

On a Local-Search Algorithm for Large Bipartite Subgraphs

Hemanshu Kaul

kaul@math.iit.edu.

Illinois Institute of Technology, Chicago

Locality & MaxCut - p.1/1

Large Bipartite Subgraphs

MAX-CUT: In a given graph G = (V, E), find a bipartite subgraph with maximum number of edges.

Find a bipartition (cut) (X, Y), with $X \subseteq V(G)$ and $Y = V(G) \setminus X$, that maximizes the number of edges between X and Y.

b(G) be the number of edges in a largest bipartite subgraph of G.

Large Bipartite Subgraphs

MAX-CUT: In a given graph G = (V, E), find a bipartite subgraph with maximum number of edges.

Find a bipartition (cut) (X, Y), with $X \subseteq V(G)$ and $Y = V(G) \setminus X$, that maximizes the number of edges between X and Y.

b(G) be the number of edges in a largest bipartite subgraph of G.

- NP-complete
- Approximation results: Randomized (0.87)-approximation algorithm [Goemans-Williamson, 1995].
- Hard to approximate: No (0.942)-approximation algorithm exists unless P=NP [Hastad, 1997].

Large Bipartite Subgraphs

MAX-CUT: In a given graph G = (V, E), find a bipartite subgraph with maximum number of edges.

Find a bipartition (cut) (X, Y), with $X \subseteq V(G)$ and $Y = V(G) \setminus X$, that maximizes the number of edges between X and Y.

b(G) be the number of edges in a largest bipartite subgraph of G.

Extremal results like Edwards-Erdős Inequalities :
1) b(G) ≥ $\frac{1}{2}m + \frac{1}{8}(\sqrt{8m+1}-1), m = e(G)$ 2) b(G) ≥ $\frac{1}{2}m + \frac{1}{4}(n-1), n = n(G)$

Idea : Starting with an arbitrary vertex partition, switch a vertex from one partite set to the other if doing so increases the number of edges in the cut (the bipartite subgraph induced by the vertex partition).

Given a partition $V(G) = X \cup Y$ of the vertex set of a graph G, a local switch moves a vertex v from X to Y that has more neighbors in X than in Y.

A list of local switches performed successively is a switching sequence.

Idea : Starting with an arbitrary vertex partition, switch a vertex from one partite set to the other if doing so increases the number of edges in the cut (the bipartite subgraph induced by the vertex partition).

Given a partition $V(G) = X \cup Y$ of the vertex set of a graph G, a local switch moves a vertex v from X to Y that has more neighbors in X than in Y.

A list of local switches performed successively is a switching sequence.

Size of the bipartite subgraph : How big a bipartite subgraph is guaranteed at the end of a switching sequence?

Length of a switching sequence : How long can a switching sequence

be?

Theorem: [Bylka + Idzik + Tuza, 1999]

A bipartite subgraph of size $\frac{1}{2}m + \frac{1}{4}o(G)$ is guaranteed, where o(G) is the number of odd degree vertices in *G*.

A slight modification of the local switching rules improves the guarantee to the first Edwards-Erdős Inequality : $b(G) \ge \frac{1}{2}m + \frac{1}{8}(\sqrt{8m+1}-1).$

Minimum length of a switching length

Let s(G) denote the minimum length of a maximal flip sequence starting from the trivial vertex partition.

Theorem [Kaul + West, 2007]: If *G* is an *n*-vertex loopless multigraph, then $s(G) \le n/2$. In fact, there exists a sequence of at most n/2 flips that produces a globally optimal partition.

Maximum length of a switching sequence

Each switch increases the edges in the cut by at least one.

Observation: The maximum length of a switching sequence, l(G), is at most $b(G) \le e(G)$.

This is best possible, as the star $K_{1,n-1}$ achieves equality for both b(G) and e(G).

Bounding the length with n: A bipartite graph on n vertices has at most $\frac{n^2}{4}$ edges, so any switching sequence has length at most $\frac{n^2}{4}$.

To get a better upper bound, we look at the tradeoff between $\delta(G)$, the minimum degree of G, and b(G), as a switching sequence progresses.

Proposition [Kaul + West, 2007]: The length of any switching sequence is at most $b(G) - (\frac{3}{8}\delta^2(G) + \delta(G)).$ To get a better upper bound, we look at the tradeoff between $\delta(G)$, the minimum degree of G, and b(G), as a switching sequence progresses.

Proposition [Kaul + West, 2007]: The length of any switching sequence is at most $b(G) - (\frac{3}{8}\delta^2(G) + \delta(G)).$

Given an arbitrary switching sequence. The first move gains at least $\delta(G)$ edges, the second move gains at least $\delta(G) - 1$ edges, and so on. Furthermore, we cannot move anything back until more than $\delta(G)/2$ vertices are moved.

To get a better upper bound, we look at the tradeoff between $\delta(G)$, the minimum degree of G, and b(G), as a switching sequence progresses.

Proposition [Kaul + West, 2007]: The length of any switching sequence is at most $b(G) - (\frac{3}{8}\delta^2(G) + \delta(G)).$

For example, Let *G* be a αn -regular graph, $\alpha \in (0, 1)$, then $l(G) \leq (1 - \frac{3}{4}\alpha) e(G)$, which is much better than the trivial upper bound.

Let *G* be triangle-free, then the upper bound above improves to $b(G) - \frac{7}{16}\delta^2(G)$.

Can we do faster than $\frac{1}{4}n^2$ switches to reach a local optima?

Theorem: [Cowen + West, 2002]

When *n* is a perfect square, there exists a graph *G* with *n* vertices that has a switching sequence of length $e(G) = \frac{1}{2}n^{\frac{3}{2}}$.

A delicate construction in which each switch gained exactly one edge.

This gave hope that $l(G) \leq O(n^{\frac{3}{2}})$.

Can we do faster than $\frac{1}{4}n^2$ switches to reach a local optima?

Theorem: [Cowen + West, 2002]

When *n* is a perfect square, there exists a graph *G* with *n* vertices that has a switching sequence of length $e(G) = \frac{1}{2}n^{\frac{3}{2}}$.

A delicate construction in which each switch gained exactly one edge.

This gave hope that $l(G) \leq O(n^{\frac{3}{2}})$.

Theorem: [Kaul + West, 2007] For every *n*, there exists a graph *G* with *n* vertices that has a switching sequence of length at least $\frac{2}{25}(n^2 + n - 31)$.

Theorem: [Kaul + West, 2007]

For every *n*, there exists a graph *G* with *n* vertices that has a switching sequence of length at least $\frac{2}{25}(n^2 + n - 31)$.

Initialize X = V(G) and $Y = \emptyset$ and with each local switch dynamically update the membership of X and Y.

At the end of the switching sequence $X = V_1 \cup V_2 \cup V_4$ and $Y = V_3 \cup V_5$.

Switching sequence- Preprocessing

Phase 0a. Move each vertex in V_1 from X to Y. This is possible because all the neighbors of each vertex in V_1 are in X.

Switching sequence- Preprocessing

Phase 0b. Move each vertex in V_5 from X to Y. This is possible because each vertex in V_5 has k + 1 neighbors (from V_4) in X and k neighbors (from V_1) in Y.

Henceforth, always $V_4 \subseteq X$ and $V_5 \subseteq Y$.

Switching sequence- Main Phase

For i = 1, ..., k + 1,

Phase *i*. At the start of Phase *i*, $X = \{w_j : j < i\} \cup V_2 \cup \{v_j : j \ge i\} \cup V_4,$ $Y = \{w_j : j \ge i\} \cup \{v_j : j < i\} \cup V_5.$

(*a_i*) Move each vertex in V_2 from X to Y. k + 1 neighbors in X and k neighbors in Y.

(*b_i*) Move $v_i \in V_3$ from X to Y. k + 1 neighbors (all of V_4) in X and k neighbors (all of V_2) in Y.

(c_i) Move each vertex in V_2 from Y to X. k + 1 neighbors in Y and k neighbors in X.

(*d_i*) If i < k + 1, move $w_i \in V_1$ from *Y* to *X*, otherwise stop. k + 1 neighbors (all of V_5) in *Y* and *k* neighbors (all of V_2) in *X*.

Switching sequence- Main Phase

Problem 1. Determine the exact constant multiple (between $\frac{8}{100}$ and $\frac{25}{100}$) of n^2 for l(G).

Problem 1. Determine the exact constant multiple (between $\frac{8}{100}$ and $\frac{25}{100}$) of n^2 for l(G).

Problem 2. New ideas for upper bounds on l(G).

Modify the switching algorithm by allowing up to $k \ge 1$ vertices to be switched at a time.

How close can we get to the second Edwards-Erdős Inequality : $b(G) \geq \frac{1}{2}m + \frac{1}{4}(n-1)$?

Problem 3. [Tuza, 2001] Given *k*, determine the largest constant c = c(k) such that the local switching algorithm guarantees a bipartite subgraph of size at least $\frac{1}{2}m + cn - o(n)$.

A construction shows that $c(k) < \frac{1}{4}$, for all k.

What is the smallest k with c(k) > 0? Is c(1) > 0?