On a Local-Search Algorithm for Large Bipartite Subgraphs
 Hemanshu Kaul
 kaul@math.iit.edu.

Illinois Institute of Technology, Chicago

Large Bipartite Subgraphs

MAX-CUT: In a given graph $G=(V, E)$, find a bipartite subgraph with maximum number of edges.

Find a bipartition (cut) (X, Y), with $X \subseteq V(G)$ and $Y=V(G) \backslash X$, that maximizes the number of edges between X and Y.
$b(G)$ be the number of edges in a largest bipartite subgraph of G.

Large Bipartite Subgraphs

MAX-CUT: In a given graph $G=(V, E)$, find a bipartite subgraph with maximum number of edges.

Find a bipartition (cut) (X, Y), with $X \subseteq V(G)$ and $Y=V(G) \backslash X$, that maximizes the number of edges between X and Y.
$b(G)$ be the number of edges in a largest bipartite subgraph of G.

- NP-complete
- Approximation results: Randomized (0.87)-approximation algorithm [Goemans-Williamson, 1995].
- Hard to approximate: No (0.942)-approximation algorithm exists unless $\mathrm{P}=\mathrm{NP}$ [Hastad, 1997].

Large Bipartite Subgraphs

MAX-CUT: In a given graph $G=(V, E)$, find a bipartite subgraph with maximum number of edges.
Find a bipartition (cut) (X, Y), with $X \subseteq V(G)$ and $Y=V(G) \backslash X$, that maximizes the number of edges between X and Y.
$b(G)$ be the number of edges in a largest bipartite subgraph of G.

- Extremal results like Edwards-Erdős Inequalities:

$$
\begin{aligned}
& \text { 1) } b(G) \geq \frac{1}{2} m+\frac{1}{8}(\sqrt{8 m+1}-1), m=e(G) \\
& \text { 2) } b(G) \geq \frac{1}{2} m+\frac{1}{4}(n-1), n=n(G)
\end{aligned}
$$

A local search algorithm

Idea : Starting with an arbitrary vertex partition, switch a vertex from one partite set to the other if doing so increases the number of edges in the cut (the bipartite subgraph induced by the vertex partition).

Given a partition $V(G)=X \cup Y$ of the vertex set of a graph G, a local switch moves a vertex v from X to Y that has more neighbors in X than in Y.

A list of local switches performed successively is a switching sequence.

A local search algorithm

Idea : Starting with an arbitrary vertex partition, switch a vertex from one partite set to the other if doing so increases the number of edges in the cut (the bipartite subgraph induced by the vertex partition).

Given a partition $V(G)=X \cup Y$ of the vertex set of a graph G, a local switch moves a vertex v from X to Y that has more neighbors in X than in Y.

A list of local switches performed successively is a switching sequence.

Size of the bipartite subgraph : How big a bipartite subgraph is guaranteed at the end of a switching sequence?

Length of a switching sequence : How long can a switching sequence be?

Size of the bipartite subgraph

Theorem: [Bylka + Idzik + Tuza, 1999]
A bipartite subgraph of size $\frac{1}{2} m+\frac{1}{4} o(G)$ is guaranteed, where $o(G)$ is the number of odd degree vertices in G.

A slight modification of the local switching rules improves the guarantee to the first Edwards-Erdős Inequality :
$b(G) \geq \frac{1}{2} m+\frac{1}{8}(\sqrt{8 m+1}-1)$.

Minimum length of a switching length

Let $s(G)$ denote the minimum length of a maximal flip sequence starting from the trivial vertex partition.

Theorem [Kaul + West, 2007]:
If G is an n-vertex loopless multigraph, then $s(G) \leq n / 2$.
In fact, there exists a sequence of at most $n / 2$ flips that produces a globally optimal partition.

Maximum length of a switching sequence

Each switch increases the edges in the cut by at least one.
Observation: The maximum length of a switching sequence, $l(G)$, is at most $b(G) \leq e(G)$.

This is best possible, as the star $K_{1, n-1}$ achieves equality for both $b(G)$ and $e(G)$.

Bounding the length with n : A bipartite graph on n vertices has at most $\frac{n^{2}}{4}$ edges, so any switching sequence has length at most $\frac{n^{2}}{4}$.

$l(G)$: Upper Bound

To get a better upper bound, we look at the tradeoff between $\delta(G)$, the minimum degree of G, and $b(G)$, as a switching sequence progresses.

Proposition [Kaul + West, 2007]:
The length of any switching sequence is at most
$b(G)-\left(\frac{3}{8} \delta^{2}(G)+\delta(G)\right)$.

$l(G)$: Upper Bound

To get a better upper bound, we look at the tradeoff between $\delta(G)$, the minimum degree of G, and $b(G)$, as a switching sequence progresses.

Proposition [Kaul + West, 2007]:
The length of any switching sequence is at most
$b(G)-\left(\frac{3}{8} \delta^{2}(G)+\delta(G)\right)$.

Given an arbitrary switching sequence. The first move gains at least $\delta(G)$ edges, the second move gains at least $\delta(G)-1$ edges, and so on. Furthermore, we cannot move anything back until more than $\delta(G) / 2$ vertices are moved.

$l(G)$: Upper Bound

To get a better upper bound, we look at the tradeoff between $\delta(G)$, the minimum degree of G, and $b(G)$, as a switching sequence progresses.

Proposition [Kaul + West, 2007]:
The length of any switching sequence is at most
$b(G)-\left(\frac{3}{8} \delta^{2}(G)+\delta(G)\right)$.

For example, Let G be a αn-regular graph, $\alpha \in(0,1)$, then
$l(G) \leq\left(1-\frac{3}{4} \alpha\right) e(G)$,
which is much better than the trivial upper bound.

Let G be triangle-free, then the upper bound above improves to $b(G)-\frac{7}{16} \delta^{2}(G)$.

$l(G)$: Lower Bound

Can we do faster than $\frac{1}{4} n^{2}$ switches to reach a local optima?
Theorem: [Cowen + West, 2002]
When n is a perfect square, there exists a graph G with n vertices that has a switching sequence of length $e(G)=\frac{1}{2} n^{\frac{3}{2}}$.

A delicate construction in which each switch gained exactly one edge.
This gave hope that $l(G) \leq O\left(n^{\frac{3}{2}}\right)$.

$l(G)$: Lower Bound

Can we do faster than $\frac{1}{4} n^{2}$ switches to reach a local optima?
Theorem: [Cowen + West, 2002]
When n is a perfect square, there exists a graph G with n vertices that has a switching sequence of length $e(G)=\frac{1}{2} n^{\frac{3}{2}}$.

A delicate construction in which each switch gained exactly one edge.
This gave hope that $l(G) \leq O\left(n^{\frac{3}{2}}\right)$.
Theorem: [Kaul + West, 2007]
For every n, there exists a graph G with n vertices that has a switching sequence of length at least $\frac{2}{25}\left(n^{2}+n-31\right)$.

$l(G)$: Lower Bound

Theorem: [Kaul + West, 2007]
For every n, there exists a graph G with n vertices that has a switching sequence of length at least $\frac{2}{25}\left(n^{2}+n-31\right)$.

Local optima

Initialize $X=V(G)$ and $Y=\varnothing$ and with each local switch dynamically update the membership of X and Y.

At the end of the switching sequence $X=V_{1} \cup V_{2} \cup V_{4}$ and $Y=V_{3} \cup V_{5}$.

switching

Switching sequence- Preprocessing

Phase 0a. Move each vertex in V_{1} from X to Y. This is possible because all the neighbors of each vertex in V_{1} are in X.

Phase 0a

Switching sequence- Preprocessing

Phase 0b. Move each vertex in V_{5} from X to Y. This is possible because each vertex in V_{5} has $k+1$ neighbors (from V_{4}) in X and k neighbors (from V_{1}) in Y.

Henceforth, always $V_{4} \subseteq X$ and $V_{5} \subseteq Y$.

Switching sequence- Main Phase

For $i=1, \ldots, k+1$,
Phase i. At the start of Phase i,
$X=\left\{w_{j}: j<i\right\} \cup V_{2} \cup\left\{v_{j}: j \geq i\right\} \cup V_{4}$,
$Y=\left\{w_{j}: j \geq i\right\} \cup\left\{v_{j}: j<i\right\} \cup V_{5}$.
$\left(a_{i}\right)$ Move each vertex in V_{2} from X to $Y . k+1$ neighbors in X and k neighbors in Y.
$\left(b_{i}\right)$ Move $v_{i} \in V_{3}$ from X to $Y . k+1$ neighbors (all of V_{4}) in X and k neighbors (all of V_{2}) in Y.
$\left(c_{i}\right)$ Move each vertex in V_{2} from Y to $X . k+1$ neighbors in Y and k neighbors in X.
$\left(d_{i}\right)$ If $i<k+1$, move $w_{i} \in V_{1}$ from Y to X, otherwise stop. $k+1$ neighbors (all of V_{5}) in Y and k neighbors (all of V_{2}) in X.

Switching sequence- Main Phase

Open Questions I

Problem 1. Determine the exact constant multiple (between $\frac{8}{100}$ and $\left.\frac{25}{100}\right)$ of n^{2} for $l(G)$.

Open Questions I

Problem 1. Determine the exact constant multiple (between $\frac{8}{100}$ and $\left.\frac{25}{100}\right)$ of n^{2} for $l(G)$.

Problem 2. New ideas for upper bounds on $l(G)$.

Open Questions II

Modify the switching algorithm by allowing up to $k \geq 1$ vertices to be switched at a time.

How close can we get to the second Edwards-Erdős Inequality :
$b(G) \geq \frac{1}{2} m+\frac{1}{4}(n-1)$?

Problem 3. [Tuza, 2001] Given k, determine the largest constant $c=c(k)$ such that the local switching algorithm guarantees a bipartite subgraph of size at least $\frac{1}{2} m+c n-o(n)$.

A construction shows that $c(k)<\frac{1}{4}$, for all k.
What is the smallest k with $c(k)>0$? Is $c(1)>0$?

