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List Coloring

List coloring was introduced independently by Vizing
(1976) and Erdős, Rubin, and Taylor (1979), as a
generalization of usual graph coloring.

For graph G suppose each v ∈ V (G) is assigned a list,
L(v), of colors. We refer to L as a list assignment. An
acceptable L-coloring for G is a proper coloring, f , of G
such that f (v) ∈ L(v) for all v ∈ V (G).

When an acceptable L-coloring for G exists, we say that G
is L-colorable or L-choosable.
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List Chromatic Number
The list chromatic number of a graph G, written χ`(G), is
the smallest k such that G is L-colorable whenever
|L(v)| ≥ k for each v ∈ V (G).

When χ`(G) = k we say that G has list chromatic number
k or that G is k-choosable.

We immediately have that if χ(G) is the typical chromatic
number of a graph G, then

χ(G) ≤ χ`(G).

A graph is chromatic choosable if χ(G) = χ`(G).
But we know the gap between χ(G) and χ`(G) can be
arbitrarily large



List Chromatic Number
The list chromatic number of a graph G, written χ`(G), is
the smallest k such that G is L-colorable whenever
|L(v)| ≥ k for each v ∈ V (G).

When χ`(G) = k we say that G has list chromatic number
k or that G is k-choosable.

We immediately have that if χ(G) is the typical chromatic
number of a graph G, then

χ(G) ≤ χ`(G).

A graph is chromatic choosable if χ(G) = χ`(G).
But we know the gap between χ(G) and χ`(G) can be
arbitrarily large



List Chromatic Number
The list chromatic number of a graph G, written χ`(G), is
the smallest k such that G is L-colorable whenever
|L(v)| ≥ k for each v ∈ V (G).

When χ`(G) = k we say that G has list chromatic number
k or that G is k-choosable.

We immediately have that if χ(G) is the typical chromatic
number of a graph G, then

χ(G) ≤ χ`(G).

A graph is chromatic choosable if χ(G) = χ`(G).
But we know the gap between χ(G) and χ`(G) can be
arbitrarily large



A Motivating Result
Theorem (Folklore, 1970s)
χ`(Ka,b) = a + 1 if and only if b ≥ aa

When b ≥ a, we know χ`(Ka,b) ≤ Col(Ka,b) = a + 1.
So, for fixed a, this theorem tells us the smallest value of b
such that χ`(Ka,b) is as large as possible (i.e., far from
being chromatic-choosable).

We can construct a sequence of graphs with increasing list
chromatic number starting from chromatic number 2:
χ(Ka,aa) = χ(K1,1) = 2 = χ`(K1,1) < 3 = χ`(K2,4) < 4 =
χ`(K3,27) < . . . < a + 1 = χ`(Ka,aa)

Question: Can we construct such a sequence starting
from chromatic number k > 2?
We will give an answer motivated by the Theorem above.
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Cartesian Product of Graphs
The Cartesian Product G�H of graphs G and H is a graph
with vertex set V (G)× V (H).
Two vertices (u, v) and (u′, v ′) are adjacent in G�H if either
u = u′ and vv ′ ∈ E(H) or uu′ ∈ E(G) and v = v ′.

Here’s C5�P3:

Research Focus

I The initial focus of our research is to study the list chromatic
number of the Cartesian product of graphs.

I The Cartesian Product G�H of graphs G and H is a graph
with vertex set V (G )×V (H). Two vertices (u, v) and (u′, v ′)
are adjacent in G�H if either u = u′ and vv ′ ∈ E (H) or
uu′ ∈ E (G ) and v = v ′.

I A picture of a copy of C5�P3 is:

Every connected graph has a unique factorization under the
Cartesian product (that can be found in linear time and space).

χ(G�H) = max{χ(G), χ(H)}.
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Coloring the Cartesian Product of Graphs

Theorem (Borowiecki, Jendrol, Kral, Miskuf (2006))
χ`(G�H) ≤ min{χ`(G) + Col(H),Col(G) + χ`(H)} − 1

An easy inductive argument proves this theorem.

For fixed G, a:
χ`(G�Ka,b) ≤ χ`(G) + Col(Ka,b)− 1 = χ`(G) + a

Question: Does there always exist a b such that this
upper bound is attained?
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Question: For which graphs G, can we give a
characterization of such b?
The folklore theorem from earlier gives the characterization
when G = K1.

Our main tools are list color function and strongly
chromatic choosable graphs.
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The List Color Function

For k ∈ N, let P(G, k) denote the number of proper
colorings of G with colors from {1, . . . , k}.

It is known that P(G, k) is a polynomial in k of degree
|V (G)|. We call P(G, k) the chromatic polynomial of G.

The list color function of G, P`(G, k), is the minimum
number of k -list colorings of G where the minimum is taken
over all k -list assignments for G.

Recall, P(K2,4,2) = 2, and yet P`(K2,4,2) = 0
For every graph G and each k ∈ N, P`(G, k) ≤ P(G, k).
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Some Results on the List Color Function

Theorem (Kostochka and Sidorenko (1990))
If G is a chordal graph (i.e. all cycles contained in G with 4 or
more vertices have a chord), then P`(G, k) = P(G, k) for each
k ∈ N.

P`(G, k) need not be a polynomial.

Theorem (Thomassen (2009))
For any graph G, P`(G, k) = P(G, k) provided k > |V (G)|10.

Theorem (Wang, Qian, Yan (2017))
For any connected graph G with m edges, P`(G, k) = P(G, k)
provided k > m−1

ln(1+
√

2)
≈ 1.135(m − 1).
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First Result

Theorem (K. and Mudrock)
χ`(G�Ka,b) = χ`(G) + a, whenever b ≥ (P`(G, χ`(G) + a− 1))a

If G has at least one edge, then
P`(G, χ`(G) + a− 1) < (χ`(G) + a− 1)|V (G)|; giving a
(significant) improvement over the Borowiecki et al. bound.

We can in fact prove:

Theorem (K. and Mudrock)
Suppose H is a bipartite graph with partite sets A and B where
|A| = a and |B| = b. Let δ = minv∈B dH(v).
If b ≥ (P`(G, χ`(G) + δ − 1))a, then χ`(G�H) ≥ χ`(G) + δ.
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Beyond First Result

Theorem (K. and Mudrock (2018+))
χ`(G�Ka,b) = χ`(G) + a, whenever b ≥ (P`(G, χ`(G) + a− 1))a

Question: When is this bound sharp? Can we find graphs
G such this bound characterizes χ`(G�Ka,b) = χ`(G) + a?
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Strong Chromatic Choosability

List assignment, L, for G is a bad k-assignment for G if G is
not L-colorable and |L(v)| = k for each v ∈ V (G).
List assignment, L, is constant if L(v) is the same for each
v ∈ V (G).
A constant (and bad) 2-assignment for a C5:

Strong k-Critical Graphs Continued

A list assignment, L, for a graph G is called constant if L(v)
is the exact same list of colors for each v ∈ V (G).
A constant 2-assignment of a copy of C5:

Note that the above list assignment is also a bad
2-assignment.

Jeff Mudrock Using Strong Criticality and Unique List Colorability to Bound the List Chromatic Number of the Cartesian Product of Graphs

A graph G is said to be strong k-chromatic choosable if
χ(G) = k and every bad (k − 1)-assignment for G is
constant.
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A graph G is said to be strong k-chromatic choosable if
χ(G) = k and if every bad (k − 1)-assignment for G is constant.

Proposition (K. and Mudrock, 2018+)
Let G be a strong k-chromatic choosable graph. Then
(i) χ(G) = k = χ`(G) (i.e. G is chromatic choosable),
(ii) χ(G − {v}) ≤ χ`(G − {v}) < k for any v ∈ V (G),
(iii) k = 2 if and only if G is K2,
(iv) k = 3 if and only if G is an odd cycle,
(v) G ∨Kp is strong (k + p)-chromatic choosable for any p ∈ N.

We essentially have a notion of vertex-criticality for
chromatic-choosability.
There are many infinite families of graphs that satisfy this
notion.
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Second Result

Theorem (K. and Mudrock)
χ`(G�Ka,b) = χ`(G) + a, whenever b ≥ (P`(G, χ`(G) + a− 1))a

Theorem (K. and Mudrock)
If G is a strong k-chromatic choosable graph and k ≥ a + 1,
then χ`(G�Ka,b) = χ`(G) + a if and only if
b ≥ (P`(G, χ`(G) + a− 1))a.

The proof idea is:
If L is a (χ`(G) + a− 1)-assignment for G�Ka,b, there is at most
one proper L-coloring of the copies of G corresponding to the
partite set of size a that leads to a bad assignment for a given
“bottom” copy of G.
We show if two such colorings existed, we could obtain a proper
a-coloring of G.
A simple counting argument completes the proof that there
exists a proper L-coloring of G�Ka,b when
b < (P`(G, χ`(G) + a− 1))a.
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Corollaries to Second Result

Theorem (K. and Mudrock)
If G is a strong k-chromatic choosable graph and k ≥ a + 1,
then χ`(G�Ka,b) = χ`(G) + a if and only if
b ≥ (P`(G, χ`(G) + a− 1))a.

Corollary (K. and Mudrock)
χ`(C2t+1�K2,b) = 5 if and only if
b ≥ (P`(C2t+1,4))2 = (32t+1 − 3)2 = 9(9t − 1)2.

Corollary (K. and Mudrock)
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chromatic number n:
χ(Kn�Ka,b) = χ(Kn) = n = χ`(Kn�K0,1) < n + 1 =
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Extending the Second Result

Theorem (K. and Mudrock)
If G is a strong k-chromatic choosable graph and k ≥ a + 1,
then χ`(G�Ka,b) = χ`(G) + a if and only if
b ≥ (P`(G, χ`(G) + a− 1))a.

Open Question: Can we remove the k ≥ a + 1 in the
above theorem?

Theorem (K. and Mudrock)
If G is a strong k-chromatic choosable graph, then
χ`(G�Ka,b) < χ`(G) + a whenever
b < (P`(G, χ`(G) + a− 1))a/2k−1.
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Thank You!
Questions?
Define fa(G) as the smallest b s.t. χ`(G�Ka,b) = χ`(G) + a.
For what graphs does fa(G) = (P`(G, χ`(G) + a− 1))a?
Does there exist a strongly chromatic-choosable graph M such
that fa(M) < (P`(M, χ`(M) + a− 1))a? Or, can we remove the
condition k ≥ a + 1 in the second theorem?

Is it the case that fa(Kn) =
(

(n+a−1)!
(a−1)!

)a
for each n,a?

We can ask the above question for any family of strongly
chromatic-choosable graphs.

Is it always the case that P`(G, k) = P(G, k) when G is strong
chromatic choosable?
(Thomassen 2009) Does there exist a graph G and a natural
number k > 2 such that P`(G, k) = 1?
(Mohar 2001) Let G be a (∆(G) + 1)-edge-critical graph. Then
prove that L(G) is strong (∆(G) + 1)-chromatic choosable.
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