Get an inequality for ǫ, leading to a contradiction.

Need an upper bound on M !
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Outline of the Proof of Theorem 1

Theorem 1 [Kaul + Kostochka, CPC 2007 ]:
If ∆1∆2 ≤ 1

2n , then
G1 and G2 do not pack if and only if
one of G1 and G2 is a perfect matching and the other
either is Kn

2
,n

2

with n
2 odd or contains Kn

2
+1.
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Outline of the Proof of Theorem 1

The Key Lemma − this is the idea of the proof of the
Sauer-Spencer Theorem.

Lemma 1 : Let (G1, G2) be a critical pair and 2∆1∆2 ≤ n.
Given any e ∈ E1, in a e−packing of (G1, G2) with
e = u1u

′

1, the following statements are true.

(i) For every u 6= u′

1, there exists either a unique
(u1, u; 1, 2)−link or a unique (u1, u; 2, 1)−link,

(ii) there is no (u1, u
′

1; 1, 2)−link or (u1, u
′

1; 2, 1)−link,

(iii) 2degG1
(u1)degG2

(u1) = n.

u1 u’1u
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The Key Lemma − this is the idea of the proof of the
Sauer-Spencer Theorem.

Lemma 1 : Let (G1, G2) be a critical pair and 2∆1∆2 ≤ n.
Given any e ∈ E1, in a e−packing of (G1, G2) with
e = u1u

′

1, the following statements are true.

(i) For every u 6= u′

1, there exists either a unique
(u1, u; 1, 2)−link or a unique (u1, u; 2, 1)−link,
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′

1; 1, 2)−link or (u1, u
′

1; 2, 1)−link,

(iii) 2degG1
(u1)degG2

(u1) = n.

u1 u’1u
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Outline of the Proof of Theorem 1

Lemma 2 : If 2∆1∆2 = n and (G1, G2) is a critical pair,
then every component of Gi is either K∆i,∆i

with ∆i

odd, or an isolated vertex, or K∆i+1, i = 1, 2.

Lemma 2 allows us to settle the case of : ∆1 or ∆2 = 1.

If ∆2 = 1, i.e., G2 is a matching. Then ∆1 = n
2
.

If G1 contains K∆1,∆1
, then simply G1 = Kn

2
, n

2
.

Kn

2
, n

2
cannot pack with a matching iff the matching is

perfect and n
2

is odd.

If G1 consists of Kn

2
+1 and n

2
− 1 isolated vertices, then it

does not pack with a matching iff the matching is perfect.
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Outline of the Proof of Theorem 1

Now, we have to give a packing for all remaining pairs
of graphs, to eliminate their possibility.

The following Lemma says K∆1,∆1
exists only when

K∆2,∆2
does, and vice-versa.

Lemma 3 : Let ∆1,∆2 > 1 and 2∆1∆2 = n. If (G1, G2) is
a critical pair and the conflicted edge in a
quasi-packing belongs to a component H of G2

isomorphic to K∆2,∆2
, then every component of G1

sharing vertices with H is K∆1,∆1
.

Now, we pack such graphs.
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Outline of the Proof of Theorem 1

Lemma 4 : Suppose that ∆1,∆2 > 1 and odd, and
2∆1∆2 = n. If G1 consists of ∆2 copies of K∆1,∆1

and G2

consists of ∆1 copies of K∆2,∆2
, then G1 and G2 pack.
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Outline of the Proof of Theorem 1

Lets eliminate the only remaining possibility.

Lemma 5 : Let ∆1,∆2 > 1 and 2∆1∆2 = n. If every
non-trivial component of Gi is K∆i+1, i = 1, 2, then G1

and G2 pack.

This would complete the proof of Theorem 1.
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