
10 Gaussian Quadrature

So far we have encountered the Newton-Cotes formulas∫ b

a
f(x)dx ≈

n∑
i=0

Aif(xi), Ai =
∫ b

a
`i(x)dx,

which are exact if f is a polynomial of degree at most n.
It is important to note that in the derivation of the Newton-Cotes formulas we

assumed that the nodes xi were equally spaced and fixed. The main idea for obtaining
more accurate quadrature rules is to treat the nodes as additional degrees of freedom,
and then hope to find “good” locations that ensure higher accuracy. Therefore, we now
have n + 1 nodes xi in addition to n + 1 polynomial coefficients for a total of 2n + 2
degrees of freedom. This should be enough to derive a quadrature rule that is exact for
polynomials of degree up to 2n+ 1. Gaussian quadrature, indeed accomplishes this:

Theorem 10.1 Let q be a nonzero polynomial of degree n+ 1 and w a positive weight
function such that ∫ b

a
xkq(x)w(x)dx = 0, k = 0, . . . , n. (95)

If the nodes xi, i = 0, . . . , n, are the zeros of q, then∫ b

a
f(x)w(x)dx ≈

n∑
i=0

Aif(xi) (96)

with

Ai =
∫ b

a
`i(x)w(x)dx, i = 0, . . . , n, (97)

is exact for all polynomials of degree at most 2n+1. Here `i, i = 0, . . . , n, are the usual
Lagrange interpolating polynomials of Chapter 1.

Proof Assume f is a polynomial of degree at most 2n+ 1, and show

n∑
i=0

Aif(xi) =
∫ b

a
f(x)w(x)dx.

Using long division we have

f(x)︸︷︷︸
deg.2n+1

= q(x)︸︷︷︸
deg.n+1

p(x) + r(x),

where p and r are both polynomials of degree at most n.
By taking xi as the zeros of q we have

f(xi) = r(xi), i = 0, . . . , n.

Now ∫ b

a
f(x)w(x)dx =

∫ b

a
[q(x)p(x) + r(x)]w(x)dx
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=
∫ b

a
q(x)p(x)w(x)dx︸ ︷︷ ︸

=0

+
∫ b

a
r(x)w(x)dx,

where the first integral on the right-hand side is zero by the orthogonality assumption
(95).

We know that (for any set of nodes xi) (96) is exact for polynomials of degree at
most n. Therefore, ∫ b

a
f(x)w(x)dx =

∫ b

a
r(x)w(x)dx

(96)
=

n∑
i=0

Air(xi).

However, since our special choice of nodes implies f(xi) = r(xi) we have∫ b

a
f(x)w(x)dx =

n∑
i=0

Aif(xi)

for any polynomial f of degree at most 2n+ 1.

Remark Usually, the classical orthogonal polynomials as discussed in the Maple work-
sheet 478578 GaussQuadrature.mws are used to construct Gaussian quadrature rules
with the appropriate weight function suggested by the integrand at hand.

Example If [a, b] = [−1, 1] and w(x) = 1 we use Legendre polynomials (since they
are orthogonal with respect to this interval and weight function). The corresponding
two-point formula (n = 1 — which is exact for cubic polynomials) is∫ 1

−1
f(x)dx ≈ A0f(x0) +A1f(x1)

with x0 and x1 as the roots of q2(x) = x2 − 1
3 , i.e.,

x0 =
√

3
3
, x1 = −

√
3

3
.

A0 and A1 are then found by enforcing exactness for polynomials of degree at most
n = 1: ∫ 1

−1
dx = A0 +A1∫ 1

−1
xdx = A0x0 +A1x1.

These formulas ensure (for arbitrary nodes) exactness for constants, and linear polyno-
mials, respectively. The preceding equations are equivalent to the 2× 2 linear system[

1 1
x0 x1

] [
A0

A1

]
=
[

2
0

]
,
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which implies A0 = A1 = 1. Alternatively, we could have applied (97) directly to
compute the coefficients A0 and A1. Therefore,∫ 1

−1
f(x)dx ≈ f

(
−
√

3
3

)
+ f

(√
3

3

)
.

Remark 1. There are tables for the values of xi and Ai for various choices of
classical orthogonal polynomials q of modest degree. Many software packages
also have functions implementing this.

2. If the integral is defined over the interval [a, b] instead of [−1, 1], then a simple
transformation

x =
b+ a+ t(b− a)

2
, −1 ≤ t ≤ 1

can be used.

3. Note that without the theorem on Gaussian quadrature we would have to solve a
4× 4 system of nonlinear equations with unknowns x0, x1, A0 and A1 (enforcing
exactness for cubic polynomials) to obtain the two-point formula of the example
above (see the Maple worksheet 478578 GaussQuadrature.mws).
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