New Results on Graph Packing

Hemanshu Kaul
hkaul@math.uiuc.edu
www.math.uiuc.edu/~hkaul/ .
University of Illinois at Urbana-Champaign

Introduction

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be graphs of order at most n, with maximum degree Δ_{1} and Δ_{2}, respectively.

Introduction

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be graphs of order at most n, with maximum degree Δ_{1} and Δ_{2}, respectively.
G_{1} and G_{2} are said to pack if there exist injective mappings of the vertex sets into [n],
$V_{i} \rightarrow[n]=\{1,2, \ldots, n\}, i=1,2$,
such that the images of the edge sets do not intersect.

Introduction

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be graphs of order at most n, with maximum degree Δ_{1} and Δ_{2}, respectively.
G_{1} and G_{2} are said to pack if there exist injective mappings of the vertex sets into [n],
$V_{i} \rightarrow[n]=\{1,2, \ldots, n\}, i=1,2$,
such that the images of the edge sets do not intersect.
We may assume $\left|V_{1}\right|=\left|V_{2}\right|=n$ by adding isolated vertices.

Introduction

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be graphs of order at most n, with maximum degree Δ_{1} and Δ_{2}, respectively.
G_{1} and G_{2} are said to pack if there exist injective mappings of the vertex sets into $[n]$,
$V_{i} \rightarrow[n]=\{1,2, \ldots, n\}, i=1,2$,
such that the images of the edge sets do not intersect.

- there exists a bijection $V_{1} \leftrightarrow V_{2}$ such that

$$
e \in E_{1} \Rightarrow e \notin E_{2} .
$$

- G_{1} is a subgraph of $\overline{G_{2}}$.

Examples and Non-Examples

C_{5}

C_{5}

Examples and Non-Examples

C_{5}

C_{5}

Packing

Examples and Non-Examples

C_{5}

C_{5}

$\mathrm{K}_{4,4}$

Packing

Examples and Non-Examples

C_{5}

$\mathrm{K}_{4,4}$

C_{5}

$4 \mathrm{~K}_{2}$

Packing

Packing

Examples and Non-Examples

$\mathrm{K}_{3,3}$

$3 \mathrm{~K}_{2}$

Examples and Non-Examples

$\mathrm{K}_{3,3}$

$3 \mathrm{~K}_{2}$

No Packing

Examples and Non-Examples

$\mathrm{K}_{3,3}$

$3 \mathrm{~K}_{2}$

No Packing

$2 \mathrm{~K}_{2}$

K_{3}

Examples and Non-Examples

$\mathrm{K}_{3,3}$

$2 \mathrm{~K}_{2}$

$3 \mathrm{~K}_{2}$

K_{3}

No Packing

No Packing

A Common Generalization

- Hamiltonian Cycle in graph G : Whether the n-cycle C_{n} packs with \bar{G}.

A Common Generalization

- Hamiltonian Cycle in graph G : Whether the n-cycle C_{n} packs with \bar{G}.
- Existence of a subgraph H in G : Whether H packs with \bar{G}.

A Common Generalization

- Hamiltonian Cycle in graph G : Whether the n-cycle C_{n} packs with \bar{G}.
- Existence of a subgraph H in G : Whether H packs with \bar{G}.
- Equitable k-coloring of graph G : Whether G packs with k cliques of order n / k.

A Common Generalization

- Hamiltonian Cycle in graph G : Whether the n-cycle C_{n} packs with \bar{G}.
- Existence of a subgraph H in G : Whether H packs with \bar{G}.
- Equitable k-coloring of graph G : Whether G packs with k cliques of order n / k.
- Turan-type problems (forbidden subgraphs).

A Common Generalization

- Hamiltonian Cycle in graph G : Whether the n-cycle C_{n} packs with \bar{G}.
- Existence of a subgraph H in G : Whether H packs with \bar{G}.
- Equitable k-coloring of graph G : Whether G packs with k cliques of order n / k.
- Turan-type problems (forbidden subgraphs).
- Ramsey-type problems.

A Common Generalization

- Hamiltonian Cycle in graph G : Whether the n-cycle C_{n} packs with \bar{G}.
- Existence of a subgraph H in G : Whether H packs with \bar{G}.
- Equitable k-coloring of graph G : Whether G packs with k cliques of order n / k.
- Turan-type problems (forbidden subgraphs).
- Ramsey-type problems.
- "most" problems in Extremal Graph Theory.

A Distinction

In packing problems, each member of a 'large' family of graphs contains each member of another 'large' family of graphs.

A Distinction

In packing problems, each member of a 'large' family of graphs contains each member of another 'large' family of graphs.

In subgraph problems, (usually) at least one of the two graphs is fixed.

A Distinction

In packing problems, each member of a 'large' family of graphs contains each member of another 'large' family of graphs.

In subgraph problems, (usually) at least one of the two graphs is fixed.

Erdős-Sos Conjecture : Let G be a graph of order n and T be a tree of size k.
If $e(G)<\frac{1}{2} n(n-k)$ then T and G pack.

Sauer and Spencer's Packing Theorem

Theorem [Sauer + Spencer, 1978] : If $2 \Delta_{1} \Delta_{2}<n$, then G_{1} and G_{2} pack.

Sauer and Spencer's Packing Theorem

Theorem [Sauer + Spencer, 1978] :
If $2 \Delta_{1} \Delta_{2}<n$, then G_{1} and G_{2} pack.
This is sharp.
For n even.
$G_{1}=\frac{n}{2} K_{2}$, a perfect matching on n vertices.
$G_{2} \supseteq K_{\frac{n}{2}+1}$, or
$G_{2}=K_{\frac{n}{2}, \frac{n}{2}}$ with $\frac{n}{2}$ odd.
Then, $2 \Delta_{1} \Delta_{2}=n$, and G_{1} and G_{2} do not pack.

Sauer and Spencer's Packing Theorem

$\mathrm{K}_{3,3}$
$G_{1}=K_{\frac{n}{2}, \frac{n}{2}}$ with $\frac{n}{2}$ odd

$2 \mathrm{~K}_{2}$
$G_{1}=\frac{n}{2} K_{2}$

$3 \mathrm{~K}_{2}$
$G_{2}=\frac{n}{2} K_{2}$

K_{3}

No Packing

No Packing
$G_{2} \supseteq K_{\frac{n}{2}+1}$

Extending the Sauer-Spencer Theorem

Theorem 1 [Kaul + Kostochka, 2005]:
If $2 \Delta_{1} \Delta_{2} \leq n$, then
G_{1} and G_{2} do not pack if and only if
one of G_{1} and G_{2} is a perfect matching and the other either is $K_{\frac{n}{2}}, \frac{n}{2}$ with $\frac{n}{2}$ odd or contains $K_{\frac{n}{2}+1}$.

This result characterizes the extremal graphs for the Sauer-Spencer Theorem.

To appear in Combinatorics, Probability and Computing.

Extending the Sauer-Spencer Theorem

Theorem 1 [Kaul + Kostochka, 2005]:
If $2 \Delta_{1} \Delta_{2} \leq n$, then
G_{1} and G_{2} do not pack if and only if
one of G_{1} and G_{2} is a perfect matching and the other either is $K_{\frac{n}{2}, \frac{n}{2}}$ with $\frac{n}{2}$ odd or contains $K_{\frac{n}{2}+1}$.

This result can also be thought of as a small step towards the well-known Bollobás-Eldridge conjecture.
Bollobás-Eldridge Graph Packing Conjecture : If $\left(\Delta_{1}+1\right)\left(\Delta_{2}+1\right) \leq n+1$ then G_{1} and G_{2} pack.

Bollobás-Eldridge Conjecture

Bollobás-Eldridge Graph Packing Conjecture [1978] : If $\left(\Delta_{1}+1\right)\left(\Delta_{2}+1\right) \leq n+1$ then G_{1} and G_{2} pack.

If true, this conjecture would be sharp, and would be a considerable extension of the Hajnal-Szemerédi theorem on equitable colorings.

The conjecture has only been proved when
$\Delta_{1} \leq 2$ [Aigner + Brandt (1993), and Alon + Fischer (1996)], or
$\Delta_{1}=3$ and n is huge [Csaba + Shokoufandeh + Szemerédi (2003)].

Reformulating the Conjecture

Let us consider a refinement of the Bollobás-Eldridge Conjecture.

Conjecture : For a fixed $0 \leq \epsilon \leq 1$.
If $\left(\Delta_{1}+1\right)\left(\Delta_{2}+1\right) \leq \frac{n}{2}(1+\epsilon)+1$, then G_{1} and G_{2} pack.
For $\epsilon=0$, this is essentially the Sauer-Spencer Theorem, while $\epsilon=1$ gives the Bollobás-Eldridge conjecture.

For any $\epsilon>0$ this would improve the Sauer-Spencer result (in a different way than Theorem 1).

Towards the Bollobás-Eldridge Conjecture

Theorem 2 [Kaul + Kostochka + Yu, 2005+]:
For $\epsilon=0.2$, and $\Delta_{1}, \Delta_{2} \geq 400$,
If $\left(\Delta_{1}+1\right)\left(\Delta_{2}+1\right) \leq \frac{n}{2}(1+\epsilon)+1$, then G_{1} and G_{2} pack.

Towards the Bollobás-Eldridge Conjecture

Theorem 2 [Kaul + Kostochka + Yu, 2005+]:
For $\epsilon=0.2$, and $\Delta_{1}, \Delta_{2} \geq 400$,
If $\left(\Delta_{1}+1\right)\left(\Delta_{2}+1\right) \leq \frac{n}{2}(1+\epsilon)+1$, then G_{1} and G_{2} pack.
In other words,
Theorem 2 [Kaul + Kostochka + Yu, 2005+]:
For $\Delta_{1}, \Delta_{2} \geq 400$,
If $\left(\Delta_{1}+1\right)\left(\Delta_{2}+1\right) \leq(0.6) n+1$, then G_{1} and G_{2} pack.

This is work in progress.

Some Proof Ideas for Theorem 1

Theorem 1 [Kaul + Kostochka, 2005]:
If $2 \Delta_{1} \Delta_{2} \leq n$, then
G_{1} and G_{2} do not pack if and only if
one of G_{1} and G_{2} is a perfect matching and the other either is $K_{\frac{n}{2}, \frac{n}{2}}$ with $\frac{n}{2}$ odd or contains $K_{\frac{n}{2}+1}$.

We have to analyze the 'minimal' graphs that do not pack (under the condition $2 \Delta_{1} \Delta_{2} \leq n$).
$\left(G_{1}, G_{2}\right)$ is a critical pair if G_{1} and G_{2} do not pack, but for each $e_{1} \in E\left(G_{1}\right), G_{1}-e_{1}$ and G_{2} pack, and for each $e_{2} \in E\left(G_{2}\right), G_{1}$ and $G_{2}-e_{2}$ pack.

Some Proof Ideas for Theorem 1

Each bijection $f: V_{1} \rightarrow V_{2}$ generates a (multi)graph G_{f}, with

$$
\begin{gathered}
\mathbf{V}\left(\mathbf{G}_{\mathbf{f}}\right)=\left\{(\mathbf{u}, \mathbf{f}(\mathbf{u})): \mathbf{u} \in \mathbf{V}_{\mathbf{1}}\right\} \\
(\mathbf{u}, \mathbf{f}(\mathbf{u})) \leftrightarrow\left(\mathbf{u}^{\prime}, \mathbf{f}\left(\mathbf{u}^{\prime}\right)\right) \Leftrightarrow \mathbf{u u}^{\prime} \in \mathbf{E}_{\mathbf{1}} \operatorname{or} \mathbf{f}(\mathbf{u}) \mathbf{f}\left(\mathbf{u}^{\prime}\right) \in \mathbf{E}_{\mathbf{2}}
\end{gathered}
$$

Some Proof Ideas for Theorem 1

Each bijection $f: V_{1} \rightarrow V_{2}$ generates a (multi)graph G_{f}, with

$$
\begin{gathered}
\mathbf{V}\left(\mathbf{G}_{\mathbf{f}}\right)=\left\{(\mathbf{u}, \mathbf{f}(\mathbf{u})): \mathbf{u} \in \mathbf{V}_{\mathbf{1}}\right\} \\
(\mathbf{u}, \mathbf{f}(\mathbf{u})) \leftrightarrow\left(\mathbf{u}^{\prime}, \mathbf{f}\left(\mathbf{u}^{\prime}\right)\right) \Leftrightarrow \mathbf{u u}^{\prime} \in \mathbf{E}_{\mathbf{1}} \operatorname{or} \mathbf{f}(\mathbf{u}) \mathbf{f}\left(\mathbf{u}^{\prime}\right) \in \mathbf{E}_{\mathbf{2}}
\end{gathered}
$$

G_{1}

G_{2}

G_{f}

Some Proof Ideas for Theorem 1

$\left(u_{1}, u_{2}\right)$-switch means replace f by f^{\prime}, with

$$
f^{\prime}(u)=\left\{\begin{array}{rll}
f(u) & , & u \neq u_{1}, u_{2} \\
f\left(u_{2}\right) & , & u=u_{1} \\
f\left(u_{1}\right) & , & u=u_{2}
\end{array}\right.
$$

Some Proof Ideas for Theorem 1

$\left(u_{1}, u_{2}\right)$-switch means replace f by f^{\prime}, with

$$
f^{\prime}(u)=\left\{\begin{aligned}
f(u) & , \quad u \neq u_{1}, u_{2} \\
f\left(u_{2}\right) & , \quad u=u_{1} \\
f\left(u_{1}\right) & , \quad u=u_{2}
\end{aligned}\right.
$$

2-neighbors of $u_{1} \longleftrightarrow 2$-neighbors of u_{2}

Some Proof Ideas for Theorem 1

$\left(u_{1}, u_{2}\right)$-switch means replace f by f^{\prime}, with

$$
f^{\prime}(u)=\left\{\begin{aligned}
& f(u), \quad u \neq u_{1}, u_{2} \\
& f\left(u_{2}\right), \\
& f\left(u_{1}\right), \quad u=u_{1} \\
& f=u_{2}
\end{aligned}\right.
$$

G_{f}

$\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)$-switch

G_{f},

Some Proof Ideas for Theorem 1

An important structure that we utilize in our proof is -
$\left(u_{1}, u_{2} ; 1,2\right)$-link is a path of length two (in G_{f}) from u_{1} to u_{2} whose first edge is in E_{1} and the second edge is in E_{2}.

For $e \in E_{1}$, an e-packing (quasi-packing) of $\left(G_{1}, G_{2}\right)$ is a bijection f between V_{1} and V_{2} such that e is the only edge in E_{1} that shares its incident vertices with an edge from E_{2}.
Such a packing exists for every edge e in a critical pair.

Outline of the Proof of Theorem 1

The main tool -
Lemma 1: Let $\left(G_{1}, G_{2}\right)$ be a critical pair and $2 \Delta_{1} \Delta_{2} \leq n$. Given any $e \in E_{1}$, in a e-packing of $\left(G_{1}, G_{2}\right)$ with $e=u_{1} u_{1}^{\prime}$, the following statements are true.
(i) For every $u \neq u_{1}^{\prime}$, there exists either a unique ($u_{1}, u ; 1,2$) -link or a unique ($u_{1}, u ; 2,1$) -link,
(ii) there is no ($\left.u_{1}, u_{1}^{\prime} ; 1,2\right)$-link or $\left(u_{1}, u_{1}^{\prime} ; 2,1\right)$-link,
(iii) $2 \operatorname{deg}_{\mathrm{G}_{1}}\left(\mathbf{u}_{1}\right) \operatorname{deg}_{\mathrm{G}_{2}}\left(\mathbf{u}_{1}\right)=\mathbf{n}$.

Outline of the Proof of Theorem 1

The main tool -
Lemma 1: Let $\left(G_{1}, G_{2}\right)$ be a critical pair and $2 \Delta_{1} \Delta_{2} \leq n$. Given any $e \in E_{1}$, in a e-packing of $\left(G_{1}, G_{2}\right)$ with $e=u_{1} u_{1}^{\prime}$, the following statements are true.
(i) For every $u \neq u_{1}^{\prime}$, there exists either a unique ($u_{1}, u ; 1,2$) -link or a unique ($u_{1}, u ; 2,1$) -link,
(ii) there is no $\left(u_{1}, u_{1}^{\prime} ; 1,2\right)$-link or $\left(u_{1}, u_{1}^{\prime} ; 2,1\right)$-link,
(iii) $2 \operatorname{deg}_{\mathrm{G}_{1}}\left(\mathbf{u}_{1}\right) \operatorname{deg}_{\mathrm{G}_{2}}\left(\mathbf{u}_{1}\right)=\mathbf{n}$.

Outline of the Proof of Theorem 1

The main tool -
Lemma 1: Let $\left(G_{1}, G_{2}\right)$ be a critical pair and $2 \Delta_{1} \Delta_{2} \leq n$. Given any $e \in E_{1}$, in a e-packing of $\left(G_{1}, G_{2}\right)$ with $e=u_{1} u_{1}^{\prime}$, the following statements are true.
(i) For every $u \neq u_{1}^{\prime}$, there exists either a unique ($u_{1}, u ; 1,2$) -link or a unique ($u_{1}, u ; 2,1$) -link,
(ii) there is no $\left(u_{1}, u_{1}^{\prime} ; 1,2\right)$-link or $\left(u_{1}, u_{1}^{\prime} ; 2,1\right)$-link,
(iii) $2 \operatorname{deg}_{\mathrm{G}_{1}}\left(\mathbf{u}_{1}\right) \operatorname{deg}_{\mathrm{G}_{2}}\left(\mathbf{u}_{1}\right)=\mathbf{n}$.

Outline of the Proof of Theorem 1

Lemma 2 : If $2 \Delta_{1} \Delta_{2}=n$ and $\left(G_{1}, G_{2}\right)$ is a critical pair, then every component of G_{i} is either $K_{\Delta_{i}, \Delta_{i}}$ with Δ_{i} odd, or an isolated vertex, or $K_{\Delta_{i}+1}, i=1,2$.

Lemma 2 allows us to settle the case of : Δ_{1} or $\Delta_{2}=1$.
Then, we have to give a packing for all remaining pairs of graphs, to eliminate their possibility.

Outline of the Proof of Theorem 1

The following Lemma limits the possible remaining pairs of graphs.

Lemma 3 : Let $\Delta_{1}, \Delta_{2}>1$ and $2 \Delta_{1} \Delta_{2}=n$. If $\left(G_{1}, G_{2}\right)$ is a critical pair and the conflicted edge in a quasi-packing belongs to a component H of G_{2} isomorphic to $K_{\Delta_{2}, \Delta_{2}}$, then every component of G_{1} sharing vertices with H is $K_{\Delta_{1}, \Delta_{1}}$.

Now, we completely eliminate such graphs.
Lemma 4 : Suppose that $\Delta_{1}, \Delta_{2} \geq 3$ and odd, and $2 \Delta_{1} \Delta_{2}=n$. If G_{1} consists of Δ_{2} copies of $K_{\Delta_{1}, \Delta_{1}}$ and G_{2} consists of Δ_{1} copies of $K_{\Delta_{2}, \Delta_{2}}$, then G_{1} and G_{2} pack.

Outline of the Proof of Theorem 1

Now, lets eliminate the only remaining possibility.
Lemma 5 : Let $\Delta_{1}, \Delta_{2}>1$ and $2 \Delta_{1} \Delta_{2}=n$. If every non-trivial component of G_{i} is $K_{\Delta_{i}+1}, i=1,2$, then G_{1} and G_{2} pack.

This would complete the proof of Theorem 1.

