

# **New Results on Graph Packing**

Hemanshu Kaul

hkaul@math.uiuc.edu www.math.uiuc.edu/~hkaul/.

University of Illinois at Urbana-Champaign

Graph Packing - p.1/1

 $G_1$  and  $G_2$  are said to *pack* if there exist injective mappings of the vertex sets into [n],  $V_i \rightarrow [n] = \{1, 2, ..., n\}, i = 1, 2,$ such that the images of the edge sets do not intersect.

 $G_1$  and  $G_2$  are said to *pack* if there exist injective mappings of the vertex sets into [n],  $V_i \rightarrow [n] = \{1, 2, ..., n\}, i = 1, 2,$ such that the images of the edge sets do not intersect.

We may assume  $|V_1| = |V_2| = n$  by adding isolated vertices.

 $G_1$  and  $G_2$  are said to *pack* if there exist injective mappings of the vertex sets into [n],  $V_i \rightarrow [n] = \{1, 2, ..., n\}, i = 1, 2,$ such that the images of the edge sets do not intersect.

- there exists a bijection  $V_1 \leftrightarrow V_2$  such that  $e \in E_1 \Rightarrow e \notin E_2$ .
- $G_1$  is a subgraph of  $\overline{G_2}$ .



Graph Packing - p.3/1













Graph Packing - p.4/18



Graph Packing - p.4/18

# • Hamiltonian Cycle in graph G: Whether the *n*-cycle $C_n$ packs with $\overline{G}$ .

- Hamiltonian Cycle in graph G: Whether the *n*-cycle  $C_n$  packs with  $\overline{G}$ .
- Existence of a subgraph H in G: Whether H packs with  $\overline{G}$ .

- Hamiltonian Cycle in graph *G* : Whether the *n*-cycle  $C_n$  packs with  $\overline{G}$ .
- Existence of a subgraph H in G: Whether H packs with  $\overline{G}$ .
- Equitable *k*-coloring of graph G: Whether G packs with k cliques of order n/k.

- Hamiltonian Cycle in graph *G* : Whether the *n*-cycle  $C_n$  packs with  $\overline{G}$ .
- Existence of a subgraph H in G: Whether H packs with  $\overline{G}$ .
- Equitable *k*-coloring of graph G: Whether G packs with k cliques of order n/k.
- Turan-type problems (forbidden subgraphs).

- Hamiltonian Cycle in graph *G* : Whether the *n*-cycle  $C_n$  packs with  $\overline{G}$ .
- Existence of a subgraph H in G: Whether H packs with  $\overline{G}$ .
- Equitable *k*-coloring of graph G: Whether G packs with k cliques of order n/k.
- Turan-type problems (forbidden subgraphs).
- Ramsey-type problems.

- Hamiltonian Cycle in graph *G* : Whether the *n*-cycle  $C_n$  packs with  $\overline{G}$ .
- Existence of a subgraph H in G: Whether H packs with  $\overline{G}$ .
- Equitable *k*-coloring of graph G: Whether G packs with k cliques of order n/k.
- Turan-type problems (forbidden subgraphs).
- Ramsey-type problems.
- "most" problems in Extremal Graph Theory.

In packing problems, each member of a 'large' family of graphs contains each member of another 'large' family of graphs.

In packing problems, each member of a 'large' family of graphs contains each member of another 'large' family of graphs.

In subgraph problems, (usually) at least one of the two graphs is fixed.

In packing problems, each member of a 'large' family of graphs contains each member of another 'large' family of graphs.

In subgraph problems, (usually) at least one of the two graphs is fixed.

**Erdős-Sos Conjecture** : Let *G* be a graph of order *n* and *T* be a tree of size *k*. If  $e(G) < \frac{1}{2}n(n-k)$  then *T* and *G* pack.

#### **Sauer and Spencer's Packing Theorem**

Theorem [Sauer + Spencer, 1978] : If  $2\Delta_1\Delta_2 < n$ , then  $G_1$  and  $G_2$  pack.

Theorem [Sauer + Spencer, 1978] : If  $2\Delta_1\Delta_2 < n$ , then  $G_1$  and  $G_2$  pack.

This is sharp.

For n even.

 $G_1 = \frac{n}{2}K_2$ , a perfect matching on *n* vertices.

 $G_2 \supseteq K_{\frac{n}{2}+1}$ , or

 $G_2 = K_{\frac{n}{2},\frac{n}{2}}$  with  $\frac{n}{2}$  odd.

Then,  $2\Delta_1\Delta_2 = n$ , and  $G_1$  and  $G_2$  do not pack.

Graph Packing - p.7/1

# **Sauer and Spencer's Packing Theorem**





## **Extending the Sauer-Spencer Theorem**

Theorem 1 [Kaul + Kostochka, 2005]: If  $2\Delta_1\Delta_2 \le n$ , then  $G_1$  and  $G_2$  do not pack if and only if one of  $G_1$  and  $G_2$  is a perfect matching and the other either is  $K_{\frac{n}{2},\frac{n}{2}}$  with  $\frac{n}{2}$  odd or contains  $K_{\frac{n}{2}+1}$ .

This result characterizes the extremal graphs for the Sauer-Spencer Theorem.

To appear in Combinatorics, Probability and Computing.

## **Extending the Sauer-Spencer Theorem**

Theorem 1 [Kaul + Kostochka, 2005]: If  $2\Delta_1\Delta_2 \le n$ , then  $G_1$  and  $G_2$  do not pack if and only if one of  $G_1$  and  $G_2$  is a perfect matching and the other either is  $K_{\frac{n}{2},\frac{n}{2}}$  with  $\frac{n}{2}$  odd or contains  $K_{\frac{n}{2}+1}$ .

This result can also be thought of as a small step towards the well-known Bollobás-Eldridge conjecture.

Bollobás-Eldridge Graph Packing Conjecture : If  $(\Delta_1 + 1)(\Delta_2 + 1) \le n + 1$  then  $G_1$  and  $G_2$  pack. Bollobás-Eldridge Graph Packing Conjecture [1978] : If  $(\Delta_1 + 1)(\Delta_2 + 1) \le n + 1$  then  $G_1$  and  $G_2$  pack.

If true, this conjecture would be sharp, and would be a considerable extension of the Hajnal-Szemerédi theorem on equitable colorings.

The conjecture has only been proved when

 $\Delta_1 \leq 2$  [Aigner + Brandt (1993), and Alon + Fischer (1996)], Or

 $\Delta_1=3~\text{and}~\text{n}~\text{is}~\text{huge}$  [Csaba + Shokoufandeh + Szemerédi (2003)].

Let us consider a refinement of the Bollobás-Eldridge Conjecture.

Conjecture : For a fixed  $0 \le \epsilon \le 1$ . If  $(\Delta_1 + 1)(\Delta_2 + 1) \le \frac{n}{2}(1 + \epsilon) + 1$ , then  $G_1$  and  $G_2$  pack.

For  $\epsilon = 0$ , this is essentially the Sauer-Spencer Theorem, while  $\epsilon = 1$  gives the Bollobás-Eldridge conjecture.

For any  $\epsilon > 0$  this would improve the Sauer-Spencer result (in a different way than Theorem 1).

#### **Towards the Bollobás-Eldridge Conjecture**

Theorem 2 [Kaul + Kostochka + Yu, 2005+]: For  $\epsilon = 0.2$ , and  $\Delta_1$ ,  $\Delta_2 \ge 400$ , If  $(\Delta_1 + 1)(\Delta_2 + 1) \le \frac{n}{2}(1 + \epsilon) + 1$ , then  $G_1$  and  $G_2$  pack. Theorem 2 [Kaul + Kostochka + Yu, 2005+]: For  $\epsilon = 0.2$ , and  $\Delta_1$ ,  $\Delta_2 \ge 400$ , If  $(\Delta_1 + 1)(\Delta_2 + 1) \le \frac{n}{2}(1 + \epsilon) + 1$ , then  $G_1$  and  $G_2$  pack.

In other words,

Theorem 2 [Kaul + Kostochka + Yu, 2005+]: For  $\Delta_1$ ,  $\Delta_2 \ge 400$ , If  $(\Delta_1 + 1)(\Delta_2 + 1) \le (0.6)n + 1$ , then  $G_1$  and  $G_2$  pack.

This is work in progress.

Theorem 1 [Kaul + Kostochka, 2005]: If  $2\Delta_1\Delta_2 \le n$ , then  $G_1$  and  $G_2$  do not pack if and only if one of  $G_1$  and  $G_2$  is a perfect matching and the other either is  $K_{\frac{n}{2},\frac{n}{2}}$  with  $\frac{n}{2}$  odd or contains  $K_{\frac{n}{2}+1}$ .

We have to analyze the 'minimal' graphs that do not pack (under the condition  $2\Delta_1\Delta_2 \leq n$ ).

 $(G_1, G_2)$  is a *critical pair* if  $G_1$  and  $G_2$  do not pack, but for each  $e_1 \in E(G_1)$ ,  $G_1 - e_1$  and  $G_2$  pack, and for each  $e_2 \in E(G_2)$ ,  $G_1$  and  $G_2 - e_2$  pack. Each bijection  $f: V_1 \rightarrow V_2$  generates a (multi)graph  $G_f$ , with

 $\mathbf{V}(\mathbf{G}_{\mathbf{f}}) = \{ (\mathbf{u}, \mathbf{f}(\mathbf{u})) : \mathbf{u} \in \mathbf{V}_{\mathbf{1}} \}$  $(\mathbf{u}, \mathbf{f}(\mathbf{u})) \leftrightarrow (\mathbf{u}', \mathbf{f}(\mathbf{u}')) \Leftrightarrow \mathbf{u}\mathbf{u}' \in \mathbf{E}_{\mathbf{1}} \text{ or } \mathbf{f}(\mathbf{u})\mathbf{f}(\mathbf{u}') \in \mathbf{E}_{\mathbf{2}}$ 

Each bijection  $f: V_1 \rightarrow V_2$  generates a (multi)graph  $G_f$ , with

$$\begin{split} \mathbf{V}(\mathbf{G_f}) &= \{(\mathbf{u}, \mathbf{f}(\mathbf{u})) \ : \ \mathbf{u} \in \mathbf{V_1} \} \\ (\mathbf{u}, \mathbf{f}(\mathbf{u})) \leftrightarrow (\mathbf{u}', \mathbf{f}(\mathbf{u}')) \Leftrightarrow \mathbf{uu}' \in \mathbf{E_1} \text{ or } \mathbf{f}(\mathbf{u}) \mathbf{f}(\mathbf{u}') \in \mathbf{E_2} \end{split}$$



#### **Some Proof Ideas for Theorem 1**

 $(u_1, u_2)$ -switch means replace f by f', with

$$f'(u) = \begin{cases} f(u) &, & u \neq u_1, u_2 \\ f(u_2) &, & u = u_1 \\ f(u_1) &, & u = u_2 \end{cases}$$

#### **Some Proof Ideas for Theorem 1**

 $(u_1, u_2)$ -switch means replace f by f', with

$$f'(u) = \begin{cases} f(u) &, & u \neq u_1, u_2 \\ f(u_2) &, & u = u_1 \\ f(u_1) &, & u = u_2 \end{cases}$$

2-neighbors of  $u_1 \longleftrightarrow$  2-neighbors of  $u_2$ 

#### **Some Proof Ideas for Theorem 1**

 $(u_1, u_2)$ -switch means replace f by f', with

$$f'(u) = \begin{cases} f(u) &, & u \neq u_1, u_2 \\ f(u_2) &, & u = u_1 \\ f(u_1) &, & u = u_2 \end{cases}$$



An important structure that we utilize in our proof is -

 $(u_1, u_2; 1, 2)$ -*link* is a path of length two (in  $G_f$ ) from  $u_1$  to  $u_2$  whose first edge is in  $E_1$  and the second edge is in  $E_2$ .

For  $e \in E_1$ , an *e*-packing (quasi-packing) of  $(G_1, G_2)$  is a bijection f between  $V_1$  and  $V_2$  such that e is the only edge in  $E_1$  that shares its incident vertices with an edge from  $E_2$ .

Such a packing exists for every edge e in a critical pair.

# **Outline of the Proof of Theorem 1**

#### The main tool –

Lemma 1 : Let  $(G_1, G_2)$  be a critical pair and  $2\Delta_1\Delta_2 \le n$ . Given any  $e \in E_1$ , in a *e*-packing of  $(G_1, G_2)$  with  $e = u_1u'_1$ , the following statements are true.

(i) For every  $u \neq u'_1$ , there exists either a unique  $(u_1, u; 1, 2)$ -link or a unique  $(u_1, u; 2, 1)$ -link,

(ii) there is no  $(u_1, u'_1; 1, 2)$ -link or  $(u_1, u'_1; 2, 1)$ -link,

(iii)  $2 \operatorname{deg}_{\mathbf{G_1}}(\mathbf{u_1}) \operatorname{deg}_{\mathbf{G_2}}(\mathbf{u_1}) = \mathbf{n}.$ 

u



# **Outline of the Proof of Theorem 1**

#### The main tool –

Lemma 1 : Let  $(G_1, G_2)$  be a critical pair and  $2\Delta_1\Delta_2 \le n$ . Given any  $e \in E_1$ , in a *e*-packing of  $(G_1, G_2)$  with  $e = u_1u'_1$ , the following statements are true.

(i) For every  $u \neq u'_1$ , there exists either a unique  $(u_1, u; 1, 2)$ -link or a unique  $(u_1, u; 2, 1)$ -link,

(ii) there is no  $(u_1, u'_1; 1, 2)$ -link or  $(u_1, u'_1; 2, 1)$ -link,

(iii)  $2 \operatorname{deg}_{\mathbf{G}_1}(\mathbf{u}_1) \operatorname{deg}_{\mathbf{G}_2}(\mathbf{u}_1) = \mathbf{n}.$ 



Graph Packing - p.17/1

# **Outline of the Proof of Theorem 1**

#### The main tool –

Lemma 1 : Let  $(G_1, G_2)$  be a critical pair and  $2\Delta_1\Delta_2 \le n$ . Given any  $e \in E_1$ , in a *e*-packing of  $(G_1, G_2)$  with  $e = u_1u'_1$ , the following statements are true.

(i) For every  $u \neq u'_1$ , there exists either a unique  $(u_1, u; 1, 2)$ -link or a unique  $(u_1, u; 2, 1)$ -link,

(ii) there is no  $(u_1, u'_1; 1, 2)$ -link or  $(u_1, u'_1; 2, 1)$ -link,

(iii)  $2 \operatorname{deg}_{\mathbf{G}_1}(\mathbf{u}_1) \operatorname{deg}_{\mathbf{G}_2}(\mathbf{u}_1) = \mathbf{n}.$ 



Graph Packing - p.17/1

Lemma 2 : If  $2\Delta_1\Delta_2 = n$  and  $(G_1, G_2)$  is a critical pair, then every component of  $G_i$  is either  $K_{\Delta_i,\Delta_i}$  with  $\Delta_i$ odd, or an isolated vertex, or  $K_{\Delta_i+1}$ , i = 1, 2.

Lemma 2 allows us to settle the case of :  $\Delta_1$  or  $\Delta_2 = 1$ .

Then, we have to give a packing for all remaining pairs of graphs, to eliminate their possibility.

The following Lemma limits the possible remaining pairs of graphs.

Lemma 3 : Let  $\Delta_1, \Delta_2 > 1$  and  $2\Delta_1\Delta_2 = n$ . If  $(G_1, G_2)$  is a critical pair and the conflicted edge in a quasi-packing belongs to a component H of  $G_2$ isomorphic to  $K_{\Delta_2,\Delta_2}$ , then every component of  $G_1$ sharing vertices with H is  $K_{\Delta_1,\Delta_1}$ .

Now, we completely eliminate such graphs.

Lemma 4 : Suppose that  $\Delta_1, \Delta_2 \ge 3$  and odd, and  $2\Delta_1\Delta_2 = n$ . If  $G_1$  consists of  $\Delta_2$  copies of  $K_{\Delta_1,\Delta_1}$  and  $G_2$  consists of  $\Delta_1$  copies of  $K_{\Delta_2,\Delta_2}$ , then  $G_1$  and  $G_2$  pack.

Now, lets eliminate the only remaining possibility.

Lemma 5 : Let  $\Delta_1, \Delta_2 > 1$  and  $2\Delta_1\Delta_2 = n$ . If every non-trivial component of  $G_i$  is  $K_{\Delta_i+1}$ , i = 1, 2, then  $G_1$ and  $G_2$  pack.

This would complete the proof of Theorem 1.