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G1 and G2 are said to pack if there exist injective
mappings of the vertex sets into [n],
Vi → [n] = {1, 2, . . . , n}, i = 1, 2,
such that the images of the edge sets do not intersect.

We may assume |V1| = |V2| = n by adding isolated
vertices.
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Introduction

Let G1 = (V1, E1) and G2 = (V2, E2) be graphs of order at
most n, with maximum degree ∆1 and ∆2, respectively.

G1 and G2 are said to pack if there exist injective
mappings of the vertex sets into [n],
Vi → [n] = {1, 2, . . . , n}, i = 1, 2,
such that the images of the edge sets do not intersect.

there exists a bijection V1 ↔ V2 such that
e ∈ E1 ⇒ e 6∈ E2.

G1 is a subgraph of G2.
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A Common Generalization

Hamiltonian Cycle in graph G : Whether the n-cycle
Cn packs with G.
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A Common Generalization

Hamiltonian Cycle in graph G : Whether the n-cycle
Cn packs with G.

Existence of a subgraph H in G : Whether H packs
with G.

Equitable k-coloring of graph G : Whether G packs
with k cliques of order n/k.

Turan-type problems (forbidden subgraphs).

Ramsey-type problems.

“most” problems in Extremal Graph Theory.
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A Distinction

In packing problems, each member of a ‘large’ family of
graphs contains each member of another ‘large’ family
of graphs.
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A Distinction

In packing problems, each member of a ‘large’ family of
graphs contains each member of another ‘large’ family
of graphs.

In subgraph problems, (usually) at least one of the two
graphs is fixed.

Erdős-Sos Conjecture : Let G be a graph of order n
and T be a tree of size k.
If e(G) < 1

2
n(n− k) then T and G pack.
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Sauer and Spencer’s Packing Theorem

Theorem [Sauer + Spencer, 1978] :
If 2∆1∆2 < n , then G1 and G2 pack.

No Packing
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Sauer and Spencer’s Packing Theorem

Theorem [Sauer + Spencer, 1978] :
If 2∆1∆2 < n , then G1 and G2 pack.

This is sharp.

For n even.

G1 = n
2
K2 , a perfect matching on n vertices.

G2 ⊇ Kn

2
+1, or

G2 = Kn

2
,n

2

with n
2

odd.

Then, 2∆1∆2 = n, and G1 and G2 do not pack.

No Packing

Graph Packing – p.7/18



Sauer and Spencer’s Packing Theorem

K3,3 3 K2 No Packing

G1 = Kn

2
,

n

2
with n

2
odd G2 = n

2
K2

3K
2 2 K No Packing

G1 = n

2
K2 G2 ⊇ Kn

2
+1
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Extending the Sauer-Spencer Theorem

Theorem 1 [Kaul + Kostochka, 2005]:
If 2∆1∆2 ≤ n , then
G1 and G2 do not pack if and only if
one of G1 and G2 is a perfect matching and the other
either is Kn

2
,n

2

with n
2

odd or contains Kn

2
+1.

This result characterizes the extremal graphs for the
Sauer-Spencer Theorem.

To appear in Combinatorics, Probability and Computing.
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Extending the Sauer-Spencer Theorem

Theorem 1 [Kaul + Kostochka, 2005]:
If 2∆1∆2 ≤ n , then
G1 and G2 do not pack if and only if
one of G1 and G2 is a perfect matching and the other
either is Kn

2
,n

2

with n
2

odd or contains Kn

2
+1.

This result can also be thought of as a small step
towards the well-known Bollobás-Eldridge conjecture.

Bollobás-Eldridge Graph Packing Conjecture :
If (∆1 + 1)(∆2 + 1) ≤ n + 1 then G1 and G2 pack.
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Bollobás-Eldridge Conjecture

Bollobás-Eldridge Graph Packing Conjecture [1978] :
If (∆1 + 1)(∆2 + 1) ≤ n + 1 then G1 and G2 pack.

If true, this conjecture would be sharp, and would be a
considerable extension of the Hajnal-Szemerédi
theorem on equitable colorings.

The conjecture has only been proved when

∆1 ≤ 2 [Aigner + Brandt (1993), and Alon + Fischer (1996)], or

∆1 = 3 and n is huge [Csaba + Shokoufandeh + Szemerédi

(2003)].
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Reformulating the Conjecture

Let us consider a refinement of the Bollobás-Eldridge
Conjecture.

Conjecture : For a fixed 0 ≤ ε ≤ 1.
If (∆1 + 1)(∆2 + 1) ≤ n

2
(1 + ε) + 1, then G1 and G2 pack.

For ε = 0, this is essentially the Sauer-Spencer Theorem,
while ε = 1 gives the Bollobás-Eldridge conjecture.

For any ε > 0 this would improve the Sauer-Spencer result
(in a different way than Theorem 1).
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Towards the Bollobás-Eldridge Conjecture

Theorem 2 [Kaul + Kostochka + Yu, 2005+]:
For ε = 0.2 , and ∆1, ∆2 ≥ 400 ,
If (∆1 + 1)(∆2 + 1) ≤ n

2
(1 + ε) + 1, then G1 and G2 pack.
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Towards the Bollobás-Eldridge Conjecture

Theorem 2 [Kaul + Kostochka + Yu, 2005+]:
For ε = 0.2 , and ∆1, ∆2 ≥ 400 ,
If (∆1 + 1)(∆2 + 1) ≤ n

2
(1 + ε) + 1, then G1 and G2 pack.

In other words,

Theorem 2 [Kaul + Kostochka + Yu, 2005+]:
For ∆1, ∆2 ≥ 400 ,
If (∆1 + 1)(∆2 + 1) ≤ (0.6)n + 1, then G1 and G2 pack.

This is work in progress.
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Some Proof Ideas for Theorem 1

Theorem 1 [Kaul + Kostochka, 2005]:
If 2∆1∆2 ≤ n , then
G1 and G2 do not pack if and only if
one of G1 and G2 is a perfect matching and the other
either is Kn

2
,n

2

with n
2

odd or contains Kn

2
+1.

We have to analyze the ‘minimal’ graphs that do not
pack (under the condition 2∆1∆2 ≤ n ).

(G1, G2) is a critical pair if G1 and G2 do not pack, but for
each e1 ∈ E(G1), G1 − e1 and G2 pack, and for each
e2 ∈ E(G2), G1 and G2 − e2 pack.
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Some Proof Ideas for Theorem 1

Each bijection f : V1 → V2 generates a (multi)graph Gf ,
with

V(Gf ) = {(u, f(u)) : u ∈ V1}

(u, f(u))↔ (u′, f(u′))⇔ uu′ ∈ E1 or f(u)f(u′) ∈ E2
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Some Proof Ideas for Theorem 1

Each bijection f : V1 → V2 generates a (multi)graph Gf ,
with

V(Gf ) = {(u, f(u)) : u ∈ V1}

(u, f(u))↔ (u′, f(u′))⇔ uu′ ∈ E1 or f(u)f(u′) ∈ E2

G1 Gf

 f

G2

gives
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Some Proof Ideas for Theorem 1

(u1, u2)-switch means replace f by f ′, with

f ′(u) =















f(u) , u 6= u1, u2

f(u2) , u = u1

f(u1) , u = u2
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(u1, u2)-switch means replace f by f ′, with

f ′(u) =















f(u) , u 6= u1, u2

f(u2) , u = u1

f(u1) , u = u2

2-neighbors of u1 ←→ 2-neighbors of u2
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Some Proof Ideas for Theorem 1

(u1, u2)-switch means replace f by f ′, with

f ′(u) =















f(u) , u 6= u1, u2

f(u2) , u = u1

f(u1) , u = u2

u1

u2

(u1 , u2)−switch

Gf
Gf ’

u2

u1
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Some Proof Ideas for Theorem 1

An important structure that we utilize in our proof is -

(u1, u2; 1, 2)-link is a path of length two (in Gf ) from u1 to
u2 whose first edge is in E1 and the second edge is in
E2.

For e ∈ E1, an e-packing (quasi-packing) of (G1, G2) is a
bijection f between V1 and V2 such that e is the only
edge in E1 that shares its incident vertices with an edge
from E2.

Such a packing exists for every edge e in a critical pair.
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Outline of the Proof of Theorem 1

The main tool −

Lemma 1 : Let (G1, G2) be a critical pair and 2∆1∆2 ≤ n.
Given any e ∈ E1, in a e−packing of (G1, G2) with
e = u1u

′

1, the following statements are true.

(i) For every u 6= u′

1, there exists either a unique
(u1, u; 1, 2)−link or a unique (u1, u; 2, 1)−link,

(ii) there is no (u1, u
′

1; 1, 2)−link or (u1, u
′

1; 2, 1)−link,

(iii) 2degG1
(u1)degG2

(u1) = n.

u1 u’1u
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Outline of the Proof of Theorem 1

Lemma 2 : If 2∆1∆2 = n and (G1, G2) is a critical pair,
then every component of Gi is either K∆i,∆i

with ∆i

odd, or an isolated vertex, or K∆i+1, i = 1, 2.

Lemma 2 allows us to settle the case of : ∆1 or ∆2 = 1.

Then, we have to give a packing for all remaining pairs
of graphs, to eliminate their possibility.

Graph Packing – p.18/18



Outline of the Proof of Theorem 1

The following Lemma limits the possible remaining
pairs of graphs.

Lemma 3 : Let ∆1,∆2 > 1 and 2∆1∆2 = n. If (G1, G2) is
a critical pair and the conflicted edge in a
quasi-packing belongs to a component H of G2

isomorphic to K∆2,∆2
, then every component of G1

sharing vertices with H is K∆1,∆1
.

Now, we completely eliminate such graphs.

Lemma 4 : Suppose that ∆1,∆2 ≥ 3 and odd, and
2∆1∆2 = n. If G1 consists of ∆2 copies of K∆1,∆1

and G2

consists of ∆1 copies of K∆2,∆2
, then G1 and G2 pack.
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Outline of the Proof of Theorem 1

Now, lets eliminate the only remaining possibility.

Lemma 5 : Let ∆1,∆2 > 1 and 2∆1∆2 = n. If every
non-trivial component of Gi is K∆i+1, i = 1, 2, then G1

and G2 pack.

This would complete the proof of Theorem 1.
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