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Brouwer’s Fixed Point Theorem
How can we guarantee a solution to the equation
f (x) = x? Such a solution, if it exists, is called a fixed point
of the function f .

f should be continuous (“no breaks”) at the bare minimum,
else no hope.

It turns out beyond continuity of f , what truly matters is the
topology (“shape”) of the domain and co-domain of f .

Theorem (Brouwer’s Fixed Point Theorem 1912)
Let S be a compact and convex set in Rd .
Every continuous function f : S → S has a fixed point.

I will focus on 2-dimensions, but ALL ideas generalize in
straightforward fashion to d-dimensions.
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Compact and Convex Sets

Convex set has the property a line segment between any
two points in the set lies completely inside the set. Think of
polygonal or circular regions in R2.

Compact set is bounded (“does not go to infinity”) and
closed (“includes the boundary of the region”). Again think
of polygonal or circular regions in R2.

Theorem (Brouwer’s Fixed Point Theorem 1912)
Let ∆ be a triangular region in R2.
Every continuous function f : ∆→ ∆ has a fixed point.
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Brouwer’s Fixed Point Theorem
Theorem (Brouwer’s Fixed Point Theorem 1912)
Let ∆ be a triangular region in R2.
Every continuous function f : ∆→ ∆ has a fixed point.

In d-dimensions, we use a Simplex (‘‘polytope that
generalizes triangle and tetrahedron (pyramid)”),
{λ1 ~e1 + . . . λk+1 ~ek+1 |

∑
λi = 1 and 0 ≤ λi ≤ 1}.

Since every compact and convex set in Rd is
homeomorphic (“can be changed in a continuous manner
from one region to the other, and vice-versa”) to a simplex
(or to a ball) in Rd , its enough to just consider any one
such nicer region.

NOTE: with such minimal requirements, we are
guaranteeing a fixed point for any reasonable function!
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Applications of Brouwer’s FPT
“You are here!” Take an ordinary map of a country and
place it flat on ground inside that country. Then there exists
a point on the map that is placed exactly on top of the
same point in the country.

“Stirred not shaken!” Stir a cocktail. When the liquid comes
to rest, there will be a molecule that ends up at its original
position.

Many applications, including existence of solutions of initial
value problems (Differential Equations), Perron-Frobenius
theorem in Linear Algebra, a simple proof of notoriously
hard-to-prove Jordan Curve Theorem (“every simple
closed continuous curve divides the plane into two
connected regions - inside and outside”), and much more.

I will say a bit more about one application.
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Applications of Brouwer’s FPT

John Nash won the Nobel prize for Economics for his proof
of existence of (Nash) Equillibrium in non-cooperative
n-person games. The proof fits in a single page as a direct
consequence of Brouwer’s Fixed point theorem. It was the
main part of Nash’s 26 page(!) PhD thesis. He is the only
Mathematician to win both Nobel and Abel prizes.
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between many decision makers (player), each acting
according to her/his own strategy and benefit.
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A non-cooperative game studies the outcome of interaction
between many decision makers (player), each acting
according to her/his own strategy and benefit.

John Nash’s insight was that there exists a strategy for
each player such that no player benefits from unilaterally
changing her/his own strategy, the players are in
“equilibrium”.



Applications of Brouwer’s FPT

John Nash won the Nobel prize for Economics for his proof
of existence of (Nash) Equillibrium in non-cooperative
n-person games. The proof fits in a single page as a direct
consequence of Brouwer’s Fixed point theorem. It was the
main part of Nash’s 26 page(!) PhD thesis. He is the only
Mathematician to win both Nobel and Abel prizes.

This idea pervades modern economic thought and is
applied in situations ranging from war and arms race (see
mutually assured destruction, prisoner’s dilemma), traffic
flow (see Wardrop’s principle), auctions (see auction
theory), environmental regulation (see tragedy of
commons), and much more.



WHY and HOW of Brouwer’s Fixed Point Theorem

Why is Brouwer’s Fixed Point Theorem true?

How can we find a fixed point?

Most proofs of Brouwer’s FPT are existential/
non-constructive, including Brouwer’s original proof.
Which is ironic since Brouwer was the founder of
Intuitionist School of constructivist foundations of
mathematics.

Can we construct a fixed point via a step-by-step
procedure? YES!
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Sperner’s Lemma on the sphere

Draw a bunch of points on the surface of a ball.
Connect the dots into triangles in any manner that you like.
This forms a triangulated sphere.

Color the dots using three colors, Red, Blue, Green, in any
manner that you like.

If there exists one RGB triangle (a triangle with all three
colors), then Sperner’s Lemma says that there must be
another RGB triangle.
WHY?
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Walking through RB doors
Think of each triangle as a room with 3 walls and a door in
a wall with RB corners.



Walking through RB doors
Think of each triangle as a room with 3 walls and a door in
a wall with RB corners.
In the given RGB room, there is exactly one RB door.



Walking through RB doors
Starting from the given RGB room, start walking through
the doors from room to room.
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After entering a room from a RB door, there are only two
options:
Either there is another RB door and you use that to leave,



Walking through RB doors
After entering a room from a RB door, there are only two
options:
Either there is another RB door and you use that to leave,
Or there is no other RB door which means you have found
another RGB room.
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Correctness of Walking

There are only finitely many rooms, so the walk must end
somewhere, and that somewhere is another RGB room.
Careful!

Could we just keep walking cyclically?

If it exists, consider the very first room we revisited.
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Correctness of Walking
If it exists, consider the very first room we revisited.
How did we enter/leave this room the first time?

If we used the same door the first time, then this was not
the first room we revisited.



Correctness of Walking
If it exists, consider the very first room we revisited.
How did we enter/leave this room the first time?

Even if this room has another door, this was not the first
room we revisited.



Sperner’s Lemma in the plane
Consider a triangulation of any polygon in the plane.

Color the vertices of the triangulation with Red, Blue,
Green, with one condition:

there are an odd number of RB edges (walls) on the
boundary of the polygon.
No conditions on the coloring in the interior of the polygon!

Starting from outside the polygon and walking through RB
doors as before will again guarantee we end up in a RGB
room.

Sperner’s Lemma guarantees the existence of a RGB
triangle in a colored triangulation of any polygon where the
coloring satisfies the above condition.
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triangulation of this triangle.
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Sperner’s Lemma: Formal Statement

Given a triangle with corners A,B,C. Consider any
triangulation of this triangle.

Consider any coloring of the vertices of the triangulation
with following rules:
A,B,C are colored with R, B, G, respectively;
Each vertex on the boundary of the triangle is colored with
one of the two colors on the ends of its edge of the triangle.

Theorem (Sperner’s Lemma 1928)
Every Sperner coloring of a triangulation of k-dimensional
Simplex contains a cell colored with all k + 1 colors.

Think of k = 2 dimensions and a triangle.



Formal Proof of Sperner’s Lemma

MATH 100/454/553 students fill in the details!

Define a graph with a vertex corresponding to each “face”
(all triangles as well as the unbounded external region).
Two vertices are adjacent if their faces share a common
boundary with colors R and B on its ends (our doors :-).
The degree of the vertex corresponding to the external
face is odd. (Check!)
A graph must have an even number of odd degree vertices.
So there exists another (interior) vertex of odd degree.
This vertex corresponds to a RGB face (triangle)! (Check!)
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Applications of Sperner’s Lemma

Constructive proof of Brouwer’s fixed point theorem.



Applications of Sperner’s Lemma
Fair Division. There exists an “envy-free” division of a
“cake” among n people, each with their own consistent
preferences. [Look up Rental Harmony, Divide your Rent Fairly
in NYT.]

Game of HEX. Two players Alice and Bob take turns claiming
empty cells in a n × n hexagonal grid.
Alice wins if she is able to claim a path of cells from the left end
to the right end of the grid. Bob wins if he has a path from the
top to the bottom of the grid.
John Nash (1948) proved that HEX always has a winner.

Monsky’s Theorem. A square can not be subdivided into
an odd number of triangles of equal area.

PPAD complexity class. Sperner’s lemma along with
Brouwer’s FPT, Nash Equiilibrium, Market Equillibrium, Fair
Division problems, etc. are all PPAD-complete.
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Brouwer’s from Sperner

Theorem (Brouwer’s Fixed Point Theorem 1912)
Let ∆ be a triangular region in R2.
Every continuous function f : ∆→ ∆ has a fixed point.

Think of the triangle ∆ as being in R3 with corners given by
A = ~e1 = (1,0,0), B = ~e2 = (0,1,0), C = ~e3 = (0,0,1).
∆ = {λ1 ~e1 + λ2 ~e2 + λ3 ~e3 |

∑
λi = 1 and 0 ≤ λi ≤ 1}

So f (x) = (f1(x), f2(x), f3(x)) with each fi : ∆→ [0,1] and
f1(x) + f2(x) + f3(x) = 1.
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Brouwer’s from Sperner

f : ∆→ ∆

∆ = {λ1 ~e1 + λ2 ~e2 + λ3 ~e3 |
∑
λi = 1 and 0 ≤ λi ≤ 1} =

{(λ1, λ2, λ3) |
∑
λi = 1 and 0 ≤ λi ≤ 1}

f (x) = (f1(x), f2(x), f3(x)) with each fi : ∆→ [0,1] and
f1(x) + f2(x) + f3(x) = 1.

Color each vertex p of the triangulation as follows:
If f (p) = p then done!, else f (p) 6= p.
Both p = (λ1, λ2, λ3) and f (p) = (f1(λ1), f2(λ2), f3(λ3)) have
non-negative coordinates that add up to 1.
So there must be one coordinate i ∈ {1,2,3} such that
fi(λi) < λi .
Use this i to color p.
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So there must be one coordinate i ∈ {1,2,3} such that
fi(λi) < λi .
Use this i to color p.

It is easy to show that this is a Sperner coloring with
corners A = (1,0,0) colored by 1, B = (0,1,0) colored by
2, C = (0,0,1) colored by 3.

Sperner’s Lemma tells us that this triangle (with corners
colored 1, 2 and 3) contains another triangle with corners
colored 1, 2, and 3.

We can keep repeating this argument within a smaller
triangle, which will push us closer to a fixed point as the
diameter of the triangulations gets smaller.
This can be made precise using the Bolzano-Weirstrass
Theorem (sequential compactness).
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