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The maximum subgraph problem

The maximum subgraph problem for a Graph property Π asks:

Given a graph G, find a subgraph H of G satisfying property Π
that has the maximum number of edges.
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The maximum induced subgraph problem

The maximum induced subgraph problem for a Graph property
Π asks:

Given a graph G, find an induced subgraph H of G satisfying
property Π that has the maximum number of vertices.

In other words, find the minimum number of vertices to remove
from G such that the remaining subgraph satisfies the property
Π.
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Graph Properties

The following Graph properties are commonly considered:

Forest (cycles are forbidden)

Bipartite subgraph (odd cycles are forbidden)

Planar subgraph ({K5, K3,3}-minors are forbidden)

Complete subgraph
There is no difference between induced and non-induced
versions for this.

Independent set
This is meaningful only for the induced version.

All these properties are hereditary, every subgraph of a graph
with property Π also has property Π.

Connectedness is an example of a property that is not
hereditary.
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Finding Large Subgraphs

Except for the largest Forest subgraph problem,
all these largest subgraph problems are NP-hard.

In case of the largest induced subgraph problem,
Lewis and Yannakakis (1980) showed that:

The largest induced subgraph problem is NP-hard for every
non-trivial hereditary property.

What about approximate solutions?
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Approximation Algorithms

Algorithm A for a maximization problem MAX achieves an
approximation factor α if

for all inputs G, we have: A(G)
OPT (G) ≤ α,

where A(G) is the value of the output generated by the
algorithm A,
and OPT (G) is the optimal value.

A α-approximation algorithm for MAX is a polynomial time
algorithm that achieves the approximation factor α.

To show A achieves approximation factor α, we typically show
that: A(G) ≥ L and OPT (G) ≤ U, so α ≥ L/U.
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Approximation Algorithms for Large Subgraphs

For example
for the largest bipartite subgraph problem:

Goemans and Williamson (1995): 0.878-approximation
algorithm

Hastad (1997): If P 6= NP then there is no α-approximation
algorithm for any α > 0.941.

for the largest clique subgraph problem:
Feige (2005): O(n(loglogn)2/(logn)3)-approximation algorithm

Feige et al. (1996): It is hard to approximate MAX-Clique for
any constant factor.

Hastad (1999): It is hard to approximate MAX Clique within a
factor O(1/nǫ) for any ǫ > 0
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Approximation Algorithms for Large Induced
Subgraphs

Lund and Yannakakis (1993): It is hard to approximate the
largest induced subgraph problem for any hereditary property.

Comparatively, very little research has been done on
approximation algorithms for these problems.

For example,

For the maximum induced bipartite subgraph problem:
Some results for very special classes of graphs -

Zhu (2009): 5/7 approximation factor algorithm over
triangle-free subcubic graphs.

Addario-Berry (2006): Some results for i-triangulated graphs
and clique-separable graphs.
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Approximation Algorithms for Large Induced
Subgraphs

For the maximum induced Planar subgraph problem:

Calinescu et al. (1998): There exists an ǫ > 0 such that there is
no 1− ǫ- approximation algorithm unless P = NP.

Edward and Farr (2007): 3/(d + 1)-approximation algorithm on
graphs of average degree at most d ≥ 4, [in fact they find an
induced series-parallel subgraph (more about these later)].
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Approximation Algorithms for Large Subgraphs

For the maximum Planar subgraph problem:

Calinescu et al. (1998): There exists an ǫ > 0 such that there is
no 1− ǫ- approximation algorithm unless P = NP.

Faria et al. (2004): This is true even if the input is a cubic graph.

Till 1990’s a number of algorithms were studied but none gave
an approximation ratio better than 1/3, which can be trivially
achieved by the Spanning Tree algorithm.

ST (G) = n − 1 and OPT (G) ≤ 3n− 6

Calinescu et al. (1998): 4/9-approximation algorithm, which is
still the best known.
In fact, this algorithm generates an outerplanar subgraph
(which gives a 2/3-approximation algorithm for the maximum
outerplanar graph problem).
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Large Series-Parallel Subgraphs

Planar graphs are characterized as having no {K5, K3,3} minors
or subdivisions.

Outerplanar graphs are characterized as having no {K4, K2,3}
minors or subdivisions.

How about subgraphs with no K4 minors or subdivisions?
These will be planar but not outerplanar.

These are Series-Parallel graphs.

H is a minor of G if a graph isomorphic to H can be obtained from G
by contracting some edges, deleting some edges, and deleting some
isolated vertices.
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Large Series-Parallel Subgraphs

Series-Parallel graphs are characterized as:

No K4 minor or subdivision.

Arises from a forest by adding parallel edges, subdividing
edges, and at the end removing any parallel edges to keep
the graph simple.

tree width ≤ 2 (subgraph of 2-tree).

Hemanshu Kaul, kaul@iit.edu



Introduction Large Planar Subgraphs Large Series-Parallel Subgraphs

Large Series-Parallel Subgraphs

The maximum Series-Parallel subgraph problem is NP-hard.

Since, the number of edges of a Series-Parallel graph on n
vertices is bounded above by 2n − 3,
the spanning tree algorithm gives a 1/2-approximation
algorithm.

Can we do better?
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New Results

Calinescu, Fernandes, K. (2009): 7/12 approximation algorithm
for the maximum Series-Parallel subgraph problem.

The output is a spruce structure: a graph each of whose blocks
is either a spruce or an edge.
A spruce consists of two base vertices and at least one tip
vertex, in which each tip vertex is adjacent to exactly the two
base vertices.
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New Results

Calinescu, Fernandes, K. (2009): The maximum spruce
structure would give a 2/3 approximation for the maximum
Series-Parallel subgraph.

Calinescu, Fernandes, K. (2009): The maximum spruce
structure subgraph problem is NP-hard.
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New Ideas

Comparison with previous algorithms for Planar subgraphs:

Unlike earlier algorithms, the subgraph we generate is not
a tree or an outerplanar graph.

Unlike earlier algorithms, we have to allow blocks of
unbounded size in our subgraph.

Unlike earlier algorithms, we sometimes have to shrink or
throw away previously selected blocks.
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New Ideas

Unlike earlier algorithms, we have to allow blocks of unbounded
size in our subgraph.

If the input graph is a complete spruce (spruce with an edge
between the base vertices) with n − 2 tips, then any algorithm
that only generates blocks of size at most k would result in an
output with a total n + k − 3 edges.

With large n and fixed k , this is only a 1/2-approximation.
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New Ideas

Unlike earlier algorithms, we sometimes have to shrink or throw
away previously selected blocks.
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The optimum has n vertices and 2n−3 edges.

A spruce with base vertices x and y and
√

n tips. For each of its tips v , there
are two complete spruces, one with base vertices x and v , and the other with
base vertices v and y , each with

√
n/2 tips.

If an algorithm mistakenly (or greedily) selects the spruce with base vertices

x and y , then it cannot add any more spruces and it ends up with about

n+
√

n edges — asymptotically not better than a 1/2 -approximation.
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The Algorithm - Preliminaries

gain(S) := cyclomatic number

For complete spruces, gain is the number of tips;
adjusted gain ĝain := gain.

For incomplete spruces, gain is one less than the number of
tips; adjusted gain ĝain := gain − 1.
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The Algorithm - Underlying Idea

We maintain Q, a collection of spruces.

What we add: Spruces with tips that are isolated vertices.
Let v1, v2, . . . , vk be all vertices isolated in Q that are adjacent in G to both x
and y .

If k ≥ 1, let SQ(x , y) be the spruce with base vertices x and y , tips

v1, v2, . . . , vk , and the edge xy if it exists in G. Add SQ(x , y) to Q.

What do we remove: For each component C of Q, the algorithm keeps a
weighted tree TC whose vertex set is V (C) and edge set is as follows: For
each spruce S in C with base vertices x and y , and tips v1, v2, . . . , vk , there is
an edge xy with weight ĝain in TC and edges xvi with weight 1 for
i = 1, . . . , k .

indexQ(x , y) is an edge in TC of minimum weight in the path in TC from x to

y . Let x ′ and y ′ be the endpoints of indexQ(x , y), and C be the component

of Q containing x , x ′, y , and y ′. Let S′ be the spruce in Q containing x ′

and y ′. If x ′ and y ′ are the base vertices of S′, then remove S′ from Q.

Hemanshu Kaul, kaul@iit.edu
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The Algorithm
CONSTRUCT-SPRUCE-STRUCTURE (G)
1 Q ← ∅
2 while there are x and y such that SQ(x , y) is defined

and ĝain(SQ(x , y)) > w(indexQ(x , y)) do
3 if indexQ(x , y) is undefined
4 then Q ← Q ∪ {SQ(x , y)}
5 else let x ′ and y ′ be the endpoints of indexQ(x , y)
6 let S′ be the spruce in Q containing x ′ and y ′

7 Q ← Q \ {S′} ∪ {SQ(x , y)}
8 if x ′ or y ′ is a tip of S′

9 then let z be between x ′, y ′, a tip of S′

10 let {e, f} be the edges of S′ touching z
11 S ← S′ − {e, f}
12 if S is not degenerate nor single edge
13 then Q ← Q ∪ {S}
14 add bridges to Q to obtain a connected spanning subgraph of
G
15 return Q
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Local improvement examples

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����
��
��
����
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
�� ��

��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
����
��
��
����
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����
��
��
����
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
�� ��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
����

��
��
��

��
��
��
����
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����
��
��
����
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

(a)

(b)

(c)

x

xx

x

x = x ′

y

y

y

y

y

x ′

y ′

y ′

2

2

2
2

2

2 2

TC

TC

Hemanshu Kaul, kaul@iit.edu



Introduction Large Planar Subgraphs Large Series-Parallel Subgraphs

Running Time Analysis

If gain(Q) increased in every iteration, then it would have been easy
to conclude that the algorithm runs a polynomial number of iterations.
The gain of Q never decreases and, in the iterations in which the gain of Q is

same, the number of components increases.

Define Φ(Q) = 3 gain(Q) + c(Q), where c(Q) is the number of
components of Q when Q is seen as a spanning subgraph of G.

We prove: Every iteration of the algorithm increases the
parameter Φ.

gain(Q) ≤ (2n−3) − (n−1) = n−2,
so Φ(Q) is bounded by 3(n−2) + n = 4n−6.

Each iteration can be easily implemented in polynomial time:

O(n2) pairs x , y for which SQ(x , y) must be computed and, if possible, used

in updating Q.
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Approximation ratio ideas - to beat 1/2

If significantly many vertices in our structure, we win.

If OPT has significantly less than 2n edges, we win.

If none of the above, the spruces of OPT have significant
ĝain.
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Approximation ratio ideas - to beat 1/2

From OPT , construct weighted Series Parallel graph with ĝain
on edges.

Compare to our weighted forest.

We have a maximum spanning forest in the union of the two
graphs!

Thus our ĝain is 1/2 of what that of OPT .

Therefore we have significant ĝain.
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New Questions

Weighted maximum Series-Parallel subgraph problem.

Maximum induced Series-parallel subgraph problem.

For fixed r , maximum Kr -minor-free subgraph problem.

In particular, maximum K5-minor-free subgraph problem.
Number of edges in such a graph are ≤ 3n − 6.

Also, the structural characterization is known - constructed from copies

of planar graphs and Wagner’s graph by gluing over k-cliques for k ≤ 3.

For fixed r , maximum subgraph of tree width ≤ r .

In particular, maximum subgraph of tree width ≤ 3.
Number of edges in such a graph are ≤ 3n − 6.

Also, such graphs have no minors from {K5, Wagner , two other graphs}.
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