DP-Coloring of Graphs from Random Covers

Hemanshu Kaul

Illinois Institute of Technology

www.math.iit.edu/~kaul

kaul@iit.edu

Joint work with Anton Bernshteyn (UCLA) Daniel Dominik (Illinois Institute of Technology) Jeffrey A. Mudrock (U. South Alabama)

In the cover of *G*, vertices correspond to the available colors for *G*, and edges correspond to conflicts between those colors based on edges of *G*. Picking a coloring of *G* corresponds to choosing an independent set of order n in the cover.

In the cover of G, vertices correspond to the available colors for G, and edges correspond to conflicts between those colors based on edges of G. Picking a coloring of G corresponds to choosing an independent set of order n in the cover.

A cover of G can be expressed with a <u>permutation</u> on each edge of G. The permutation models the conflict between those colors.

A topological aside:

What we are informally calling cover of a graph, can be formally defined in the language of covering map. A graph is a topological space, a one-dimensional simplicial complex, and covering maps can be defined and studied for graphs.

A surjective map $\phi : V(H) \rightarrow V(G)$ where *G*, *H* are graphs is a covering map if for every $x \in V(H)$, the neighbor set $N_H(x)$ is mapped bijectively to $N_G(\phi(x))$. When such a mapping exists and is *k*-to-1, we say that *H* is a *k*-lift, or *k*-fold cover of *G*.

A topological aside:

What we are informally calling cover of a graph, can be formally defined in the language of covering map. A graph is a topological space, a one-dimensional simplicial complex, and covering maps can be defined and studied for graphs.

Lifts of graphs have been studied in

- algebraic/ topological graph theory since 1980s (see Negami's Planar Cover Conjecture (1988); Godsil & Royle, Algebraic Graph Theory (2001));

- random graph theory since 2000 (see seminal papers of Linial).

Classical Coloring

- Classical graph coloring assigns to each vertex in a graph some color, which we will represent as a natural number.
- A *k*-coloring of a graph *G* is a function $\phi : V(G) \rightarrow [k]$, where $[k] = \{1, 2, ..., k\}$.
- A proper k-coloring is a k-coloring φ such that every pair of adjacent vertices in G are assigned different colors, i.e. φ(u) ≠ φ(v) for all uv ∈ E(G).
- The chromatic number of G, χ(G) is the smallest k such that G is proper k-colorable.

List Coloring

- Introduced by Vizing (1976) and Erdös, Rubin and Taylor (1979).
- For graph G, suppose each v ∈ V(G) is assigned a list, L(v), of colors. We refer to L as a list assignment. L is an k-assignment if |L(v)| = k for all v ∈ V(G).
- An L-coloring for *G* is a proper coloring, ϕ , of *G* such that $\phi(v) \in L(v)$ for all $v \in V(G)$ and $\phi(u) \neq \phi(v) \forall uv \in E(G)$.
- The list chromatic number of G, χ_ℓ(G) is the smallest k such that G is L-colorable for all k-assignments L.

Introduced by Dvořák and Postle (2015).

A DP cover is a tuple H = (L, H) where H is a graph and L : V(G) → 2^{V(H)} satisfying:
(i) V(H) = ∪_{v∈V(G)}L(v),
(ii) For adjacent u, v ∈ V(G), E_H(L(u), L(v)) forms a matching,

(ii) There are no other edges in H.

DP Cover

DP-cover Intuition:

Blow up each vertex u in G into an independent set of size |L(u)|;

Add a matching (possibly empty) between any two such independent sets for vertices u and v if uv is an edge in G.

- A transversal of $\mathcal{H} = (L, H)$ is a set of vertices $T \subseteq V(H)$ such that $|T \cap L(v)| = 1$ for all $v \in V(G)$.
- *T* is an independent transversal if it is an independent set in *H*.
- If \mathcal{H} has an independent transversal, we say that G is \mathcal{H} -colorable.

- A transversal of *H* = (*L*, *H*) is a set of vertices *T* ⊆ *V*(*H*) such that |*T* ∩ *L*(*v*)| = 1 for all *v* ∈ *V*(*G*).
- *T* is an independent transversal if it is an independent set in *H*.
- If \mathcal{H} has an independent transversal, we say that G is \mathcal{H} -colorable.

For \mathcal{H} from the previous slide, C_4 is \mathcal{H} -colorable.

- A transversal of *H* = (*L*, *H*) is a set of vertices *T* ⊆ *V*(*H*) such that |*T* ∩ *L*(*v*)| = 1 for all *v* ∈ *V*(*G*).
- *T* is an independent transversal if it is an independent set in *H*.
- If \mathcal{H} has an independent transversal, we say that G is \mathcal{H} -colorable.

For \mathcal{H} from the previous slide, C_4 is \mathcal{H} -colorable.

- *H* = (*L*, *H*) is a *k*-fold cover of *G* if |*L*(*v*)| = *k* for all *v* ∈ *V*(*G*). *H* is full if every matching in it is perfect.
- The DP chromatic number χ_{DP}(G) is the smallest k such that G is H-colorable for every k-fold cover H.
- $\chi(G) \leq \chi_{\ell}(G) \leq \chi_{DP}(G).$

 $\chi_{\rm DP}(C_4) > 2.$

Comparing Classical, List, and DP ColoringClassical ColoringList ColoringDP Coloring $2 \bullet \bullet 1$ $\{1, @\} \bullet \bullet \{ (1, 2) \}$ $2 \bullet \bullet \bullet \{ (1, 2) \}$

Our Question

- The DP chromatic number offers a guarantee that we will always be able to find an independent transversal.
- If there is even a single *k*-fold cover of *G* that does not have an independent transversal, then χ_{DP}(G) > k.
- The question we ask is: "is there a threshold on the value of k such that almost all k-fold covers of a graph have an independent transversal above the threshold, and almost none below the threshold?"
- We initiate this study by considering full DP-covers generated uniformly at random, and asking the natural probabilistic questions that arise from that context.

Historical Notes

• Random lists and Palette Sparsification.

The list assignments of a given graph G are generated uniformly at random from a palette of given colors. Is there a threshold size of the assignments that shows a transition in the list colorability of G (parameterized by either the order or the chromatic number of the graph)?

Introduced in 2004 by Krivelevich and Nachmias ("*The problem originated in the chemical industry and it is related to scheduling problems occurring in the production of colorants.*"). Studied for powers of cycles, complete graphs, complete multipartite graphs, graphs with bounded degree, etc.

Colorings from random list assignments – under the name <u>palette sparsification</u> – has recently found applications in the design of sublinear coloring algorithms starting from the work of Assadi, Chen, and Khanna (2019).

Historical Notes

Random Lifts.

A full DP-cover of *G* is equivalent to the previously studied notion of a lift (or a covering graph) of *G*. The notion of random *k*-lifts was introduced in 2000 by Amit and Linial. This work, and the large body of research following it studies random *k*-lifts as a random graph model. Their purpose was the study of the properties of random *k*-lifts, such as chromatic number, connectivity, expansion properties, etc., of a fixed graph *G* as $k \to \infty$.

Random Cover Example

Select one of the full 2-fold covers of K_3 uniformly at random.

Random Covers

- The random k-fold cover of G, H(G, k), is one of the k! |E(G)| full k-fold covers chosen uniformly at random.
 - We can think of this as creating a sample space of all full *k*-fold covers of *G*, then selecting one uniformly at random,
 - Or, we can think of this as creating our lists of size *k*, and selecting each perfect matching (or permutation) uniformly at random from the *k*! possibilities.

Random Covers

- The random k-fold cover of G, H(G, k), is one of the k! |E(G)| full k-fold covers chosen uniformly at random.
 - We can think of this as creating a sample space of all full *k*-fold covers of *G*, then selecting one uniformly at random,
 - Or, we can think of this as creating our lists of size *k*, and selecting each perfect matching (or permutation) uniformly at random from the *k*! possibilities.
- We study the probability that a random cover of a graph has an independent transversal. *G* is *k*-DP-colorable with probability *p* when $\mathbb{P}(G \text{ is } \mathcal{H}(G, k)\text{-colorable}) = p$.

Random Covers

- The random *k*-fold cover of *G*, $\mathcal{H}(G, k)$, is one of the $k!^{|E(G)|}$ full *k*-fold covers chosen uniformly at random.
- We study the probability that a random cover of a graph has an independent transversal. G is k-DP-colorable with probability p when P(G is H(G, k)-colorable) = p.
- The density of graph G, d(G), is |E(G)|/|V(G)|. The maximum density of G, ρ(G), is max_{G'} d(G'), where the maximum is taken over all nonempty subgraphs G' of G.

 A graph G is d-degenerate if there exists some ordering of the vertices in V(G) such that each vertex has at most d neighbors among the preceding vertices. The degeneracy of a graph G is the smallest d ∈ N such that G is d-degenerate. Note that ρ(G) ≤ d ≤ 2ρ(G).

Random Cover Example

Select one of the full 2-fold covers of K_3 uniformly at random.

Random Cover Example

K_3 is 2-DP-colorable with probability 0.5

Threshold Behavior

Given a sequence of graphs $\mathcal{G} = (\mathcal{G}_{\lambda})_{\lambda \in \mathbb{N}}$ and a sequence of integers $\kappa = (k_{\lambda})_{\lambda \in \mathbb{N}}$. We say that \mathcal{G} is κ -DP-colorable with high probability if

$$\lim_{\lambda\to\infty}\mathbb{P}(G_{\lambda} \text{ is } \mathcal{H}(G_{\lambda},k_{\lambda})\text{-colorable}) = 1.$$

Similarly, we say that \mathcal{G} is non- κ -DP-colorable w.h.p. if

$$\lim_{\lambda o \infty} \mathbb{P}(G_{\lambda} \text{ is } \mathcal{H}(G_{\lambda}, k_{\lambda}) \text{-colorable}) \, = \, 0.$$

Threshold Behavior

Given a sequence of graphs $\mathcal{G} = (\mathcal{G}_{\lambda})_{\lambda \in \mathbb{N}}$ and a sequence of integers $\kappa = (k_{\lambda})_{\lambda \in \mathbb{N}}$. We say that \mathcal{G} is κ -DP-colorable with high probability if

$$\lim_{\lambda\to\infty}\mathbb{P}(G_{\lambda} \text{ is } \mathcal{H}(G_{\lambda},k_{\lambda})\text{-colorable}) = 1.$$

Similarly, we say that G is non- κ -DP-colorable w.h.p. if

$$\lim_{\lambda\to\infty}\mathbb{P}(G_{\lambda} \text{ is } \mathcal{H}(G_{\lambda},k_{\lambda})\text{-colorable}) = 0.$$

A function t_G: N → R is called a DP-threshold function for G:
if k_λ = o(t_G(λ)), then G is non-κ-DP-colorable w.h.p., while if t_G(λ) = o(k_λ), then G is κ-DP-colorable w.h.p.

Threshold Behavior

Given a sequence of graphs $\mathcal{G} = (G_{\lambda})_{\lambda \in \mathbb{N}}$ and a sequence of integers $\kappa = (k_{\lambda})_{\lambda \in \mathbb{N}}$. We say that \mathcal{G} is κ -DP-colorable with high probability if

$$\lim_{\lambda\to\infty}\mathbb{P}(G_{\lambda} \text{ is } \mathcal{H}(G_{\lambda},k_{\lambda})\text{-colorable}) = 1.$$

Similarly, we say that \mathcal{G} is non- κ -DP-colorable w.h.p. if

$$\lim_{\lambda\to\infty}\mathbb{P}(G_{\lambda} \text{ is } \mathcal{H}(G_{\lambda},k_{\lambda})\text{-colorable})\,=\,0.$$

A function t_G is said to be a sharp DP-threshold function for G when for any ε > 0,
G is non-κ-DP-colorable w.h.p. when k_λ ≤ (1 − ε)t_G(λ) for all large enough λ,
and it is κ-DP-colorable w.h.p. when k_λ ≥ (1 + ε)t_G(λ) for all large enough λ.

Threshold Results

Theorem (Bernshteyn, Dominik, K., Mudrock (2025)) Let $\mathcal{G} = (G_{\lambda})_{\lambda \in \mathbb{N}}$ be a sequence of graphs with $|V(G_{\lambda})|$, $\rho(G_{\lambda}) \to \infty$ as $\lambda \to \infty$. Define a function $t_{\mathcal{G}}(\lambda) = \rho(G_{\lambda}) / \ln \rho(G_{\lambda})$.

If
$$\lim_{\lambda \to \infty} \frac{\ln \rho(G_{\lambda})}{\ln \ln |V(G_{\lambda})|} = \infty$$
,

then $t_{\mathcal{G}}(\lambda)$ is a DP-threshold function for \mathcal{G} .

If
$$\lim_{\lambda \to \infty} \frac{\ln \rho(G_{\lambda})}{\ln |V(G_{\lambda})|} = 1$$
,

then $t_{\mathcal{G}}(\lambda)$ is a sharp DP-threshold function for \mathcal{G} .

Threshold Results

Corollary (Bernshteyn, Dominik, K., Mudrock (2025)) For $\mathcal{G} = (K_n)_{n \in \mathbb{N}}$, the sequence of complete graphs, $t_{\mathcal{G}}(n) = n/(2 \ln n)$ is a sharp DP-threshold function.

The existence of a (not necessarily sharp) DP-threshold function of order $\Theta(n/\ln n)$ for the sequence of complete graphs was recently proved by Dvořák and Yepremyan using different methods.

Corollary (Bernshteyn, Dominik, K., Mudrock (2025)) For $\mathcal{G} = (K_{m \times n})_{n \in \mathbb{N}}$ with constant $m \ge 2$, the sequence of complete *m*-partite graphs with *n* vertices in each part, $t_{\mathcal{G}}(n) = (m-1)n/(2 \ln n)$ is a sharp DP-threshold function.

DP-colorability with Low Probability

Theorem (Bernshteyn, Dominik, K., Mudrock (2025)) Let $\epsilon > 0$ and let G be a nonempty graph with $\rho(G) \ge \exp(e/\epsilon)$. If $1 \le k \le \rho(G) / \ln \rho(G)$, then G is k-DP-colorable with probability at most ϵ .

In fact, we prove a stronger result in context of fractional DP-coloring. Let $p^*(G, k) = \sup\{p : \exists a, b \in \mathbb{N} \text{ s.t. } a/b \leq k \text{ and } G \text{ is } (a, b)\text{-DP-colorable with probability } p\}$.

Theorem (Bernshteyn, Dominik, K., Mudrock (2025)) Let $\epsilon > 0$ and let G be a nonempty graph with $\rho(G) \ge \exp(e/\epsilon)$. If $1 \le k \le \rho(G) / \ln \rho(G)$, then $p^*(G, k) \le \epsilon$.

DP-colorability with High Probability for Dense Graphs

Theorem (Bernshteyn, Dominik, K., Mudrock (2025))

For all $\epsilon > 0$ and $s \in [0, 1/3)$, there is $n_0 \in \mathbb{N}$ such that the following holds. Suppose G is a graph with $n \ge n_0$ vertices such that $\rho(G) \ge n^{1-s}$, and

$$k \ge (1+\epsilon)\left(1+rac{s}{1-2s}
ight)rac{
ho(G)}{\ln
ho(G)}$$

Then G is k-DP-colorable with probability at least $1 - \epsilon$.

Notice how the lower bound on *k* increases from $\frac{\rho(G)}{\ln \rho(G)}$ to $\frac{2\rho(G)}{\ln \rho(G)}$ as $\rho(G)$ decreases from $n^{1-o(1)}$ to $n^{2/3}$.

DP-colorability with High Probability for Dense Graphs

Theorem (Bernshteyn, Dominik, K., Mudrock (2025)) For all $\epsilon > 0$ and $s \in [0, 1/3)$, there is $n_0 \in \mathbb{N}$ such that the following holds. Suppose G is a graph with $n \ge n_0$ vertices such that $\rho(G) \ge n^{1-s}$, and

$$k \, \geq \, (1 + \epsilon) \left(1 + rac{s}{1 - 2s}
ight) rac{
ho(G)}{\ln
ho(G)}$$

Then G is k-DP-colorable with probability at least $1 - \epsilon$.

This is proved through a long second-moment argument.

Can we lower the bound on ρ below $n^{2/3}$ if we aim to keep the bound on k at $\frac{2\rho(G)}{\ln \rho(G)}$ (off by a factor of two from the first moment bound of $\frac{\rho(G)}{\ln \rho(G)}$)?

DP-colorability with High Probability for Sparse Graphs

We use degeneracy to push the bound on density down to polylog(n).

Theorem (Bernshteyn, Dominik, K., Mudrock (2025)) For all $\epsilon \in (0, 1/2)$, there is $n_0 \in \mathbb{N}$ such that the following holds. Let G be a graph with $n \ge n_0$ vertices and degeneracy d such that $d \ge \ln^{2/\epsilon} n$. If $k \ge (1 + \epsilon)d/\ln d$, then G is k-DP-colorable with probability at least $1 - \epsilon$.

DP-colorability with High Probability for Sparse Graphs

We use degeneracy to push the bound on density down to polylog(n).

Since $\rho(G) \le d \le 2\rho(G)$, we can compare this result to the earlier ones in terms of density.

Theorem (Bernshteyn, Dominik, K., Mudrock (2025))

For all $\epsilon \in (0, 1/2)$, there is $n_0 \in \mathbb{N}$ such that the following holds. Let G be a graph with $n \ge n_0$ vertices such that $\rho(G) \ge \ln^{2/\epsilon} n$. If $k \ge (1 + \epsilon)2\rho(G)/\ln\rho(G)$, then G is k-DP-colorable with probability at least $1 - \epsilon$.

DP-colorability with High Probability for Sparse Graphs

Theorem (Bernshteyn, Dominik, K., Mudrock (2025)) For all $\epsilon \in (0, 1/2)$, there is $n_0 \in \mathbb{N}$ such that the following holds. Let G be a graph with $n \ge n_0$ vertices and degeneracy d such that $d \ge \ln^{2/\epsilon} n$. If $k \ge (1 + \epsilon)d/\ln d$, then G is k-DP-colorable with probability at least $1 - \epsilon$.

This is proved by analyzing a greedy algorithm for constructing an independent (*b*-fold) transversal in a random k-fold cover.

The random variables for each vertex being unavailable to be picked in the greedy transversal are negatively correlated.

And, use a form of the Chernoff–Hoeffding bound for negatively correlated Bernoulli random variables due to Panconesi and Srinivasan (1997).

What about very sparse graphs?

Proposition (Bernshteyn, Dominik, K., Mudrock (2025))

For any $\epsilon > 0$ and $n_0 \in \mathbb{N}$, there is a graph G with $n \ge n_0$ vertices such that $\rho(G) \ge (\ln n / \ln \ln n)^{1/3}$ but, for every $k \le 2\rho(G)$, G is k-DP-colorable with probability less than ϵ .

We take $G = tK_q$, the disjoint union of *t* copies of K_q , where $t = \ln(1/\epsilon) (q-1)!^{\binom{q}{2}}$ and *q* is large enough.

A result of Bernshteyn (2019) shows: for each $\epsilon > 0$, there is $C_{\epsilon} > 0$ such that every triangle-free regular graph *G* with $\rho(G) \ge C_{\epsilon}$ satisfies $\chi_{DP}(G) \le (1 + \epsilon)2\rho(G)/\ln\rho(G)$, and hence it is *k*-DP-colorable (with probability 1) for all $k \ge (1 + \epsilon)2\rho(G)/\ln\rho(G)$.
What about very sparse graphs?

Proposition (Bernshteyn, Dominik, K., Mudrock (2025))

For any $\epsilon > 0$ and $n_0 \in \mathbb{N}$, there is a graph *G* with $n \ge n_0$ vertices such that $\rho(G) \ge (\ln n / \ln \ln n)^{1/3}$ but, for every $k \le 2\rho(G)$, *G* is *k*-DP-colorable with probability less than ϵ .

A result of Bernshteyn (2019) shows: for each $\epsilon > 0$, there is $C_{\epsilon} > 0$ such that every triangle-free regular graph *G* with $\rho(G) \ge C_{\epsilon}$ satisfies $\chi_{DP}(G) \le (1 + \epsilon)2\rho(G)/\ln\rho(G)$, and hence it is *k*-DP-colorable (with probability 1) for all $k \ge (1 + \epsilon)2\rho(G)/\ln\rho(G)$.

So, for graphs with density below polylog(n), density alone is not enough to determine probability of DP-colorability.

A Conjecture

We conjecture that for density above polylog(n), we should get a sharp bound on *k*.

Conjecture (Bernshteyn, Dominik, K., Mudrock (2025)) For all $\epsilon > 0$, there exist C > 0 and $n_0 \in \mathbb{N}$ such that the following holds. Suppose G is a graph with $n \ge n_0$ vertices such that $\rho(G) \ge \ln^C n$, and

$$k \geq (1+\epsilon) \frac{\rho(G)}{\ln \rho(G)}.$$

Then G is k-DP-colorable with probability at least $1 - \epsilon$.

Summary of Results

Density lower bound	Cover size	$\mathbb{P}(G,k)$
$\exp(\boldsymbol{\boldsymbol{e}}/\epsilon)$	$\pmb{k} \leq \frac{\rho(\pmb{G})}{\ln \rho(\pmb{G})}$	$\leq \epsilon$
n^{1-s} for $s \in [0, 1/3)$	$k \geq (1+\epsilon)\left(1+rac{s}{1-2s} ight)rac{ ho(G)}{\ln ho(G)}$	\geq 1 – ϵ
$\ln^{2/\epsilon} n$	$k \geq (1+\epsilon)rac{2 ho(G)}{\ln ho(G)}$	\geq 1 – ϵ
No lower bound	k>2 ho(G)	 1

 $\mathbb{P}(G, k)$ is the probability that *G* is $\mathcal{H}(G, k)$ -colorable.

Instead, let us look at a 5-fold cover of C₄

•
$$\chi_{DP}(C_4) = 3.$$

 Instead, let us look at a 5-fold cover of C₄ and find an independent 2-fold transversal in it.

- $\chi_{DP}(C_4) = 3.$
- We can see that C_4 is (5,2)-DP-colorable and $\chi^*_{_{DP}}(C_4) \le 5/2$.

• Instead, let us look at a 7-fold cover of C₄

•
$$\chi_{DP}(C_4) = 3.$$

 Instead, let us look at a 7-fold cover of C₄ and find an independent 3-fold transversal in it.

- $\chi_{DP}(C_4) = 3.$
- We can see that C_4 is (7,3)-DP-colorable and $\chi^*_{_{DP}}(C_4) \leq 7/3$.

Instead, let us look at a 9-fold cover of C₄

•
$$\chi_{DP}(C_4) = 3$$

 Instead, let us look at a 9-fold cover of C₄ and find an independent 4-fold transversal in it.

- $\chi_{DP}(C_4) = 3.$
- We can see that C_4 is (9, 4)-DP-colorable and $\chi^*_{_{DP}}(C_4) \le 9/4$.

•
$$\chi_{\scriptscriptstyle DP}(C_4)=$$
3.

• In the limit we can see $\chi^*_{_{DP}}(C_4) = 2$.

Fractional DP-Coloring Defined

- Given a graph G and H, a cover of G, then G is (H, b)-colorable if H contains an independent b-fold transversal.
- A graph G is (a, b)-DP-colorable if G is (H, b)-colorable for all a-fold covers H.
- The fractional DP-chromatic number is

$$\chi^*_{_{DP}}(G) = \inf \left\{ \frac{a}{b} : G \text{ is } (a, b) \text{-DP-colorable} \right\}.$$

- Introduced by Bernshteyn, Kostochka, and Zhu (2020).
- $\chi^*(G) = \chi^*_{\ell}(G) \le \chi^*_{\scriptscriptstyle DP}(G) \le \chi_{\scriptscriptstyle DP}(G).$

Probability of Fractional-DP-Coloring

- If *G* is κ -DP-colorable, then *G* is fractional-*k*-DP-colorable.
- If *G* is non-*k*-DP-colorable, there may be some large *a* and *b* that still allows *G* to be fractional-*k*-DP-colorable.
- What is the probability of fractional-DP-colorability of G over H(G, k)?

Probability of Fractional-DP-Coloring

Let $p^*(G, k) = \sup\{p : \exists a, b \in \mathbb{N} \text{ s.t. } a/b \le k\}$

and G is (a, b)-DP-colorable with probability p}.

Theorem (Bernshteyn, Dominik, K., Mudrock (2025))

Let $\epsilon > 0$ and let G be a graph with $\rho(G) \ge \exp(e/\epsilon)$. If $1 \le k \le \rho(G) / \ln \rho(G)$, then $p^*(G, k) \le \epsilon$.

Theorem (Bernshteyn, Dominik, K., Mudrock (2025)) For all $\epsilon > 0$, there is $d_0 \in \mathbb{N}$ such that the following holds. Let G be a graph with degeneracy $d \ge d_0$ and let $k \ge (1 + \epsilon)d/\ln d$. Then $p^*(G, k) \ge 1 - \epsilon$.

This extends the earlier result, where we required degeneracy $d \ge \ln^{2/\epsilon} n$, to any graph whose degeneracy is high enough as a function of ϵ (regardless of how small it is when compared to the number of vertices in the graph), at the cost of replacing DP-coloring with fractional DP-coloring.

Degeneracy

• A graph is *d*-degenerate if there is an ordering of its vertices such that no vertex has more than *d* neighbors preceding itself in the list.

Consider a random 3 fold cover of the graph from the previous slide.

Consider a random 3 fold cover of the graph from the previous slide.

- Consider a random 3 fold cover of the graph from the previous slide.
- Select one <u>available</u> vertex from each list, starting with $L(v_1)$ and ending with $L(v_7)$.

- Consider a random 3 fold cover of the graph from the previous slide.
- Select one <u>available</u> vertex from each list, starting with $L(v_1)$ and ending with $L(v_7)$.
- In the fractional setting, we pick b available vertices sequentially from each list, in a random a-fold cover.

- Consider a random *a*-fold cover of a *n*-vertex graph *G*.
- For each list in the cover. Pick *b* available vertices sequentially, if possible. If not, then just pick any *b* vertices.
- Output is a *b*-fold transversal which is independent if at least *b* vertices are available at each step.
- For each *i* ∈ [*n*] (one for each vertex of *G*) and *j* ∈ [*a*] (one for each "color" in the lists of the cover), let X_{i,j} be the indicator random variable of the event that the vertex v_{i,j} is available in the list L(v_i).
 Let Y_{i,i} = 1 − X_{i,j}.

For each *i* ∈ [*n*] (one for each vertex of *G*) and *j* ∈ [*a*] (one for each "color" in the lists of the cover), let X_{i,j} be the indicator random variable of the event that the vertex v_{i,j} is available in the list L(v_i).
 Let Y_{i,j} = 1 − X_{i,j}.

Lemma

Consider the set of random variables $X_{i,j}$ as defined above.

(i) For all $i \in [n]$ and $j \in [a]$, we have $\mathbb{E}(X_{i,j}) \ge \left(1 - \frac{b}{a}\right)^d$. (ii) For each $i \in [n]$, the variables $(Y_{i,j})_{j \in [a]}$ are negatively correlated.

- A collection $(Y_i)_{i \in [k]}$ of $\{0, 1\}$ -valued random variables is negatively correlated if for every subset $I \subseteq [k]$, we have $\mathbb{P}\left(\bigcap_{i \in I} \{Y_i = 1\}\right) \leq \prod_{i \in I} \mathbb{P}(Y_i = 1).$
- Sums of negatively correlated random variables satisfy Chernoff–Hoeffding style bounds, as discovered by Panconesi and Srinivasan (1997).

Lemma

Let $(X_i)_{i \in [k]}$ be $\{0, 1\}$ -valued random variables. Set $Y_i = 1 - X_i$ and $X = \sum_{i \in [k]} X_i$. If $(Y_i)_{i \in [k]}$ are negatively correlated, then

$$\mathbb{P}\left(X < \mathbb{E}(X) - t
ight) < \exp\left(-rac{t^2}{2\mathbb{E}(X)}
ight) \quad \textit{for all } 0 < t \leq \mathbb{E}(X).$$

For each *i* ∈ [*n*] (one for each vertex of *G*) and *j* ∈ [*a*] (one for each "color" in the lists of the cover), let X_{i,j} be the indicator random variable of the event that the vertex v_{i,j} in the cover is available in the list L(v_i).

Let $Y_{i,j} = 1 - X_{i,j}$.

Lemma

Consider the set of random variables $X_{i,j}$ as defined above.

(i) For all $i \in [n]$ and $j \in [a]$, we have $\mathbb{E}(X_{i,j}) \ge \left(1 - \frac{b}{a}\right)^{a}$. (ii) For each $i \in [n]$, the variables $(Y_{i,j})_{j \in [a]}$ are negatively correlated.

For each *i* ∈ [*n*] (one for each vertex of *G*) and *j* ∈ [*a*] (one for each "color" in the lists of the cover), let X_{i,j} be the indicator random variable of the event that the vertex v_{i,j} in the cover is available in the list L(v_i).

Let $Y_{i,j} = 1 - X_{i,j}$.

• Let $X_i = \sum_{j \in [a]} X_{i,j}$ the number of available vertices in $L(v_i)$.

• Let $X_i = \sum_{j \in [a]} X_{i,j}$ the number of available vertices in $L(v_i)$.

• We can show for degeneracy *d*, $\mathbb{E}(X_i) \ge a \left(1 - \frac{b}{a}\right)^d \ge b \cdot (1 + \epsilon/2) \frac{d}{\ln d} \cdot \left(1 - \frac{\ln d}{(1 + \epsilon/2)d}\right)^d \ge b \cdot (1 + \epsilon/2) \frac{d}{\ln d} \cdot d^{-1/(1 + \epsilon/2)} > b d^{\epsilon/3}$ where the last step uses *d* is large as a function of ϵ .
Analyzing the Greedy Transversal Procedure

• Let $X_i = \sum_{j \in [a]} X_{i,j}$ the number of available vertices in $L(v_i)$.

• We showed
$$\mathbb{E}(X_i) > b d^{\epsilon/3}$$
.

Using Chernoff-Hoeffding for negatively correlated r.v.s, we can show at least *b* vertices are available at each step pf the GT Procedure with high probability,

 $\mathbb{P}(X_i < b) \leq \mathbb{P}\left(X_i < \frac{\mathbb{E}(X_i)}{2}\right) < \exp\left(-\frac{\mathbb{E}(X_i)}{8}\right) \leq e^{-b/4} < \frac{\epsilon}{n}$ where the last inequality uses *b* is large enough as a function of *n*.

• By the union bound, it follows that $\mathbb{P}(X_i < b \text{ for some } i \in [n]) < \epsilon.$

Thank You!

Any Questions?

Question

Under what conditions on $\mathcal{G} = (G_{\lambda})_{\lambda \in \mathbb{N}}$ will $t_{\mathcal{G}}(\lambda) = \rho(G_{\lambda}) / \ln \rho(G_{\lambda})$ be a DP-threshold function or a sharp DP-threshold function for \mathcal{G} ?

Conjecture

For all $\epsilon > 0$, there exist C > 0 and $n_0 \in \mathbb{N}$ such that the following holds. Suppose G is a graph with $n \ge n_0$ vertices such that $\rho(G) \ge \ln^C n$, and

$$k \ge (1+\epsilon) \, rac{
ho({m G})}{\ln
ho({m G})}.$$

Then G is k-DP-colorable with probability at least $1 - \epsilon$.

Question What about fractional DP-coloring?

Thank You!

Any Questions?

Question

Under what conditions on $\mathcal{G} = (\mathcal{G}_{\lambda})_{\lambda \in \mathbb{N}}$ will $t_{\mathcal{G}}(\lambda) = \rho(\mathcal{G}_{\lambda}) / \ln \rho(\mathcal{G}_{\lambda})$ be a DP-threshold function or a sharp DP-threshold function for \mathcal{G} ?

Conjecture

For all $\epsilon > 0$, there exist C > 0 and $n_0 \in \mathbb{N}$ such that the following holds. Suppose G is a graph with $n \ge n_0$ vertices such that $\rho(G) \ge \ln^C n$, and

$$k \, \geq \, (1+\epsilon) \, rac{
ho({m G})}{\ln
ho({m G})}.$$

Then G is k-DP-colorable with probability at least $1 - \epsilon$.

Question What about fractional DP-coloring?

Negative Correlation by Coupling

- A collection (Y_i)_{i∈[k]} of {0,1}-valued random variables is negatively correlated if for every subset I ⊆ [k], we have P(∩_{i∈I}{Y_i = 1}) ≤ ∏_{i∈I} P(Y_i = 1).
- To prove that for each *i* ∈ [*n*], the variables (*Y_{i,j}*)_{*j*∈[*a*]} are negatively correlated, we use a coupling argument.
 - Create two new probability spaces:
 - One finds the probability of getting certain matchings from all matchings that leave the *j*th vertex available.
 - The other finds the probability of getting certain matchings after "fixing" the set of matchings so that the *j*th vertex is available.
 - Show that these probability measures are equivalent and that we don't lose any events.