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Large Bipartite Subgraphs

MAX-CUT: In a given graph G = (V, E), find a bipartite subgraph with
maximum number of edges.

Find a bipartition (cut) (X, Y ), with X ⊆ V (G) and Y = V (G) \ X , that
maximizes the number of edges between X and Y .

b(G) be the number of edges in a largest bipartite subgraph of G.
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Large Bipartite Subgraphs

MAX-CUT: In a given graph G = (V, E), find a bipartite subgraph with
maximum number of edges.

Find a bipartition (cut) (X, Y ), with X ⊆ V (G) and Y = V (G) \ X , that
maximizes the number of edges between X and Y .

b(G) be the number of edges in a largest bipartite subgraph of G.

NP-complete

Approximation results: Randomized (0.87)-approximation
algorithm [Goemans-Williamson, 1995].

Hard to approximate: No (0.942)-approximation algorithm exists
unless P=NP [Hastad, 1997].
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Large Bipartite Subgraphs

MAX-CUT: In a given graph G = (V, E), find a bipartite subgraph with
maximum number of edges.

Find a bipartition (cut) (X, Y ), with X ⊆ V (G) and Y = V (G) \ X , that
maximizes the number of edges between X and Y .

b(G) be the number of edges in a largest bipartite subgraph of G.

Extremal results like Edwards-Erdős Inequalities :
1) b(G) ≥ 1

2
m + 1

8
(
√

8m + 1 − 1), m = e(G)

2) b(G) ≥ 1

2
m + 1

4
(n − 1), n = n(G)

Locality & MaxCut – p.2/16



A local search algorithm

Idea : Starting with an arbitrary vertex partition, switch a vertex from
one partite set to the other if doing so increases the number of edges
in the cut (the bipartite subgraph induced by the vertex partition).

Given a partition V (G) = X ∪ Y of the vertex set of a graph G, a local
switch moves a vertex v from X to Y that has more neighbors in X

than in Y .

A list of local switches performed successively is a switching sequence.
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A local search algorithm

Idea : Starting with an arbitrary vertex partition, switch a vertex from
one partite set to the other if doing so increases the number of edges
in the cut (the bipartite subgraph induced by the vertex partition).

Given a partition V (G) = X ∪ Y of the vertex set of a graph G, a local
switch moves a vertex v from X to Y that has more neighbors in X

than in Y .

A list of local switches performed successively is a switching sequence.

Size of the bipartite subgraph : How big a bipartite subgraph is
guaranteed at the end of a switching sequence?

Length of a switching sequence : How long can a switching sequence

be?
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Size of the bipartite subgraph

Theorem: [Bylka + Idzik + Tuza, 1999]
A bipartite subgraph of size 1

2
m + 1

4
o(G) is guaranteed, where o(G) is

the number of odd degree vertices in G.

A slight modification of the local switching rules improves the
guarantee to the first Edwards-Erdős Inequality :
b(G) ≥ 1

2
m + 1

8
(
√

8m + 1 − 1).
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Minimum length of a switching length

Let s(G) denote the minimum length of a maximal flip sequence
starting from the trivial vertex partition.

Theorem [Kaul + West, 2007]:
If G is an n-vertex loopless multigraph, then s(G) ≤ n/2.
In fact, there exists a sequence of at most n/2 flips that produces a
globally optimal partition.
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Maximum length of a switching sequence

Each switch increases the edges in the cut by at least one.

Observation: The maximum length of a switching sequence, l(G), is at
most b(G) ≤ e(G).

This is best possible, as the star K1,n−1 achieves equality for both b(G)

and e(G).

Bounding the length with n : A bipartite graph on n vertices has at
most n2

4
edges, so any switching sequence has length at most n2

4
.
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l(G) : Upper Bound

To get a better upper bound, we look at the tradeoff between δ(G), the
minimum degree of G, and b(G), as a switching sequence progresses.

Proposition [Kaul + West, 2007]:
The length of any switching sequence is at most
b(G) − ( 3

8
δ2(G) + δ(G)).
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l(G) : Upper Bound

To get a better upper bound, we look at the tradeoff between δ(G), the
minimum degree of G, and b(G), as a switching sequence progresses.

Proposition [Kaul + West, 2007]:
The length of any switching sequence is at most
b(G) − ( 3

8
δ2(G) + δ(G)).

Given an arbitrary switching sequence. The first move gains at least
δ(G) edges, the second move gains at least δ(G) − 1 edges, and so
on. Furthermore, we cannot move anything back until more than
δ(G)/2 vertices are moved.
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l(G) : Upper Bound

To get a better upper bound, we look at the tradeoff between δ(G), the
minimum degree of G, and b(G), as a switching sequence progresses.

Proposition [Kaul + West, 2007]:
The length of any switching sequence is at most
b(G) − ( 3

8
δ2(G) + δ(G)).

For example, Let G be a αn-regular graph, α ∈ (0, 1), then
l(G) ≤ (1 − 3

4
α) e(G),

which is much better than the trivial upper bound.

Let G be triangle-free, then the upper bound above improves to
b(G) − 7

16
δ2(G).
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l(G) : Lower Bound

Can we do faster than 1

4
n2 switches to reach a local optima?

Theorem: [Cowen + West, 2002]
When n is a perfect square, there exists a graph G with n vertices that
has a switching sequence of length e(G) = 1

2
n

3

2 .

A delicate construction in which each switch gained exactly one edge.

This gave hope that l(G) ≤ O(n
3

2 ).
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l(G) : Lower Bound

Can we do faster than 1

4
n2 switches to reach a local optima?

Theorem: [Cowen + West, 2002]
When n is a perfect square, there exists a graph G with n vertices that
has a switching sequence of length e(G) = 1

2
n

3

2 .

A delicate construction in which each switch gained exactly one edge.

This gave hope that l(G) ≤ O(n
3

2 ).

Theorem: [Kaul + West, 2007]
For every n, there exists a graph G with n vertices that has a switching
sequence of length at least 2

25
(n2 + n − 31).
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l(G) : Lower Bound

Theorem: [Kaul + West, 2007]
For every n, there exists a graph G with n vertices that has a switching
sequence of length at least 2

25
(n2 + n − 31).
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Local optima

Initialize X = V (G) and Y = ∅ and with each local switch dynamically
update the membership of X and Y .

At the end of the switching sequence X = V1 ∪V2 ∪V4 and Y = V3 ∪V5.

switching
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Switching sequence- Preprocessing

Phase 0a. Move each vertex in V1 from X to Y . This is possible
because all the neighbors of each vertex in V1 are in X .
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Switching sequence- Preprocessing

Phase 0b. Move each vertex in V5 from X to Y . This is possible
because each vertex in V5 has k + 1 neighbors (from V4) in X and k

neighbors (from V1) in Y .
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Henceforth, always V4 ⊆ X and V5 ⊆ Y .
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Switching sequence- Main Phase

For i = 1, . . . , k + 1,

Phase i. At the start of Phase i,
X = {wj : j < i} ∪ V2 ∪ {vj : j ≥ i} ∪ V4,
Y = {wj : j ≥ i} ∪ {vj : j < i} ∪ V5.

(ai) Move each vertex in V2 from X to Y . k + 1 neighbors in X and k

neighbors in Y .

(bi) Move vi ∈ V3 from X to Y . k + 1 neighbors (all of V4) in X and k

neighbors (all of V2) in Y .

(ci) Move each vertex in V2 from Y to X . k + 1 neighbors in Y and k

neighbors in X .

(di) If i < k + 1, move wi ∈ V1 from Y to X , otherwise stop. k + 1

neighbors (all of V5) in Y and k neighbors (all of V2) in X .
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Switching sequence- Main Phase

v  ..... v v  .... v k+1

XY

X
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X Y X
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X Y YY
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Open Questions I

Problem 1. Determine the exact constant multiple (between 8

100
and

25

100
) of n2 for l(G).
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Open Questions I

Problem 1. Determine the exact constant multiple (between 8

100
and

25

100
) of n2 for l(G).

Problem 2. New ideas for upper bounds on l(G).
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Open Questions II

Modify the switching algorithm by allowing up to k ≥ 1 vertices to be
switched at a time.

How close can we get to the second Edwards-Erdős Inequality :
b(G) ≥ 1

2
m + 1

4
(n − 1)?

Problem 3. [Tuza, 2001] Given k, determine the largest constant
c = c(k) such that the local switching algorithm guarantees a bipartite
subgraph of size at least 1

2
m + cn − o(n).

A construction shows that c(k) < 1

4
, for all k.

What is the smallest k with c(k) > 0? Is c(1) > 0?
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