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List Coloring

@ List coloring was introduced independently by Vizing
(1976) and Erdés, Rubin, and Taylor (1979), as a
generalization of usual graph coloring.

@ For graph G suppose each v € V(G) is assigned a list,
L(v), of colors. We referto L as a . An
for G is a proper coloring, f, of G
such that f(v) € L(v) for all v € V(G).

@ When an acceptable L-coloring for G exists, we say that G
is or
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List Chromatic Number

@ The list chromatic number of a graph G, written x,(G), is
the smallest k such that G is L-colorable whenever
|L(v)| > k for each v € V(G).

@ When x,(G) = k we say that G has list chromatic number
k or that G is k-choosable.

@ We immediately have that if x(G) is the typical chromatic
number of a graph G, then

X(G) < xu(G).

@ A graph is chromatic choosable if x(G) = x¢(G).
But we know the gap between x(G) and y,(G) can be
arbitrarily large
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A Motivating Result

Theorem (Folklore, 1970s)
xe(Kap) = a+ 1 ifandonly if b > a2

@ When b > a, we know x;(Kzp) < Col(Kyp) = a+ 1.

@ So, for fixed a, this theorem tells us the smallest value of b
such that x,(Kap) is as large as possible (i.e., far from
being chromatic-choosable).

@ We can construct a sequence of graphs with increasing list
chromatic number starting from chromatic number 2:
X(Kaaa) = x(Ki1) =2 = xue(Ki1) <3 = xu(Kza) < 4=
Xﬁ(K3_27) <...<a+1= f)(ﬁ(Kajaa)

Question: Can we construct such a sequence starting
from chromatic number k > 27
We will give an answer motivated by the Theorem above.
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Cartesian Product of Graphs

@ The Cartesian Product GOH of graphs G and H is a graph
with vertex set V(G) x V(H).

Two vertices (u, v) and (u/, v') are adjacent in GOH if either
u=uandw' € E(H)oruv € E(G)and v = V'.
@ Here’s Cs[P;5:

@ Every connected graph has a unique factorization under the
Cartesian product (that can be found in linear time and space).

@ x(GUH) = max{x(G), x(H)}.
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Coloring the Cartesian Product of Graphs
Theorem (Borowiecki, Jendrol, Kral, Miskuf (2006))
x¢(GOH) < min{x/(G) + Col(H), Col(G) + x¢(H)} — 1

An easy inductive argument proves this theorem.

@ For fixed G, a:
xe(GOKzgp) < xe(G) + Col(Kap) — 1= xu(G) + a

Question: Does there always exist a b such that this
upper bound is attained?
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Another Motivating Result

Theorem (Borowiecki, Jendrol, Kral, Miskuf (2006))
xe(GOK,p) = x¢(G) + a, whenever b > (x¢(G) + a— 1)aV(G)

Question: Can we improve the lower bound on b?

Question: For which graphs G, can we give a
characterization of such b?

The folklore theorem from earlier gives the characterization
when G = K;.

@ Our main tools are list color function and strongly
chromatic choosable graphs.
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The List Color Function

For k € N, let P(G, k) denote the number of proper
colorings of G with colors from {1,... k}.

It is known that P(G, k) is a polynomial in k of degree
|V(G)|. We call P(G, k) the of G.

The of G, Py(G, k), is the minimum
number of k-list colorings of G where the minimum is taken
over all k-list assignments for G.

Recall, P(K>4,2) = 2, and yet Py(Kz4,2) =0
For every graph G and each k € N, Py(G, k) < P(G, k).
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Some Results on the List Color Function

Theorem (Kostochka and Sidorenko (1990))

If G is a chordal graph (i.e. all cycles contained in G with 4 or
more vertices have a chord), then P,(G, k) = P(G, k) for each
k € N.

P,(G, k) need not be a polynomial.

Theorem (Thomassen (2009))
For any graph G, P,(G, k) = P(G, k) provided k > |V(G)|"°.

Theorem (Wang, Qian, Yan (2017))
For any Connected graph G with m edges, Py(G, k) = P(G, k)
provided k > (1 f) ~1.135(m—1).
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First Result

Theorem (K. and Mudrock)
x¢(GOKap) = xe(G) + a, whenever b > (Py(G, x/(G) +a— 1))@

@ If G has at least one edge, then
PG xu(G) +a—1) < (xu(G) + a— 1)V giving a
(significant) improvement over the Borowiecki et al. bound.

@ We can in fact prove:

Theorem (K. and Mudrock)

Suppose H is a bipartite graph with partite sets A and B where
|Al = aand|B| =b. Letd = min,cg dy(v).

Ib > (PG, xe(G) + 6 — 1))2, then x(GTH) > xu(G) + 9.
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Beyond First Result

Theorem (K. and Mudrock (2018+))
xe(GOKap) = x¢(G) + a, whenever b > (Py(G, x«(G) +a—1))?

Question: When is this bound sharp? Can we find graphs
G such this bound characterizes x,(GOKyp) = x¢(G) + a?
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Strong Chromatic Choosability

@ A graph G is said to be strong k-chromatic choosable if
x(G) = k and if every bad (k — 1)-assignment for G is constant.

Proposition (K. and Mudrock, 2018+)

Let G be a strong k-chromatic choosable graph. Then

(i) x(G) = k = x¢(G) (i.e. G is chromatic choosable),

(i) x(G — {v}) < xe(G — {v}) < k forany v € V(G),

(iii) k = 2 ifand only if G is Ko,

(iv) k = 3 ifand only if G is an odd cycle,

(v) GV K, is strong (k + p)-chromatic choosable for any p € N.
@ We essentially have a notion of vertex-criticality for

chromatic-choosability.

@ There are many infinite families of graphs that satisfy this
notion.
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Second Result

Theorem (K. and Mudrock)
X¢(GOKap) = xe(G) + a, whenever b > (Py(G, x.(G) + a—1))?

Theorem (K. and Mudrock)

If G is a strong k-chromatic choosable graph and k > a+ 1,
then x,(GOK,p) = xe(G) + a if and only if
b > (P;(G X(}(G) +a-— 1))3.
The proof idea is:
If Lis a (x¢(G)+ a— 1)-assignment for GOK, », there is at most
one proper L-coloring of the copies of G corresponding to the
partite set of size a that leads to a bad assignment for a given
“bottom” copy of G.
We show if two such colorings existed, we could obtain a proper
a-coloring of G.
A simple counting argument completes the proof that there
exists a proper L-coloring of GOK, » when
b < (PZ(G, X@(G) +a-— 1))a.
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Theorem (K. and Mudrock)

If G is a strong k-chromatic choosable graph and k > a+ 1, then
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Corollary (K. and Mudrock)

Forn> a+1, x(KaOKgp) = n+ aif and only if

a
b > (P{‘(Kn, n+a-— 1))a - ((Tarf;)‘l[)!)

This corollary shows the bound in the Theorem is sharp for
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Corollaries to Second Result

Theorem (K. and Mudrock)

If G is a strong k-chromatic choosable graph and k > a+ 1, then
xe(GOKap) = xe(G) + aifand only if b > (Py(G, x¢(G) + a— 1))2.

Corollary (K. and Mudrock)
Forn>a+1, x/(KhOKyp) = n+ aif and only if
b> (Pu(knn+a— 1) = (%2)

(a—1)!
This corollary shows the bound in the Theorem is sharp for
all a.

@ We can construct an arbitrarily long sequence of graphs
with increasing list chromatic number starting from
chromatic number n:

X(KnOKap) = x(Kn) = n= xo(KilDKo 1) <n+1=
)(g(KnDKLn!) <n+2= XK(KNDKZ,((H-H)!)Z) < ...
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Corollaries to Second Result
Corollary (K. and Mudrock, 2018+)

Let G be a strong k-chromatic choosable graph. Then,

k ifs < Py(G, k
xe(GOKi 5) = . «(G.K)
k+1 ifs> Py(G, k).

Corollary (K. and Mudrock, 2018+)

3 ifs<22+t -2
xe(Cot 10Ky ) =
xe(Cot 10K 5) 4 ifs> 02t _p.

Corollary (K. and Mudrock, 2018+)
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KiOKis) =
xe(KnKi s) n+1 ifs>nl.



Corollaries to Second Result

Corollary (K. and Mudrock, 2018+)

Let G be a strong k-chromatic choosable graph. Then,

Kk if s < Py(G, k)
k+1 ifs> PG, k).

Corollary (K. and Mudrock, 2018+)

3 ifs<22+t -2
xe(Cot 10Ky ) =
xe(Cot 10K 5) 4 ifs> 02t _p.

XE(GDKLS) - {

Corollary (K. and Mudrock, 2018+)
n ifs < n!

e )
Corollary (K. and Mudrock, 2018+)

K,V C OK: =
xe((Kn V Coty1)0K 5) {n+4 s>

1
3

n+3 ifs<3(n+3)(4'—1)

(n+ 3)!(4t - 1).
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Extending the Second Result

Theorem (K. and Mudrock)

If G is a strong k-chromatic choosable graph and k > a+ 1,
then x(GOKyp) = x¢(G) + a if and only if

b > (PG, xc(G) +a—1))=~

Open Question: Can we remove the kK > a+ 1 in the
above theorem?

Theorem (K. and Mudrock)
If G is a strong k-chromatic choosable graph, then

xe(GOKap) < x¢(G) + a whenever
b < (PG, x(G) +a—1))3/2k-1.



Thank Youl!

Questions?

For what graphs does f3(G) = (Pu(G, x¢(G) + a— 1))3?

Does there exist a strongly chromatic-choosable graph M such
that f,(M) < (Pe(M, x¢(M) + a— 1))@? Or, can we remove the
condition kK > a+ 1 in the second theorem?

Is it the case that f,(Kp) = (“gf};!)!)a for each n, a?

We can ask the above question for any family of strongly
chromatic-choosable graphs.

Is it always the case that P,(G, k) = P(G, k) when G is strong
chromatic choosable?

(Thomassen 2009) Does there exist a graph G and a natural
number k > 2 such that P,(G, k) =17

(Mohar 2001) Let G be a (A(G) + 1)-edge-critical graph. Then
prove that L(G) is strong (A(G) + 1)-chromatic choosable.
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For what graphs does f3(G) = (Pu(G, x¢(G) + a— 1))3?

Does there exist a strongly chromatic-choosable graph M such
that f2(M) < (Pe(M, x¢(M) + a — 1))@? Or, can we remove the
condition kK > a+ 1 in the second theorem?

Is it the case that f,(Kp) = ((’gf;;!)!)a for each n, a?

We can ask the above question for any family of strongly
chromatic-choosable graphs.

Is it always the case that Py(G, k) = P(G, k) when G is strong
chromatic choosable?

(Thomassen 2009) Does there exist a graph G and a natural
number k > 2 such that P,(G, k) =17

(Mohar 2001) Let G be a (A(G) + 1)-edge-critical graph. Then
prove that L(G) is strong (A(G) + 1)-chromatic choosable.



