The Gap Between the List-Chromatic and Chromatic Numbers

Hemanshu Kaul
Illinois Institute of Technology
www.math.iit.edu/~kaul
kaul@iit.edu

Joint work with
Jeffrey Mudrock (College of Lake County)

List Coloring

- List coloring was introduced independently by Vizing (1976) and Erdős, Rubin, and Taylor (1979), as a generalization of usual graph coloring.
- For graph G suppose each $v \in V(G)$ is assigned a list, $L(v)$, of colors. We refer to L as a list assignment. An such that $f(v) \in L(v)$ for all $v \in V(G)$.
- When an acceptable L-coloring for G exists, we say that G is L-colorable or

List Coloring

- List coloring was introduced independently by Vizing (1976) and Erdős, Rubin, and Taylor (1979), as a generalization of usual graph coloring.
- For graph G suppose each $v \in V(G)$ is assigned a list, $L(v)$, of colors. We refer to L as a list assignment. An acceptable L-coloring for G is a proper coloring, f, of G such that $f(v) \in L(v)$ for all $v \in V(G)$.
- When an acceptable L-coloring for G exists, we say that G is L-colorable or

List Coloring

- List coloring was introduced independently by Vizing (1976) and Erdős, Rubin, and Taylor (1979), as a generalization of usual graph coloring.
- For graph G suppose each $v \in V(G)$ is assigned a list, $L(v)$, of colors. We refer to L as a list assignment. An acceptable L-coloring for G is a proper coloring, f, of G such that $f(v) \in L(v)$ for all $v \in V(G)$.
- When an acceptable L-coloring for G exists, we say that G is L-colorable or L-choosable.

List Chromatic Number

- The list chromatic number of a graph G, written $\chi_{\ell}(G)$, is the smallest k such that G is L-colorable whenever $|L(v)| \geq k$ for each $v \in V(G)$.
- When $\chi_{\ell}(G)=k$ we say that G has list chromatic number k or that G is k-choosable.
- We immediately have that if $\chi(G)$ is the typical chromatic number of a graph G, then
- A graph is chromatic choosable if $\chi(G)=\chi_{\ell}(G)$.

But we know the gap between $\chi(G)$ and $\chi_{\ell}(G)$ can be
arbitrarily large

List Chromatic Number

- The list chromatic number of a graph G, written $\chi_{\ell}(G)$, is the smallest k such that G is L-colorable whenever $|L(v)| \geq k$ for each $v \in V(G)$.
- When $\chi_{\ell}(G)=k$ we say that G has list chromatic number k or that G is k-choosable.
- We immediately have that if $\chi(G)$ is the typical chromatic number of a graph G, then
- A graph is chromatic choosable if $\chi(G)=\chi_{\ell}(G)$.

But we know the gap between $\chi(G)$ and $\chi_{\ell}(G)$ can be
arbitrarily large

List Chromatic Number

- The list chromatic number of a graph G, written $\chi_{\ell}(G)$, is the smallest k such that G is L-colorable whenever $|L(v)| \geq k$ for each $v \in V(G)$.
- When $\chi_{\ell}(G)=k$ we say that G has list chromatic number k or that G is k-choosable.
- We immediately have that if $\chi(G)$ is the typical chromatic number of a graph G, then

$$
\chi(G) \leq \chi_{\ell}(G)
$$

- A graph is chromatic choosable if $\chi(G)=\chi_{\ell}(G)$. But we know the gap between $\chi(G)$ and $\chi_{\ell}(G)$ can be arbitrarily large

A Motivating Result

Theorem (Folklore, 1970s)
$\chi_{\ell}\left(K_{a, b}\right)=a+1$ if and only if $b \geq a^{a}$

- When $b \geq a$, we know $\chi_{\ell}\left(K_{a, b}\right) \leq \operatorname{Col}\left(K_{a, b}\right)=a+1$.
- So, for fixed a, this theorem tells us the smallest value of b such that $\chi_{\ell}\left(K_{a, b}\right)$ is as large as possible (i.e., far from being chromatic-choosable).
- We can construct a sequence of graphs with increasing list chromatic number starting from chromatic number 2 :

Question: Can we construct such a sequence starting from chromatic number $k>2$?
We will give an answer motivated by the Theorem above.

A Motivating Result

Theorem (Folklore, 1970s)
$\chi_{\ell}\left(K_{a, b}\right)=a+1$ if and only if $b \geq a^{a}$

- When $b \geq a$, we know $\chi_{\ell}\left(K_{a, b}\right) \leq \operatorname{Col}\left(K_{a, b}\right)=a+1$.
- So, for fixed a, this theorem tells us the smallest value of b such that $\chi_{\ell}\left(K_{a, b}\right)$ is as large as possible (i.e., far from being chromatic-choosable).
- We can construct a sequence of graphs with increasing list chromatic number starting from chromatic number 2 :

Question: Can we construct such a sequence starting from chromatic number $k>2$?
We will give an answer motivated by the Theorem above.

A Motivating Result

Theorem (Folklore, 1970s)
$\chi_{\ell}\left(K_{a, b}\right)=a+1$ if and only if $b \geq a^{a}$

- When $b \geq a$, we know $\chi_{\ell}\left(K_{a, b}\right) \leq \operatorname{Col}\left(K_{a, b}\right)=a+1$.
- So, for fixed a, this theorem tells us the smallest value of b such that $\chi_{\ell}\left(K_{a, b}\right)$ is as large as possible (i.e., far from being chromatic-choosable).
- We can construct a sequence of graphs with increasing list chromatic number starting from chromatic number 2:
$\chi\left(K_{a, a^{a}}\right)=\chi\left(K_{1,1}\right)=2=\chi_{\ell}\left(K_{1,1}\right)<3=\chi_{\ell}\left(K_{2,4}\right)<4=$ $\chi_{\ell}\left(K_{3,27}\right)<\ldots<a+1=\chi_{\ell}\left(K_{a, a^{a}}\right)$

Question: Can we construct such a sequence starting from chromatic number $k>2$?

A Motivating Result

Theorem (Folklore, 1970s)
$\chi_{\ell}\left(K_{a, b}\right)=a+1$ if and only if $b \geq a^{a}$

- When $b \geq a$, we know $\chi_{\ell}\left(K_{a, b}\right) \leq \operatorname{Col}\left(K_{a, b}\right)=a+1$.
- So, for fixed a, this theorem tells us the smallest value of b such that $\chi_{\ell}\left(K_{a, b}\right)$ is as large as possible (i.e., far from being chromatic-choosable).
- We can construct a sequence of graphs with increasing list chromatic number starting from chromatic number 2:
$\chi\left(K_{a, a^{a}}\right)=\chi\left(K_{1,1}\right)=2=\chi_{\ell}\left(K_{1,1}\right)<3=\chi_{\ell}\left(K_{2,4}\right)<4=$ $\chi_{\ell}\left(K_{3,27}\right)<\ldots<a+1=\chi_{\ell}\left(K_{a, a^{a}}\right)$

Question: Can we construct such a sequence starting from chromatic number $k>2$?
We will give an answer motivated by the Theorem above.

Cartesian Product of Graphs

- The Cartesian Product $G \square H$ of graphs G and H is a graph with vertex set $V(G) \times V(H)$.
Two vertices (u, v) and (u^{\prime}, v^{\prime}) are adjacent in $G \square H$ if either $u=u^{\prime}$ and $v v^{\prime} \in E(H)$ or $u u^{\prime} \in E(G)$ and $v=v^{\prime}$.
- Here's $C_{5} \square P_{3}$:

Cartesian Product of Graphs

- The Cartesian Product $G \square H$ of graphs G and H is a graph with vertex set $V(G) \times V(H)$.
Two vertices (u, v) and (u^{\prime}, v^{\prime}) are adjacent in $G \square H$ if either $u=u^{\prime}$ and $v v^{\prime} \in E(H)$ or $u u^{\prime} \in E(G)$ and $v=v^{\prime}$.
- Here's $C_{5} \square P_{3}$:

- Every connected graph has a unique factorization under the Cartesian product (that can be found in linear time and space).
- $\chi(G \square H)=\max \{\chi(G), \chi(H)\}$.

Coloring the Cartesian Product of Graphs

Theorem (Borowiecki, Jendrol, Kral, Miskuf (2006))
$\chi_{\ell}(G \square H) \leq \min \left\{\chi_{\ell}(G)+\operatorname{Col}(H), \operatorname{Col}(G)+\chi_{\ell}(H)\right\}-1$

An easy inductive argument proves this theorem.

- For fixed G, a:

Question: Does there always exist a b such that this upper bound is attained?

Coloring the Cartesian Product of Graphs

Theorem (Borowiecki, Jendrol, Kral, Miskuf (2006))
$\chi_{\ell}(G \square H) \leq \min \left\{\chi_{\ell}(G)+\operatorname{Col}(H), \operatorname{Col}(G)+\chi_{\ell}(H)\right\}-1$

An easy inductive argument proves this theorem.

- For fixed G, a:

Question: Does there always exist a b such that this upper bound is attained?

Coloring the Cartesian Product of Graphs

Theorem (Borowiecki, Jendrol, Kral, Miskuf (2006))
$\chi_{\ell}(G \square H) \leq \min \left\{\chi_{\ell}(G)+\operatorname{Col}(H), \operatorname{Col}(G)+\chi_{\ell}(H)\right\}-1$

An easy inductive argument proves this theorem.

- For fixed G, a:
$\chi_{\ell}\left(G \square K_{a, b}\right) \leq \chi_{\ell}(G)+\operatorname{Col}\left(K_{a, b}\right)-1=\chi_{\ell}(G)+a$

Question: Does there always exist a b such that this upper bound is attained?

Another Motivating Result

Theorem (Borowiecki, Jendrol, Kral, Miskuf (2006))
$\chi_{\ell}\left(G \square K_{a, b}\right)=\chi_{\ell}(G)+a$, whenever $b \geq\left(\chi_{\ell}(G)+a-1\right)^{a|V(G)|}$

Question: Can we improve the lower bound on b ?

> Question: For which graphs G, can we give a
> characterization of such b ?
> The folklore theorem from earlier gives the characterization when $G=K_{1}$.

- Our main tools are list color function and strongly chromatic choosable graphs.

Another Motivating Result

Theorem (Borowiecki, Jendrol, Kral, Miskuf (2006))
$\chi_{\ell}\left(G \square K_{a, b}\right)=\chi_{\ell}(G)+a$, whenever $b \geq\left(\chi_{\ell}(G)+a-1\right)^{a|V(G)|}$

Question: Can we improve the lower bound on b ?

Question: For which graphs G, can we give a
characterization of such b ?
The folklore theorem from earlier gives the characterization
when $G=K_{1}$.

- Our main tools are list color function and strongly chromatic choosable graphs.

Another Motivating Result

Theorem (Borowiecki, Jendrol, Kral, Miskuf (2006))
$\chi_{\ell}\left(G \square K_{a, b}\right)=\chi_{\ell}(G)+a$, whenever $b \geq\left(\chi_{\ell}(G)+a-1\right)^{a|V(G)|}$

Question: Can we improve the lower bound on b ?

Question: For which graphs G, can we give a characterization of such b ?
The folklore theorem from earlier gives the characterization when $G=K_{1}$.

- Our main tools are list color function and strongly chromatic choosable graphs.

Another Motivating Result

Theorem (Borowiecki, Jendrol, Kral, Miskuf (2006))
$\chi_{\ell}\left(G \square K_{a, b}\right)=\chi_{\ell}(G)+a$, whenever $b \geq\left(\chi_{\ell}(G)+a-1\right)^{a|V(G)|}$

Question: Can we improve the lower bound on b ?

Question: For which graphs G, can we give a characterization of such b ?
The folklore theorem from earlier gives the characterization when $G=K_{1}$.

- Our main tools are list color function and strongly chromatic choosable graphs.

The List Color Function

- For $k \in \mathbb{N}$, let $P(G, k)$ denote the number of proper colorings of G with colors from $\{1, \ldots, k\}$.
- It is known that $P(G, k)$ is a polynomial in k of degree $|V(G)|$. We call $P(G, k)$ the chromatic polynomial of G.
- The list color function of $G, P_{\ell}(G, k)$, is the minimum number of k-list colorings of G where the minimum is taken over all k-list assignments for G.
- Recall, $P\left(K_{2,4}, 2\right)=2$, and yet $P_{\ell}\left(K_{2,4}, 2\right)=0$
- For every graph G and each $k \in \mathbb{N}, P_{\ell}(G, k) \leq P(G, k)$.

The List Color Function

- For $k \in \mathbb{N}$, let $P(G, k)$ denote the number of proper colorings of G with colors from $\{1, \ldots, k\}$.
- It is known that $P(G, k)$ is a polynomial in k of degree $|V(G)|$. We call $P(G, k)$ the chromatic polynomial of G.
- The list color function of $G, P_{\ell}(G, k)$, is the minimum number of k-list colorings of G where the minimum is taken over all k-list assignments for G.
- Recall, $P\left(K_{2,4}, 2\right)=2$, and yet $P_{\ell}\left(K_{2,4}, 2\right)=0$
- For every graph G and each $k \in \mathbb{N}, P_{\ell}(G, k) \leq P(G, k)$.

The List Color Function

- For $k \in \mathbb{N}$, let $P(G, k)$ denote the number of proper colorings of G with colors from $\{1, \ldots, k\}$.
- It is known that $P(G, k)$ is a polynomial in k of degree $|V(G)|$. We call $P(G, k)$ the chromatic polynomial of G.
- The list color function of $G, P_{\ell}(G, k)$, is the minimum number of k-list colorings of G where the minimum is taken over all k-list assignments for G.
- Recall, $P\left(K_{2,4}, 2\right)=2$, and yet $P_{\ell}\left(K_{2,4}, 2\right)=0$
- For every graph G and each $k \in \mathbb{N}, P_{\ell}(G, k) \leq P(G, k)$.

Some Results on the List Color Function

Theorem (Kostochka and Sidorenko (1990)) If G is a chordal graph (i.e. all cycles contained in G with 4 or more vertices have a chord), then $P_{\ell}(G, k)=P(G, k)$ for each $k \in \mathbb{N}$.
$P_{\ell}(G, k)$ need not be a polynomial.
Theorem (Thomassen (2009))
For any graph $G, P_{\ell}(G, k)=P(G, k)$ provided $k>|V(G)|^{10}$
Theorem (Wang, Qian, Yan (2017))
For any connected graph G with m edges, $P(G, k)=P(G, k)$ provided $k>\frac{m-1}{\ln (1+\sqrt{2})} \approx 1.135(m-1)$

Some Results on the List Color Function

Theorem (Kostochka and Sidorenko (1990))
If G is a chordal graph (i.e. all cycles contained in G with 4 or more vertices have a chord), then $P_{\ell}(G, k)=P(G, k)$ for each $k \in \mathbb{N}$.
$P_{\ell}(G, k)$ need not be a polynomial.
Theorem (Thomassen (2009))

Theorem (Wang, Qian, Yan (2017))
For any connected graph G with m edges, $P(G . k)=P(G . k)$ orovided K $\frac{111-1}{\ln (1+\sqrt{2})} \approx 1.135(m-1)$

Some Results on the List Color Function

Theorem (Kostochka and Sidorenko (1990))
If G is a chordal graph (i.e. all cycles contained in G with 4 or more vertices have a chord), then $P_{\ell}(G, k)=P(G, k)$ for each $k \in \mathbb{N}$.
$P_{\ell}(G, k)$ need not be a polynomial.
Theorem (Thomassen (2009))
For any graph $G, P_{\ell}(G, k)=P(G, k)$ provided $k>|V(G)|^{10}$.
Theorem (Wang, Qian, Yan (2017)) provided $k>\frac{m-1}{\ln (1+\sqrt{2})} \approx 1.135(m-1)$

Some Results on the List Color Function

Theorem (Kostochka and Sidorenko (1990))
If G is a chordal graph (i.e. all cycles contained in G with 4 or more vertices have a chord), then $P_{\ell}(G, k)=P(G, k)$ for each $k \in \mathbb{N}$.
$P_{\ell}(G, k)$ need not be a polynomial.
Theorem (Thomassen (2009))
For any graph $G, P_{\ell}(G, k)=P(G, k)$ provided $k>|V(G)|^{10}$.
Theorem (Wang, Qian, Yan (2017))
For any connected graph G with m edges, $P_{\ell}(G, k)=P(G, k)$ provided $k>\frac{m-1}{\ln (1+\sqrt{2})} \approx 1.135(m-1)$.

First Result

Theorem (K. and Mudrock)
$\chi_{\ell}\left(G \square K_{a, b}\right)=\chi_{\ell}(G)+a$, whenever $b \geq\left(P_{\ell}\left(G, \chi_{\ell}(G)+a-1\right)\right)^{a}$

- If G has at least one edge, then
$P_{\ell}\left(G, \chi_{\ell}(G)+a-1\right)<\left(\chi_{\ell}(G)+a-1\right)^{V(G) ; ~ g i v i n g ~ a ~}$
(significant) improvement over the Borowiecki et al. bound.
- We can in fact prove:

Theorem (K. and Mudrock)
Suppose H is a bipartite graph with partite sets A and B where $|A|=a$ and $|B|=b$. Let $\delta=\min _{v \in B} d_{H}(v)$. If $b \geq\left(P_{\ell}\left(G, \chi_{\ell}(G)+\delta-1\right)\right)^{a}$, then $\chi_{\ell}(G \square H) \geq \chi_{0}(G)+\delta$.

First Result

Theorem (K. and Mudrock)
$\chi_{\ell}\left(G \square K_{a, b}\right)=\chi_{\ell}(G)+a$, whenever $b \geq\left(P_{\ell}\left(G, \chi_{\ell}(G)+a-1\right)\right)^{a}$

- If G has at least one edge, then
$P_{\ell}\left(G, \chi_{\ell}(G)+a-1\right)<\left(\chi_{\ell}(G)+a-1\right)^{|V(G)|}$; giving a (significant) improvement over the Borowiecki et al. bound.
- We can in fact prove:

Theorem (K. and Mudrock)

First Result

Theorem (K. and Mudrock)
$\chi_{\ell}\left(G \square K_{a, b}\right)=\chi_{\ell}(G)+a$, whenever $b \geq\left(P_{\ell}\left(G, \chi_{\ell}(G)+a-1\right)\right)^{a}$

- If G has at least one edge, then $P_{\ell}\left(G, \chi_{\ell}(G)+a-1\right)<\left(\chi_{\ell}(G)+a-1\right)^{|V(G)|}$; giving a (significant) improvement over the Borowiecki et al. bound.
- We can in fact prove:

Theorem (K. and Mudrock)
Suppose H is a bipartite graph with partite sets A and B where $|A|=a$ and $|B|=b$. Let $\delta=\min _{v \in B} d_{H}(v)$.
If $b \geq\left(P_{\ell}\left(G, \chi_{\ell}(G)+\delta-1\right)\right)^{2}$, then $\chi_{\ell}(G \square H) \geq \chi_{\ell}(G)+\delta$.

Beyond First Result

Theorem (K. and Mudrock (2018+))
$\chi_{\ell}\left(G \square K_{a, b}\right)=\chi_{\ell}(G)+a$, whenever $b \geq\left(P_{\ell}\left(G, \chi_{\ell}(G)+a-1\right)\right)^{a}$

Question: When is this bound sharp? Can we find graphs G such this bound characterizes $\chi_{\ell}\left(G \square K_{a, b}\right)=\chi_{\ell}(G)+a$?

Beyond First Result

Theorem (K. and Mudrock (2018+))
$\chi_{\ell}\left(G \square K_{a, b}\right)=\chi_{\ell}(G)+a$, whenever $b \geq\left(P_{\ell}\left(G, \chi_{\ell}(G)+a-1\right)\right)^{a}$

Question: When is this bound sharp? Can we find graphs G such this bound characterizes $\chi_{\ell}\left(G \square K_{a, b}\right)=\chi_{\ell}(G)+a$?

Strong Chromatic Choosability

- List assignment, L, for G is a bad k-assignment for G if G is not L-colorable and $|L(v)|=k$ for each $v \in V(G)$.
- List assignment, L, is constant if $L(v)$ is the same for each $v \in V(G)$.
- A constant (and bad) 2-assignment for a C_{5} :

- A graph G is said to be

Strong Chromatic Choosability

- List assignment, L, for G is a bad k-assignment for G if G is not L-colorable and $|L(v)|=k$ for each $v \in V(G)$.
- List assignment, L, is constant if $L(v)$ is the same for each $v \in V(G)$.
- A constant (and bad) 2-assignment for a C_{5} :

- A graph G is said to be

Strong Chromatic Choosability

- List assignment, L, for G is a bad k-assignment for G if G is not L-colorable and $|L(v)|=k$ for each $v \in V(G)$.
- List assignment, L, is constant if $L(v)$ is the same for each $v \in V(G)$.
- A constant (and bad) 2-assignment for a C_{5} :

- A graph G is said to be strong k-chromatic choosable if $\chi(G)=k$ and every bad $(k-1)$-assignment for G is constant.

Strong Chromatic Choosability

- A graph G is said to be strong k-chromatic choosable if $\chi(G)=k$ and if every bad $(k-1)$-assignment for G is constant.

Strong Chromatic Choosability

- A graph G is said to be strong k-chromatic choosable if $\chi(G)=k$ and if every bad ($k-1$)-assignment for G is constant.

Proposition (K. and Mudrock, 2018+)
Let G be a strong k-chromatic choosable graph. Then
(i) $\chi(G)=k=\chi_{e}(G)$ (i.e. G is chromatic choosable),
(ii) $\chi(G-\{v\}) \leq \chi_{\ell}(G-\{v\})<k$ for any $v \in V(G)$,
(iii) $k=2$ if and only if G is K_{2},
(iv) $k=3$ if and only if G is an odd cycle,
(v) $G \vee K_{p}$ is strong $(k+p)$-chromatic choosable for any $p \in \mathbb{N}$.

- There are many infinite families of graphs that satisfy this notion.

Strong Chromatic Choosability

- A graph G is said to be strong k-chromatic choosable if $\chi(G)=k$ and if every bad ($k-1$)-assignment for G is constant.

Proposition (K. and Mudrock, 2018+)
Let G be a strong k-chromatic choosable graph. Then
(i) $\chi(G)=k=\chi_{\ell}(G)$ (i.e. G is chromatic choosable),
(ii) $\chi(G-\{v\}) \leq \chi_{\ell}(G-\{v\})<k$ for any $v \in V(G)$,
(iii) $k=2$ if and only if G is K_{2},
(iv) $k=3$ if and only if G is an odd cycle,
(v) $G \vee K_{p}$ is strong $(k+p)$-chromatic choosable for any $p \in \mathbb{N}$.

- We essentially have a notion of vertex-criticality for chromatic-choosability.
- There are many infinite families of graphs that satisfy this notion.

Second Result

Theorem (K. and Mudrock)

$\chi_{\ell}\left(G \square K_{a, b}\right)=\chi_{\ell}(G)+a$, whenever $b \geq\left(P_{\ell}\left(G, \chi_{\ell}(G)+a-1\right)\right)^{a}$
Theorem (K. and Mudrock)
If G is a strong k-chromatic choosable graph and $k \geq a+1$, then $\chi_{\ell}\left(G \square K_{a, b}\right)=\chi_{\ell}(G)+a$ if and only if

If L is a $\left(\chi_{\ell}(G)+a-1\right)$-assignment for $G \square K_{a, b}$, there is at most one proper L-coloring of the copies of G corresponding to the partite set of size a that leads to a bad assignment for a given "bottom" copy of G.
We show if two such colorings existed, we could obtain a proper a-coloring of G.
A simple counting argument completes the proof that there exists a proper L-coloring of $G \square K_{a, b}$ when
$b<\left(P_{\ell}\left(G, \chi_{\ell}(G)+a-1\right)\right)^{a}$.

Second Result

Theorem (K. and Mudrock)
$\chi_{\ell}\left(G \square K_{a, b}\right)=\chi_{\ell}(G)+a$, whenever $b \geq\left(P_{\ell}\left(G, \chi_{\ell}(G)+a-1\right)\right)^{a}$
Theorem (K. and Mudrock)
If G is a strong k-chromatic choosable graph and $k \geq a+1$, then $\chi_{\ell}\left(G \square K_{a, b}\right)=\chi_{\ell}(G)+a$ if and only if $b \geq\left(P_{\ell}\left(G, \chi_{\ell}(G)+a-1\right)\right)^{a}$.

If L is a $\left(\chi_{\ell}(G)+a-1\right)$-assignment for $G \square K_{a, b}$, there is at most one proper L-coloring of the copies of G corresponding to the partite set of size a that leads to a bad assignment for a given "bottom" copy of G.
We show if two such colorings existed, we could obtain a proper a-coloring of G.
A simple counting argument completes the proof that there exists a proper L-coloring of $G \square K_{a . b}$ when
$b<\left(P_{\ell}\left(G, \chi_{\ell}(G)+a-1\right)\right)^{a}$.

Second Result

Theorem (K. and Mudrock)
$\chi_{\ell}\left(G \square K_{a, b}\right)=\chi_{\ell}(G)+a$, whenever $b \geq\left(P_{\ell}\left(G, \chi_{\ell}(G)+a-1\right)\right)^{a}$
Theorem (K. and Mudrock)
If G is a strong k-chromatic choosable graph and $k \geq a+1$,
then $\chi_{\ell}\left(G \square K_{a, b}\right)=\chi_{\ell}(G)+a$ if and only if
$b \geq\left(P_{\ell}\left(G, \chi_{\ell}(G)+a-1\right)\right)^{a}$.
The proof idea is:
If L is a $\left(\chi_{\ell}(G)+a-1\right)$-assignment for $G \square K_{a, b}$, there is at most one proper L-coloring of the copies of G corresponding to the partite set of size a that leads to a bad assignment for a given "bottom" copy of G.
We show if two such colorings existed, we could obtain a proper a-coloring of G.
A simple counting argument completes the proof that there exists a proper L-coloring of $G \square K_{a, b}$ when $b<\left(P_{\ell}\left(G, \chi_{\ell}(G)+a-1\right)\right)^{a}$.

Corollaries to Second Result

Theorem (K. and Mudrock)
If G is a strong k-chromatic choosable graph and $k \geq a+1$, then $\chi_{\ell}\left(G \square K_{a, b}\right)=\chi_{\ell}(G)+$ a if and only if $b \geq\left(P_{\ell}\left(G, \chi_{\ell}(G)+a-1\right)\right)^{a}$.

Corollary (K. and Mudrock)

Corollary (K. and Mudrock)
For $n \geq a+1$, $\chi_{\ell}\left(K_{n} \square K_{a, b}\right)=n-$ a if and only if

Corollaries to Second Result

Theorem (K. and Mudrock)
If G is a strong k-chromatic choosable graph and $k \geq a+1$, then $\chi_{\ell}\left(G \square K_{a, b}\right)=\chi_{\ell}(G)+a$ if and only if $b \geq\left(P_{\ell}\left(G, \chi_{\ell}(G)+a-1\right)\right)^{a}$.

Corollary (K. and Mudrock)
$\chi_{\ell}\left(C_{2 t+1} \square K_{2, b}\right)=5$ if and only if
$b \geq\left(P_{\ell}\left(C_{2 t+1}, 4\right)\right)^{2}=\left(3^{2 t+1}-3\right)^{2}=9\left(9^{t}-1\right)^{2}$.

Corollary (K. and Mudrock)

Corollaries to Second Result

Theorem (K. and Mudrock)
If G is a strong k-chromatic choosable graph and $k \geq a+1$, then $\chi_{\ell}\left(G \square K_{a, b}\right)=\chi_{\ell}(G)+a$ if and only if
$b \geq\left(P_{\ell}\left(G, \chi_{\ell}(G)+a-1\right)\right)^{a}$.

Corollary (K. and Mudrock)
$\chi_{\ell}\left(C_{2 t+1} \square K_{2, b}\right)=5$ if and only if
$b \geq\left(P_{\ell}\left(C_{2 t+1}, 4\right)\right)^{2}=\left(3^{2 t+1}-3\right)^{2}=9\left(9^{t}-1\right)^{2}$.

Corollary (K. and Mudrock)
For $n \geq a+1$, $\chi_{\ell}\left(K_{n} \square K_{a, b}\right)=n+a$ if and only if
$b \geq\left(P_{\ell}\left(K_{n}, n+a-1\right)\right)^{a}=\left(\frac{(n+a-1)!}{(a-1)!}\right)^{a}$

Corollaries to Second Result

Theorem (K. and Mudrock)
If G is a strong k-chromatic choosable graph and $k \geq a+1$, then $\chi_{\ell}\left(G \square K_{a, b}\right)=\chi_{\ell}(G)+a$ if and only if $b \geq\left(P_{\ell}\left(G, \chi_{\ell}(G)+a-1\right)\right)^{a}$.

Corollary (K. and Mudrock)
For $n \geq a+1$, $\chi_{e}\left(K_{n} \square K_{a, b}\right)=n+a$ if and only if
$b \geq\left(P_{\ell}\left(K_{n}, n+a-1\right)\right)^{a}=\left(\frac{(n+a-1)!}{(a-1)!}\right)^{a}$
This corollary shows the bound in the Theorem is sharp for all a.

- We can construct an arbitrarily long sequence of graphs with increasing list chromatic number starting from chromatic number n :

Corollaries to Second Result

Theorem (K. and Mudrock)
If G is a strong k-chromatic choosable graph and $k \geq a+1$, then
$\chi_{\ell}\left(G \square K_{a, b}\right)=\chi_{\ell}(G)+a$ if and only if $b \geq\left(P_{\ell}\left(G, \chi_{\ell}(G)+a-1\right)\right)^{a}$.
Corollary (K. and Mudrock)
For $n \geq a+1$, $\chi_{\ell}\left(K_{n} \square K_{a, b}\right)=n+a$ if and only if
$b \geq\left(P_{\ell}\left(K_{n}, n+a-1\right)\right)^{a}=\left(\frac{(n+a-1)!}{(a-1)!}\right)^{a}$
This corollary shows the bound in the Theorem is sharp for all a.

- We can construct an arbitrarily long sequence of graphs with increasing list chromatic number starting from chromatic number n :

Corollaries to Second Result

Theorem (K. and Mudrock)
If G is a strong k-chromatic choosable graph and $k \geq a+1$, then
$\chi_{\ell}\left(G \square K_{a, b}\right)=\chi_{\ell}(G)+a$ if and only if $b \geq\left(P_{\ell}\left(G, \chi_{\ell}(G)+a-1\right)\right)^{a}$.
Corollary (K. and Mudrock)
For $n \geq a+1$, $\chi_{\ell}\left(K_{n} \square K_{a, b}\right)=n+a$ if and only if
$b \geq\left(P_{\ell}\left(K_{n}, n+a-1\right)\right)^{a}=\left(\frac{(n+a-1)!}{(a-1)!}\right)^{a}$
This corollary shows the bound in the Theorem is sharp for all a.

- We can construct an arbitrarily long sequence of graphs with increasing list chromatic number starting from chromatic number n :
$\chi\left(K_{n} \square K_{a, b}\right)=\chi\left(K_{n}\right)=n=\chi_{\ell}\left(K_{n} \square K_{0,1}\right)<n+1=$
$\chi_{\ell}\left(K_{n} \square K_{1, n!}\right)<n+2=\chi_{\ell}\left(K_{n} \square K_{2,((n+1)!)^{2}}\right)<\ldots$

Corollaries to Second Result

Theorem (K. and Mudrock)
If G is a strong k-chromatic choosable graph and $k \geq a+1$, then $\chi_{\ell}\left(G \square K_{a, b}\right)=\chi_{\ell}(G)+a$ if and only if
$b \geq\left(P_{\ell}\left(G, \chi_{\ell}(G)+a-1\right)\right)^{a}$.

Corollary (K. and Mudrock, 2018+)
Let G be a strong k-chromatic choosable graph. Then,

Corollaries to Second Result

Theorem (K. and Mudrock)
If G is a strong k-chromatic choosable graph and $k \geq a+1$,
then $\chi_{\ell}\left(G \square K_{a, b}\right)=\chi_{\ell}(G)+a$ if and only if
$b \geq\left(P_{\ell}\left(G, \chi_{\ell}(G)+a-1\right)\right)^{a}$.

Corollary (K. and Mudrock, 2018+)
Let G be a strong k-chromatic choosable graph. Then,

$$
\chi_{\ell}\left(G \square K_{1, s}\right)= \begin{cases}k & \text { if } s<P_{\ell}(G, k) \\ k+1 & \text { if } s \geq P_{\ell}(G, k) .\end{cases}
$$

Corollaries to Second Result

Corollary (K. and Mudrock, 2018+)
Let G be a strong k-chromatic choosable graph. Then,
$\chi_{\ell}\left(G \square K_{1, s}\right)= \begin{cases}k & \text { if } s<P_{\ell}(G, k) \\ k+1 & \text { if } s \geq P_{\ell}(G, k) .\end{cases}$
Corollary (K. and Mudrock, 2018+)

Corollary (K. and Mudrock, 2018+)

Corollary (K. and Mudrock, 2018+)

Corollaries to Second Result

Corollary (K. and Mudrock, 2018+)
Let G be a strong k-chromatic choosable graph. Then,
$\chi_{\ell}\left(G \square K_{1, s}\right)= \begin{cases}k & \text { if } s<P_{\ell}(G, k) \\ k+1 & \text { if } s \geq P_{\ell}(G, k) .\end{cases}$
Corollary (K. and Mudrock, 2018+)
$\chi_{\ell}\left(C_{2 t+1} \square K_{1, s}\right)= \begin{cases}3 & \text { if } s<2^{2 t+1}-2 \\ 4 & \text { if } s \geq 2^{2 t+1}-2 .\end{cases}$
Corollary (K. and Mudrock, 2018+)

Corollary (K. and Mudrock, 2018+)

Corollaries to Second Result

Corollary (K. and Mudrock, 2018+)
Let G be a strong k-chromatic choosable graph. Then,
$\chi_{\ell}\left(G \square K_{1, s}\right)= \begin{cases}k & \text { if } s<P_{\ell}(G, k) \\ k+1 & \text { if } s \geq P_{\ell}(G, k) .\end{cases}$
Corollary (K. and Mudrock, 2018+)
$\chi_{\ell}\left(C_{2 t+1} \square K_{1, s}\right)= \begin{cases}3 & \text { if } s<2^{2 t+1}-2 \\ 4 & \text { if } s \geq 2^{2 t+1}-2 .\end{cases}$
Corollary (K. and Mudrock, 2018+)
$\chi_{\ell}\left(K_{n} \square K_{1, s}\right)= \begin{cases}n & \text { if } s<n! \\ n+1 & \text { if } s \geq n!\end{cases}$
Corollary (K. and Mudrock, 2018+)

Corollaries to Second Result

Corollary (K. and Mudrock, 2018+)
Let G be a strong k-chromatic choosable graph. Then,
$\chi_{\ell}\left(G \square K_{1, s}\right)= \begin{cases}k & \text { if } s<P_{\ell}(G, k) \\ k+1 & \text { if } s \geq P_{\ell}(G, k) .\end{cases}$
Corollary (K. and Mudrock, 2018+)
$\chi_{e}\left(C_{2 t+1} \square K_{1, s}\right)= \begin{cases}3 & \text { if } s<2^{2 t+1}-2 \\ 4 & \text { if } s \geq 2^{2 t+1}-2 .\end{cases}$
Corollary (K. and Mudrock, 2018+)
$\chi_{e}\left(K_{n} \square K_{1, s}\right)= \begin{cases}n & \text { if } s<n! \\ n+1 & \text { if } s \geq n!\end{cases}$
Corollary (K. and Mudrock, 2018+)
$\chi_{\ell}\left(\left(K_{n} \vee C_{2 t+1}\right) \square K_{1, s}\right)= \begin{cases}n+3 & \text { if } s<\frac{1}{3}(n+3)!\left(4^{t}-1\right) \\ n+4 & \text { if } s \geq \frac{1}{3}(n+3)!\left(4^{t}-1\right) .\end{cases}$

Extending the Second Result

Theorem (K. and Mudrock)
If G is a strong k-chromatic choosable graph and $k \geq a+1$, then $\chi_{\ell}\left(G \square K_{a, b}\right)=\chi_{\ell}(G)+a$ if and only if $b \geq\left(P_{\ell}\left(G, \chi_{\ell}(G)+a-1\right)\right)^{a}$.

Open Question: Can we remove the $k \geq a+1$ in the above theorem?

Theorem (K. and Mudrock)
If G is a strong k-chromatic choo sable graph, then
\square

Extending the Second Result

Theorem (K. and Mudrock)
If G is a strong k-chromatic choosable graph and $k \geq a+1$, then $\chi_{\ell}\left(G \square K_{a, b}\right)=\chi_{\ell}(G)+a$ if and only if $b \geq\left(P_{\ell}\left(G, \chi_{\ell}(G)+a-1\right)\right)^{a}$.

Open Question: Can we remove the $k \geq a+1$ in the above theorem?

Theorem (K. and Mudrock)
If G is a strong k-chromatic choc sable graph, then

Extending the Second Result

Theorem (K. and Mudrock)
If G is a strong k-chromatic choosable graph and $k \geq a+1$, then $\chi_{\ell}\left(G \square K_{a, b}\right)=\chi_{\ell}(G)+a$ if and only if
$b \geq\left(P_{\ell}\left(G, \chi_{\ell}(G)+a-1\right)\right)^{a}$.

Open Question: Can we remove the $k \geq a+1$ in the above theorem?

Theorem (K. and Mudrock)
If G is a strong k-chromatic choosable graph, then
$\chi_{\ell}\left(G \square K_{a, b}\right)<\chi_{\ell}(G)+$ a whenever
$b<\left(P_{\ell}\left(G, \chi_{\ell}(G)+a-1\right)\right)^{a} / 2^{k-1}$.

Thank You!

Questions?

- For what graphs does $f_{a}(G)=\left(P_{\ell}\left(G, \chi_{\ell}(G)+a-1\right)\right)^{a}$?
- Does there exist a strongly chromatic-choosable graph M such that $f_{a}(M)<\left(P_{\ell}\left(M, \chi_{\ell}(M)+a-1\right)\right)^{a}$? Or, can we remove the condition $k \geq a+1$ in the second theorem?
- Is it the case that $f_{a}\left(K_{n}\right)=\left(\frac{(n+a-1)!}{(a-1)!}\right)^{a}$ for each n, a ?
- We can ask the above question for any family of strongly chromatic-choosable graphs.
- Is it always the case that $P_{\ell}(G, k)=P(G, k)$ when G is strong chromatic choosable?
- (Thomassen 2009) Does there exist a graph G and a natural number $k>2$ such that $P_{\ell}(G, k)=1$?
- (Mohar 2001) Let G be a $(\Delta(G)+1)$-edge-critical graph. Then prove that $L(G)$ is strong $(\Delta(G)+1)$-chromatic choosable.

Thank You!

Questions?

- Define $f_{a}(G)$ as the smallest b s.t. $\chi_{\ell}\left(G \square K_{a, b}\right)=\chi_{\ell}(G)+a$.
- For what graphs does $f_{a}(G)=\left(P_{\ell}\left(G, \chi_{\ell}(G)+a-1\right)\right)^{a}$?
- Does there exist a strongly chromatic-choosable graph M such that $f_{a}(M)<\left(P_{\ell}\left(M, \chi_{\ell}(M)+a-1\right)\right)^{a}$? Or, can we remove the condition $k \geq a+1$ in the second theorem?
- Is it the case that $f_{a}\left(K_{n}\right)=\left(\frac{(n+a-1)!}{(a-1)!}\right)^{a}$ for each n, a ?
- We can ask the above question for any family of strongly chromatic-choosable graphs.
- Is it always the case that $P_{\ell}(G, k)=P(G, k)$ when G is strong chromatic choosable?
- (Thomassen 2009) Does there exist a graph G and a natural number $k>2$ such that $P_{\ell}(G, k)=1$?
- (Mohar 2001) Let G be a $(\Delta(G)+1)$-edge-critical graph. Then prove that $L(G)$ is strong $(\Delta(G)+1)$-chromatic choosable.

