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Some Mysterious Formulae
With my graduate student Jeff Mudrock, we recently
discovered some interesting looking formulae, as a
corollary to a more general theorem.

Corollary

χ`(C2l+1�K1,s) =

{
3 if s < 22l+1 − 2
4 if s ≥ 22l+1 − 2.

Corollary

χ`(Kn�K1,s) =

{
n if s < n!
n + 1 if s ≥ n!.

Corollary

χ`((Kn ∨ C2l+1)�K1,s) =

{
n + 3 if s < 1

3(n + 3)!(4l − 1)
n + 4 if s ≥ 1

3(n + 3)!(4l − 1).

Where do such “formulae” come from?
What do they have to do with “allocation of resources”??
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Our story starts with ...

Allocation of classrooms (limited resource) to courses (entities)
so that courses with overlapping-time (conflict) are given
different rooms.

Allocation of radio channels (limited resource) to radio stations
(entities) so that stations with proximity interference (conflict)
are given different channels.

Allocation of colors (limited resource) to regions (entities) in a
map so that regions with common boundary (conflict) are given
different colors.

Such problems are studied as “coloring” problems in Graph
Theory, the mathematical theory of structures underlying
networks.
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Coloring a Graph

Conflict-free partition of
“entities” under study.

Entities↔ Vertices.
Conflicts↔ Edges.

Color vertices so that any
vertices with an edge between
them must get different colors.
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Chromatic number of a Graph

Entities↔ Vertices.
Conflicts↔ Edges.

Color vertices so that any vertices with an edge between
them must get different colors.
Partition the set of all vertices into independent sets
(edge-free sets/ “conflict-free” sets)

Resources↔ Colors.

Minimum number of colors needed for such a coloring is
called the chromatic number χ(G) of the graph G.
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Four Colors for the World Map

(c) Wikimedia



Coloring a Graph
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List Coloring a Graph

Entities↔ Vertices.
Conflicts↔ Edges.

Color vertices so that adjacent vertices must get different colors.

Resources↔ Colors.

In many applications, available resources might vary from
entity to entity.
That is, each vertex might have its own list of colors
(resources) available to it.
Think of Radio stations and Radio frequencies, or Courses
and Classrooms, etc.
Minimum number of colors needed for such a list coloring
(no matter what colors those lists contain) is called
the list chromatic number χ`(G) of the graph G.
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Chromatic Number and List Chromatic Number
The gap between χ(G) and χ`(G) can be arbitrarily large.
χ(Km,n) = 2.

A Simple Example

Suppose that we wish to find the list chromatic number of
K2,4. Consider the following list assignment:

The above list assignment shows that χl(K2,4) > 2.

Jeff Mudrock Using Strong Criticality and Unique List Colorability to Bound the List Chromatic Number of the Cartesian Product of GraphsIn fact, χ`(Km,mm) = m + 1.
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Chromatic Choosability

List coloring (finding χ`(G)) is a much harder problem than
usual coloring (finding χ(G)).
χ(G) ≤ χ`(G).

A graph is chromatic choosable if χ(G) = χ`(G).

Many important and longstanding conjectures in Graph
Theory ask whether certain large classes of graphs are
chromatic choosable.
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Factorizing Graphs
We know how to factorize integers, what about graphs?

The Cartesian Product G�H of graphs G and H is a graph
with vertex set V (G)× V (H).
Two vertices (u, v) and (u′, v ′) are adjacent in G�H if either
u = u′ and vv ′ ∈ E(H) or uu′ ∈ E(G) and v = v ′.

Here’s C5�P3:

Research Focus

I The initial focus of our research is to study the list chromatic
number of the Cartesian product of graphs.

I The Cartesian Product G�H of graphs G and H is a graph
with vertex set V (G )×V (H). Two vertices (u, v) and (u′, v ′)
are adjacent in G�H if either u = u′ and vv ′ ∈ E (H) or
uu′ ∈ E (G ) and v = v ′.

I A picture of a copy of C5�P3 is:

Every connected graph has a unique factorization under
the Cartesian product.



Factorizing Graphs

Every connected graph has a unique factorization under
the Cartesian product which can be found in polynomial
time: G ∼= Gp1

1 2Gp2
2 2 . . .2Gpd

d .

It is well known that χ(G�H) = max{χ(G), χ(H)}.

We wish to find G and H such that χ`(G�H) = χ(G�H).

Finding χ`(G�H) is hard. With my graduate student Jeff
Mudrock, we have investigated this fundamental problem.
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Idea 1: Criticality

Criticality for usual coloring means χ(G) = k but
χ(G − v) < k for all vertices v of G.

How to do this for list coloring, particularly chromatic
choosable graphs?

We introduce how to do this with a new notion of criticality:
A graph G is said to be strong k-chromatic choosable if
χ(G) = χ`(G) = k and if the usual coloring is the obstacle
to list coloring of G. This gives χ(G − v) ≤ χ`(G − v) < k
for all vertices v of G.

We study the properties and examples of these critical
graphs.
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Idea 2: Counting list Colorings

We need to be able to count how many different ways we
can color a graph from its assignment of color lists.

The list color function of G, P`(G, k), is the guaranteed
number of different list colorings of G using any lists with k
colors.

We study how to estimate this difficult-to-compute function
for large classes of graphs.
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A Theorem

Theorem (Kaul and Mudrock)
Suppose that G is a strong k-chromatic choosable graph with
k ≥ 2. Then,

χ`(G�K1,s) =

{
k if s < P`(G, k)
k + 1 if s ≥ P`(G, k).

P`(G, k) gives us the transition point at which the graph
G�K1,s goes from being Chromatic choosable to a value
one higher than chromatic number.
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Use these ideas to build more techniques for computing
the list chromatic number, and so on.



Back to the Mysterious Formulae

Corollary

χ`(C2l+1�K1,s) =

{
3 if s < 22l+1 − 2
4 if s ≥ 22l+1 − 2.

Corollary

χ`(Kn�K1,s) =

{
n if s < n!
n + 1 if s ≥ n!.

Corollary

χ`((Kn ∨ C2l+1)�K1,s) =

{
n + 3 if s < 1

3(n + 3)!(4l − 1)
n + 4 if s ≥ 1

3(n + 3)!(4l − 1).

Use these ideas to build more techniques for computing
the list chromatic number, and so on.



Back to the Mysterious Formulae

Corollary

χ`(C2l+1�K1,s) =

{
3 if s < 22l+1 − 2
4 if s ≥ 22l+1 − 2.

Corollary

χ`(Kn�K1,s) =

{
n if s < n!
n + 1 if s ≥ n!.

Corollary

χ`((Kn ∨ C2l+1)�K1,s) =

{
n + 3 if s < 1

3(n + 3)!(4l − 1)
n + 4 if s ≥ 1

3(n + 3)!(4l − 1).

Use these ideas to build more techniques for computing
the list chromatic number, and so on.



Back to the Mysterious Formulae

Corollary

χ`(C2l+1�K1,s) =

{
3 if s < 22l+1 − 2
4 if s ≥ 22l+1 − 2.

Corollary

χ`(Kn�K1,s) =

{
n if s < n!
n + 1 if s ≥ n!.

Corollary

χ`((Kn ∨ C2l+1)�K1,s) =

{
n + 3 if s < 1

3(n + 3)!(4l − 1)
n + 4 if s ≥ 1

3(n + 3)!(4l − 1).

Use these ideas to build more techniques for computing
the list chromatic number, and so on.


