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(GG1 and G4 are said to pack If there exist injective
mappings of the vertex sets into [n],
Vi—[n]={1,2,...,n},i=1,2,

such that the images of the edge sets do not intersect.

We may assume |V;| = |V2| = n by adding isolated

vertices.



I Introduction

Let &y = (V1, Ey) and Gy = (14, Ey) be graphs of order at
most », with maximum degree A, and A, respectively.

(GG1 and G4 are said to pack If there exist injective
mappings of the vertex sets into [n],
Vi—[n]={1,2,...,n},i=1,2,

such that the images of the edge sets do not intersect.

# there exists a bijection V; < 145 such that
ec F1 = e & L.

# (1 is a subgraph of Gs. |
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I A Common.Generalization

# Hamiltonian Cycle in graph G : Whether the n-cycle
C,, packs with G.

# Existence of a subgraph H in G : Whether 4 packs
with G.

# Equitable k-coloring of graph G : Whether G packs
with k& cliques of order n/k.

# Turan-type problems (forbidden subgraphs).

#» Ramsey-type problems.

#» “most” problems in Extremal Graph Theory.
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I A Distinction

In packing problems, each member of a ‘large’ family of
graphs contains each member of another ‘large’ family
of graphs.

In subgraph problems, (usually) at least one of the two
graphs is fixed.

Erdos-Sos Conjecture : Let G be a graph of order n

and T be a tree of size k.

If e(G) < $n(n — k) then T and G pack.
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I Sauer.and Spencer’s Packing Theorem

Theorem [Sauer + Spencer, 1978] :
If 2A1Ay < n, then G; and G5 pack.

This Is sharp.

For n even.

G = 5 K5, a perfect matching on n vertices.
Go 2 Kziq, OF

G = K» » wWith 5 odd.

Then, 2A1As = n, and G; and G5 do not pack.
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I Extending the Sauer-Spencer Theorem

Theorem 1 [Kaul + Kostochka, 2005]:

If 2A1As < n, then

G1 and G5 do not pack if and only if

one of G; and G, Is a perfect matching and the other
either Is K» » with 3 odd or contains K= ;.

This result characterizes the extremal graphs for the
Sauer-Spencer Theorem.

To appear in Combinatorics, Probability and Computing.
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I Extending the Sauer-Spencer Theorem

Theorem 1 [Kaul + Kostochka, 2005]:

If 2A1As < n, then

G1 and G5 do not pack if and only if

one of G; and G, Is a perfect matching and the other
either Is K» » with 3 odd or contains K= ;.

This result can also be thought of as a small step
towards the well-known Bollobas-Eldridge conjecture.

Bollobas-Eldridge Graph Packing Conjecture :
If (A1 +1)(As+1) <n+1then G, and G, pack.
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I Bollobas-Eldridge Conjecture

Bollobas-Eldridge Graph Packing Conjecture [1978] -
If (A1 +1)(A2+1) <n+1then G| and G, pack.

If true, this conjecture would be sharp, and would be a
considerable extension of the Hajnal-Szemerédi
theorem on equitable colorings.

The conjecture has only been proved when

A1 < 2 [Aigner + Brandt (1993), and Alon + Fischer (1996)], Or

A; = 3 and n Is huge [Csaba + Shokoufandeh + Szemerédi

(2003)].



I Reformulating the Conjecture

Let us consider a refinement of the Bollobas-Eldridge
Conjecture.

Conjecture : Forafixed 0 <e < 1.
If (A1 4+1)(A2+1) < 5(1+¢€)+ 1, then Gy and G2 pack.

For ¢ = 0, this Is essentially the Sauer-Spencer Theorem,
while ¢ = 1 gives the Bollobas-Eldridge conjecture.

For any ¢ > 0 this would improve the Sauer-Spencer result

(in a different way than Theorem 1).



I Towards the Bollobas-Eldridge Conjecture

Theorem 2 [Kaul + Kostochka + Yu, 2005+]:
Fore=0.2, and Ay, Ay > 400,
If (A1 +1)(A2+1) < 5(1+4¢€) + 1, then Gy and G2 pack.




I Towards the Bollobas-Eldridge Conjecture

Theorem 2 [Kaul + Kostochka + Yu, 2005+]:
Fore=0.2, and Ay, Ay > 400,
If (A1 +1)(A2+1) < 5(1+4¢€) + 1, then Gy and G2 pack.

In other words,

Theorem 2 [Kaul + Kostochka + Yu, 2005+]:
For Al, AQ > 400,

If (A1 +1)(A2+1) < (0.6)n+ 1, then G; and G2 pack.

—

This Is work In progress.



I Some Proof Ideas for Theorem 1

Theorem 1 [Kaul + Kostochka, 2005]:

If 2A1As < n, then

G1 and G5 do not pack if and only if

one of G; and G, Is a perfect matching and the other
either Is K» » with 3 odd or contains K= ;.

We have to analyze the ‘minimal’ graphs that do not
pack (under the condition 2A; Ay < n).

(G1,G9) Is a critical pair if Gy and G4 do not pack, but for
eache; € E(Gy), G1 — e; and G4 pack, and for each

es € F(G2), G1 and Go — es pack. |



I Some Proof Ideas for Theorem 1

Each bijection f : Vi — V, generates a (multi)graph ¢,
with

V(Gf) — {(u,f(u)) U c Vl}
(u,f(u)) « (v, f(u)) & uu’ € Ey or f(u)f(u') € Eg
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(w1, us)-switch means replace f by f/, with

flu)  u##ui,us
fllu)=19 flu2) , u=mu

2-neighbors of u; «— 2-neighbors of s
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I Some Proof Ideas for Theorem 1

(w1, us)-switch means replace f by f/, with

flu)  w#up,u
f’(u):< fluz) , u=wuy




I Some Proof Ideas for Theorem 1

An important structure that we utilize in our proof is -

(u1,u2:1,2)-link I1s a path of length two (in G'¢) from w; to
us Whose first edge is in £; and the second edge is In
Eo.

For e € E1, an e-packing (quasi-packing) of (G1,G2) IS a
bijection f between V; and V5 such that e Is the only
edge in £ that shares its incident vertices with an edge

from E».
Such a packing exists for every edge e in a critical pair.

B



I Outline of the Proof of Theorem 1

The main tool —

Lemma 1: Let (G, G2) be a critical pair and 2A1 A5 < n.
Given any e € F1, In a e—packing of (G, G2) with
e = ujuy, the following statements are true.

(1) For every u # uf, there exists either a unique
(u1,u; 1,2)—link or a unique (uy, u; 2, 1)—link,

(i) there is no (uy,u);1,2)—link or (uy,u);2,1)—link,

(1) 2degg, (u1)degg, (u1) = n.

u t Uy
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I Outline of the Proof of Theorem 1

Lemma 2 : If 2A1A2 = n and (G, G9) IS a critical palr,
then every component of G; Is either Ka, o, With A;
odd, or an isolated vertex, or Ka, 1,1 =1, 2.

Lemma 2 allows us to settle the case of : A; or Ay = 1.

Then, we have to give a packing for all remaining pairs
of graphs, to eliminate their possibility.

B



I Outline of the Proof of Theorem 1

The following Lemma limits the possible remaining
pairs of graphs.

Lemma 3 : Let A, Ay > 1 and 2A1As =n. If (G1,G2) IS
a critical pair and the conflicted edge in a
guasi-packing belongs to a component H of G-
Isomorphic to K, a,, then every component of G4
sharing vertices with H IS K, a,.

Now, we completely eliminate such graphs.

Lemma 4 : Suppose that A{, A, > 3 and odd, and
2A1A9 = n. If G; consists of Ay copies of Ka, A, and Go

consists of A; copies of Ka, a,, then G; and Go pack. |



I Outline of the Proof of Theorem 1

Now, lets eliminate the only remaining possibility.

Lemma5: Let A, Ay > 1and 2A1Ay = n. If every
non-trivial component of G; IS Ka..1, i = 1,2, then G,
and Gy pack.

This would complete the proof of Theorem 1.

B
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