
11 Pseudospectral Methods for Two-Point BVPs

Another class of very accurate numerical methods for BVPs (as well as many time-
dependent PDEs) are the so-called spectral or pseudospectral methods. The basic idea
is similar to the collocation method described above. However, now we use other
basis functions. The following discussion closely follows the first few chapters of Nick
Trefethen’s book “Numerical Methods in Matlab”.

Before we go into any details we present an example.

Example Consider the simple linear 2-pt BVP

y′′(t) = e4t, t ∈ (−1, 1)

with boundary conditions y(−1) = y(1) = 0. The analytic solution of this problem is
given by

y(t) =
[
e4t − t sinh(4)− cosh(4)

]
/16.

In the Matlab program PSBVPDemo.m we compare the new pseudospectral approach
with the finite difference approach.

The high accuracy of the pseudospectral method is impressive, and we use this as
our motivation to take a closer look at this method.

As with all the other numerical methods, we require some sort of discretization. For
pseudospectral methods we do the same as for finite difference methods and the RBF
collocation methods, i.e., we introduce a set of grid points t1, t2, . . . , tN in the interval
of interest.

11.1 Differentiation Matrices

The main ingredient for pseudospectral methods is the concept of a differentiation
matrix D. This matrix will map a vector of function values y = [y(t1), . . . , y(tN )]T =
[y1, . . . ,yN ]T at the grid points to a vector y′ of derivative values, i.e.,

y′ = Dy.

What does such a differentiation matrix look like? Let’s assume that the grid points
are uniformly spaced with spacing tj+1−tj = h for all j, and that the vector of function
values y comes from a periodic function so that we can add the two auxiliary values
y0 = yN and yN+1 = y1.

In order to approximate the derivative y′(tj) we start with another look at the finite
difference approach. We use the symmetric (second-order) finite difference approxima-
tion

y′(tj) ≈ y′j =
yj+1 − yj−1

2h
, j = 1, . . . , N.

Note that this formula also holds at both ends (j = 1 and j = N) since we are assuming
periodicity of the data.

These equations can be collected in matrix-vector form:

y′ = Dy

111



with y and y′ as above and

D =
1
h



0 1
2 −1

2

−1
2 0

. . .

. . .

. . . 0 1
2

1
2 −1

2 0


.

Remark This matrix has a very special structure. It is both Toeplitz and circulant.
In a Toeplitz matrix the entries in each diagonal are constant, while a circulant matrix
is generated by a single row vector whose entries are shifted by one (in a circulant
manner) each time a new row is generated. As we will see later, the fast Fourier
transform (FFT) can deal with such matrices in a particularly efficient manner.

As we saw earlier, there is a close connection between finite difference approx-
imations of derivatives and polynomial interpolation. For example, the symmetric
2nd-order approximation used above can also be obtained by differentiating the inter-
polating polynomial p of degree 2 to the data {(tj−1,yj−1), (tj ,yj), (tj+1,yj+1)}, and
then evaluating at t = tj .

We can also use a degree 4 polynomial to interpolate the 5 (symmetric) pieces of
data {(tj−2,yj−2), (tj−1,yj−1), (tj ,yj), (tj+1,yj+1), (tj+2,yj+2)}. This leads to (e.g.,
modifying the code in the Maple worksheet 478578 DerivativeEstimates.mws)

y′(tj) ≈ y′j = −yj+2 − 8yj+1 + 8yj−1 − yj−2

12h
, j = 1, . . . , N,

so that we get the differentiation matrix

D =
1
h



0 2
3 − 1

12
1
12 −2

3
−2

3 0 2
3 − 1

12
1
12

. . . . . . . . . . . . . . .

− 1
12

1
12 −2

3 0 2
3

2
3 − 1

12
1
12 −2

3 0


.

Note that this matrix is again a circulant Toeplitz matrix (since the data is assumed to
be periodic). However, now there are 5 diagonals, instead of the 3 for the second-order
example above.

Example The fourth-order convergence of the finite-difference approximation above
is illustrated in the Matlab script FD4Demo.m.

It should now be clear that — in order to increase the accuracy of the finite-
difference derivative approximation to spectral order — we want to keep on increasing
the polynomial degree so that more and more grid points are being used, and the
differentiation matrix becomes a dense matrix. Thus, we can think of pseudospectral

112



methods as finite difference methods based on global polynomial interpolants instead
of local ones.

For an infinite interval with infinitely many grid points spaced a distance h apart
one can show that the resulting differentiation matrix is given by the circulant Toeplitz
matrix

D =
1
h



...
. . . 1

3
. . . −1

2
. . . 1

0

−1
. . .

1
2

. . .

−1
3

. . .
...



. (98)

For a finite (even) N and periodic data we will show later that the differentiation
matrix is given by

DN =



...
. . . 1

2 cot 3h
2

. . . −1
2 cot 2h

2
. . . 1

2 cot 1h
2

0

−1
2 cot 1h

2

. . .
1
2 cot 2h

2

. . .

−1
2 cot 3h

2

. . .
...



. (99)

Example If N = 4, then we have

D4 =


0 1

2 cot 1h
2

1
2 cot 2h

2 −1
2 cot 1h

2

−1
2 cot 1h

2 0 1
2 cot 1h

2
1
2 cot 2h

2
1
2 cot 2h

2 −1
2 cot 1h

2 0 1
2 cot 1h

2
1
2 cot 1h

2
1
2 cot 2h

2 −1
2 cot 1h

2 0

 .
The Matlab script PSDemo.m illustrates the spectral convergence obtained with the
matrix DN for various values of N . The output should be compared with that of the
previous example FD4Demo.m.

11.2 Unbounded Grids and the Semi-Discrete Fourier Transform

We now consider an infinite uniform grid hZ with grid points tj = jh for all integers
j. While this case is not useful for practical computation, it is important for our
understanding of problems on bounded intervals.

113



First we recall the definition of the Fourier transform ŷ of a function y that is
square-integrable on R:

ŷ(ω) =
∫ ∞

−∞
e−iωty(t)dt, ω ∈ R. (100)

Conversely, the inverse Fourier transform lets us reconstruct y from its Fourier trans-
form ŷ:

y(t) =
1
2π

∫ ∞

−∞
eiωtŷ(ω)dω, t ∈ R. (101)

Example Consider the function

y(t) =

{
1, if − 1/2 ≤ t ≤ 1/2
0, otherwise,

and compute its Fourier transform.
By the definition of the Fourier transform, the definition of y and Euler’s formula

we have

ŷ(ω) =
∫ ∞

−∞
e−iωty(t)dt

=
∫ 1/2

−1/2
e−iωtdt

=
∫ 1/2

−1/2
[cos(ωt)− i sin(ωt)] dt

= 2
∫ 1/2

0
cos(ωt)dt

= 2
sin(ωt)
ω

∣∣∣∣1/2

0

=
sinω/2
ω/2

.

These functions play an important role in many applications (e.g., signal process-
ing). The function y is known as a square pulse or characteristic function of the interval
[−1/2, 1/2], and its Fourier transform ŷ is known as the sinc function.

If we restrict our attention to a discrete (unbounded) physical space, i.e., the func-
tion y is now given by the (infinite) vector y = [. . . ,y−1,y0,y1, . . .]T of discrete values,
then the formulas change. In fact, the semidiscrete Fourier transform of y is given by
the (continuous) function

ŷ(ω) = h
∞∑

j=−∞
e−iωtjyj , ω ∈ [−π/h, π/h], (102)

and the inverse semidiscrete Fourier transform is given by the (discrete infinite) vector
y whose components are of the form

yj =
1
2π

∫ π/h

−π/h
eiωtj ŷ(ω)dω, j ∈ Z. (103)

114



Remark Note that the notion of a semidiscrete Fourier transform is just a differ-
ent name for a Fourier series based on the complex exponentials e−iωtj with Fourier
coefficients yj .

The interesting difference between the continuous and semidiscrete setting is marked
by the bounded Fourier space in the semidiscrete setting. This can be explained by the
phenomenon of aliasing. Aliasing arises when a continuous function is sampled on a
discrete set. In particular, the two complex exponential functions f(t) = eiω1t and
g(t) = eiω2t differ from each other on the real line as long as ω1 6= ω2. However, if we
sample the two functions on the grid hZ, then we get the vectors f and g with values
f j = eiω1tj and gj = eiω2tj . Now, if ω2 = ω1 + 2kπ/h for some integer k, then f j = gj

for all j, and the two (different) continuous functions f and g appear identical in their
discrete representations f and g. Thus, any complex exponential eiωt is matched on
the grid hZ by infinitely many other complex exponentials (its aliases). Therefore we
can limit the representation of the Fourier variable ω to an interval of length 2π/h. For
reasons of symmetry we use [−π/h, π/h].

11.2.1 Spectral Differentiation

To get the interpolant of the yj values we can now use an extension of the inverse
semidiscrete Fourier transform, i.e., we define the interpolant to be the function

p(t) =
1
2π

∫ π/h

−π/h
eiωtŷ(ω)dω, t ∈ R. (104)

It is obvious (cf. (103)) from this definition that p interpolates the data, i.e., p(tj) = yj ,
for any j ∈ Z.

Moreover, the Fourier transform of the function p turns out to be

p̂(ω) =

{
ŷ(ω), ω ∈ [π/h, π, h]
0, otherwise

This kind of function is known as a band-limited function, and p is called the band-
limited interpolant of y.

The spectral derivative vector y′ of y can now be obtained by one of the following
two procedures we are about to present. First,

1. Sample the function y at the (infinite set of) discrete points tj ∈ hZ to obtain
the data vector y with components yj .

2. Compute the semidiscrete Fourier transform of the data via (102):

ŷ(ω) = h

∞∑
j=−∞

e−iωtjyj , ω ∈ [−π/h, π/h].

3. Find the band-limited interpolant p of the data yj via (104).

4. Differentiate p and evaluate at the tj .

115



However, from a computational point of view it is better to deal with this problem
in the Fourier domain. We begin by noting that the Fourier transform of the derivative
y′ is given by

ŷ′(ω) =
∫ ∞

−∞
e−iωty′(t)dt.

Applying integration by parts we get

ŷ′(ω) = e−iωty(t)
∣∣∞
−∞ + iω

∫ ∞

−∞
e−iωty(t)dt.

If y(t) tends to zero for t → ±∞ (which it has to for the Fourier transform of y to
exist) then we see that

ŷ′(ω) = iωŷ(ω). (105)

Therefore, we obtain the spectral derivative y′ by the following alternate procedure:

1. Sample the function y at the (infinite set of) discrete points tj ∈ hZ to obtain
the data vector y with components yj .

2. Compute the semidiscrete Fourier transform of the data via (102):

ŷ(ω) = h
∞∑

j=−∞
e−iωtjyj , ω ∈ [−π/h, π/h].

3. Compute the Fourier transform of the derivative via (105):

ŷ′(ω) = iωŷ(ω).

4. Find the derivative vector via inverse semidiscrete Fourier transform (see (103)),
i.e.,

y′j =
1
2π

∫ π/h

−π/h
eiωtj ŷ′(ω)dω, j ∈ Z.

Now we need to find out how we can obtain the entries of the differentiation matrix
D from the preceding discussion. We follow the first procedure above.

In order to be able to compute the semidiscrete Fourier transform of an arbitrary
data vector y we represent its components in terms of shifts of (discrete) delta func-
tions, i.e.,

yj =
∞∑

k=−∞
ykδj−k, (106)

where the Kronecker delta function is defined by

δj =

{
1 j = 0
0 otherwise.

116



We use this approach since the semidiscrete Fourier transform of the delta function can
be computed easily. In fact, according to (102)

δ̂(ω) = h
∞∑

j=−∞
e−iωtjδj

= he−iωt0 = h

for all ω ∈ [−π/h, π/h]. Then the band-limited interpolant of δ is of the form (see
(104))

p(t) =
1
2π

∫ π/h

−π/h
eiωtδ̂(ω)dω

=
1
2π

∫ π/h

−π/h
eiωthdω

=
h

π

∫ π/h

0
cos(ωt)dω

=
h

π

sin(ωt)
t

∣∣∣∣π/h

0

=
h

π

sin(πt/h)
t

=
sin(πt/h)
πt/h

= sinc(πt/h).

Therefore, the band-limited interpolant of an arbitrary data vector y is given by

p(t) =
1
2π

∫ π/h

−π/h
eiωtŷ(ω)dω

=
1
2π

∫ π/h

−π/h
eiωt

h ∞∑
j=−∞

e−iωtjyj

 dω
=

1
2π

∫ π/h

−π/h
eiωt

h ∞∑
j=−∞

e−iωtj

∞∑
k=−∞

ykδj−k

 dω.
Thus far we have used the definition of the band-limited interpolant (104), the defi-
nition of the semidiscrete Fourier transform of y (102), and the representation (106).
Interchanging the summation, and then using the definition of the delta function and
the same calculation as for the band-limited interpolant of the delta function above we

117



obtain the final form of the band-limited interpolant of an arbitrary data vector y as

p(t) =
1
2π

∫ π/h

−π/h
eiωt

h ∞∑
k=−∞

yk

∞∑
j=−∞

e−iωtjδj−k

 dω
=

1
2π

∫ π/h

−π/h
eiωth

∞∑
k=−∞

yke
−iωtkdω

=
∞∑

k=−∞
yk

1
2π

∫ π/h

−π/h
eiω(t−tk)hdω

=
∞∑

k=−∞
yksinc

(t− tk)π
h

.

Example Band-limited interpolation for the functions

y1(t) =

{
1, t = 0
0, otherwise,

y2(t) =

{
1, |t| ≤ 3
0, otherwise,

and
y3(t) = (1− |t|/3)+.

is illustrated in the Matlab script BandLimitedDemo.m. Note that the accuracy of the
reproduction is not very high. Note, in particular, the Gibbs phenomenon that arises
for h→ 0. This is due to the low smoothness of the data functions.

In order to get the components of the derivative vector y′ we need to differentiate
the band-limited interpolant and evaluate at the grid points. By linearity this leads to

y′j = p′(tj) =
∞∑

k=−∞
yk

d

dt

[
sinc

(t− tk)π
h

]
t=tj

,

or in (infinite) matrix form
y′ = Dy

with the entries of D given by

Djk =
d

dt

[
sinc

(t− tk)π
h

]
t=tj

, j, k = −∞, . . . ,∞.

The entries in the k = 0 column of D are of the form

Dj0 =
d

dt

[
sinc

tπ

h

]
t=tj=jh

=

{
0, j = 0
(−1)j

jh , otherwise,

118



The remaining columns are shifts of this column since the matrix is a Toeplitz matrix.
This is exactly of the form (98). The explicit formula for the derivative of the sinc
function above is obtained using elementary calculations:

d

dt

[
sinc

tπ

h

]
=

1
t

cos
(
tπ

h

)
− h

t2π
sin
(
tπ

h

)
,

so that
d

dt

[
sinc

tπ

h

]
t=tj=jh

=
1
jh

cos(jπ)− 1
j2hπ

sin(jπ).

11.3 Periodic Grids: The DFT and FFT

We now consider the case of a bounded grid with periodic data, i.e., we will now explain
how to find the entries in the matrix DN of (99).

To keep the discussion simple we will consider the interval [0, 2π] only, and assume
that we are given N (with N even) uniformly spaced grid points tj = jh, j = 1, . . . , N ,
with h = 2π/N .

Remark Formulas for odd N also exist, but are slightly different. For the sake of
clarity, we focus only on the even case here.

As in the previous subsection we now look at the Fourier transform of the discrete
and periodic data y = [y1, . . . ,yN ]T with yj = y(jh) = y(2jπ/N), j = 1, . . . , N . For
the same reason of aliasing the Fourier domain will again be bounded. Moreover, the
periodicity of the data implies that the Fourier domain is also discrete (since only waves
eikt with integer wavenumber k have period 2π).

Thus, the discrete Fourier transform (DFT) is given by

ŷk = h
N∑

j=1

e−iktjyj , k = −N
2

+ 1, . . . ,
N

2
. (107)

Note that the (continuous) Fourier domain [π/h, π/h] used earlier now translates to
the discrete domain noted in (107) since h = 2π/N is equivalent to π/h = N/2.

The formula for the inverse discrete Fourier transform (inverse DFT) is given by

yj =
1
2π

N/2∑
k=−N/2+1

eiktj ŷk, j = 1, . . . , N. (108)

We obtain the spectral derivative of the finite vector data by exactly the same
procedure as in the previous subsection. First, we need the band-limited interpolant
of the data. It is given by the formula

p(t) =
1
2π

N/2∑′

k=−N/2

eiktŷk, t ∈ [0, 2π]. (109)

Here we define ŷ−N/2 = ŷN/2, and the prime on the sum indicates that we add the
first and last summands only with weight 1/2. This modification is required for the
band-limited interpolant to work properly.

119



Remark The band-limited interpolant is actually a trigonometric polynomial of degree
N/2, i.e., p(t) can be written as a linear combination of the trigonometric functions
1, sin t, cos t, sin 2t, cos 2t, . . . , sinNt/2, cosNt/2. We will come back to this fact when
we discuss non-periodic data.

Next, we want to represent an arbitrary periodic data vector y as a linear combina-
tion of shifts of periodic delta functions. We omit the details here (they can be found
in the Trefethen book) and give only the formula for the band-limited interpolant of
the periodic delta function:

p(t) = SN (t) =
sin(πt/h)

(2π/h) tan(t/2)
,

which is known as the periodic sinc function SN .
Now, just as in the previous subsection, the band-limited interpolant for an arbitrary

data function can be written as

p(t) =
N∑

k=1

ykSN (t− tk).

Finally, using the same arguments and similar elementary calculations as earlier, we
get

S′N (tj) =

{
0, j ≡ 0 (mod N),
1
2(−1)j cot(jh/2), j 6≡ 0 (mod N).

These are the entries of the N -th column of the Toeplitz matrix (99).

Example The Matlab script SpectralDiffDemo.m illustrates the use of spectral dif-
ferentiation for the not so smooth hat function and for the infinitely smooth function
y(t) = esin t.

11.3.1 Implementation via FFT

The most efficient computational approach is to view spectral differentiation in the
Fourier domain (the alternate approach earlier) and then implement the DFT via the
fast Fourier transform (FFT). The general outline is as follows:

1. Sample the function y at the (finite set of) discrete points tj , j = 1, . . . , N to
obtain the data vector y with components yj .

2. Compute the discrete Fourier transform of the (finite) data vector via (107):

ŷk = h
N∑

j=1

e−iktjyj , k = −N
2

+ 1, . . . ,
N

2
.

3. Compute the Fourier transform of the derivative based on (105), i.e.,

ŷ′k =

{
0, k = N/2,
ikŷk, otherwise.

120



4. Find the derivative vector via inverse discrete Fourier transform (see (108)), i.e.,

y′j =
1
2π

N/2∑
k=−N/2+1

eiktj ŷ′k, j = 1, . . . , N.

Remark Cooley and Tukey (1965) are usually given credit for discovering the FFT.
However, the same algorithm was already known to Gauss (even before Fourier com-
pleted his work on what is known today as the Fourier transform). A detailed discus-
sion of this algorithm goes beyond the scope of this course. We simply use the Matlab
implementations fft and ifft. These implementations are based on the current state-
of-the-art FFTW algorithm (the “fastest Fourier transform in the West”) developed at
MIT by Matteo Frigo and Steven G. Johnson.

Example The Matlab script SpectralDiffFFTDemo.m is an FFT version of the earlier
script SpectralDiffDemo.m. The FFT implementation is considerably faster than the
implementation based on differentiation matrices (see Computer Assignment 5).

11.4 Smoothness and Spectral Accuracy

Without getting into any details (see Chapter 4 of Trefethen’s book) we will simply
illustrate with a few examples the basic behavior of spectral differentiation:

The smoother the data, the more accurate the spectral derivative.

Example In the Matlab script SpectralAccuracyDemo.m we expand on the earlier
script SpectralDiffDemo.m and illustrate the dependence of the convergence rate of
spectral differentiation on the smoothness of the data more clearly for the four periodic
functions on [0, 2π]

y1(t) = | sin t|3,
y2(t) = exp(− sin−2(t/2)),

y3(t) =
1

1 + sin2(t/2)
,

y4(t) = sin(10t).

These functions are arranged according to their (increasing) smoothness. The function
y1 has a third derivative of bounded variation, y2 is infinitely differentiable (but not
analytic), y3 is analytic in the strip |Im(t)| < 2 ln(1 +

√
2) in the complex plane, and

y4 is band-limited.
Note: A continuous function y is of bounded variation if

sup
t0<t1<···<tN

N∑
j=1

|y(tj)− y(tj−1)|

is bounded for all choices of t0, t1, . . . , tN . Plainly said, a function of bounded variation
cannot “wiggle around too much”. For example, on the interval [0, 1/2] the function
y(t) = t2 sin(1/t) is of bounded variation while y(t) = t sin(1/t) is not.

121



11.5 Polynomial Interpolation and Clustered Grids

We already saw in the Matlab script BandLimitedDemo.m that a spectral interpolant
performs very poorly for non-smooth functions. Thus, if we just went ahead and treated
a problem on a bounded domain as a periodic problem via periodic extension, then the
resulting jumps that may arise at the endpoints of the original interval would lead to
Gibbs phenomena and a significant degradation of accuracy. Therefore, we do not use
the trigonometric polynomials (discrete Fourier transforms) but algebraic polynomials
instead.

For interpolation with algebraic polynomials we saw at the very beginning of this
course (in the Matlab script PolynomialInterpolationDemo.m) the effect that differ-
ent distributions of the interpolation nodes in a bounded interval have on the accuracy
of the interpolant (the so-called Runge phenomenon). Clearly, the accuracy is much
improved if the points are clustered near the endpoints of the interval. In fact, the
so-called Chebyshev points

tj = cos(jπ/N), j = 0, 1, . . . , N

yield a set of such clustered interpolation nodes on the standard interval [−1, 1]. These
points can easily be mapped by a linear transformation to any other interval [a, b]
(see Assignment 8). Chebyshev points arise often in numerical analysis. They are the
extremal points of the so-called Chebyshev polynomials (a certain type of orthogonal
polynomial). In fact, Chebyshev points are equally spaced on the unit circle, and there-
fore one can observe a nice connection between spectral differentiation on bounded
intervals with Chebyshev points and periodic problems on bounded intervals as de-
scribed earlier. It turns out that (contrary to our expectations) the FFT can also be
used for the Chebyshev case. However, we will only consider Chebyshev differentiation
matrices below.

11.6 Chebyshev Differentiation Matrices

Our last step in our preparation for the solution of general boundary value problems
is to determine the entries of the differentiation matrices to be used for problems on
bounded intervals (with non-periodic data).

As before, we follow our well-established approach for spectral differentiation:

1. Discretize the interval [−1, 1] using the Chebyshev points

tj = cos(jπ/N), j = 0, 1, . . . , N,

and sample the function y at those points to obtain the data vector y = [y(t0), y(t1), . . . , y(tN )]T .

2. Find the (algebraic) polynomial p of degree at most N that interpolates the data,
i.e., s.t.

p(ti) = yi, i = 0, 1, . . . , N.

3. Obtain the spectral derivative vector y′ by differentiating p and evaluating at the
grid points:

y′i = p′(ti), i = 0, 1, . . . , N.

122



This procedure (implicitly) defines the differentiation matrix DN that gives us

y′ = DNy.

Before we look at the general formula for the entries of DN we consider some simple
examples.

Example For N = 1 we have the two points t0 = 1 and t1 = −1, and the interpolant
is given by

p(t) =
t− t1
t0 − t1

y0 +
t0 − t
t0 − t1

y1

=
t+ 1

2
y0 +

1− t
2

y1.

The derivative of p is (the constant)

p′(t) =
1
2
y0 −

1
2
y1,

so that we have

y′ =
[

1
2y0 − 1

2y1
1
2y0 − 1

2y1

]
and the differentiation matrix is given by

D1 =
[

1
2 −1

2
1
2 −1

2

]
.

Example For N = 2 we start with the three Chebyshev points t0 = 1, t1 = 0, and
t2 = −1. The quadratice interpolating polynomial (in Lagrange form) is given by

p(t) =
(t− t1)(t− t2)

(t0 − t1)(t0 − t2)
y0 +

(t− t0)(t− t2)
(t1 − t0)(t1 − t2)

y1 +
(t− t0)(t− t1)

(t2 − t0)(t2 − t1)
y2

=
t(t+ 1)

2
y0 − (t− 1)(t+ 1)y1 +

(t− 1)t
2

y2.

Now the derivative of p is a linear polynomial

p′(t) =
(
t+

1
2

)
y0 − 2ty1 +

(
t− 1

2

)
y2,

so that – evaluating at the nodes – we have

y′ =

 3
2y0 − 2y1 + 1

2y2
1
2y0 − 1

2y2

−1
2y0 + 2y1 − 3

2y2


and the differentiation matrix is given by

D2 =

 3
2 −2 1

2
1
2 0 −1

2
−1

2 2 −3
2

 .
123



We note that the differentiation matrices no longer are Toeplitz or circulant. In-
stead, the entries satisfy (also in the general case below)

(DN )ij = −(DN )N−i,N−j .

For general N one can prove

Theorem 11.1 For each N ≥ 1, let the rows and columns of the (N + 1) × (N + 1)
Chebyshev spectral differentiation matrix DN be indexed from 0 to N . The entries of
this matrix are

(DN )00 =
2N2 + 1

6
, (DN )NN = −2N2 + 1

6
,

(DN )jj =
−tj

2(1− t2j )
, j = 1, . . . , N − 1,

(DN )ij =
ci
cj

(−1)i+j

(ti − tj)
, i 6= j, i, j = 0, 1, . . . , N,

where

ci =

{
2, i = 0 or N,
1, otherwise.

This matrix is implemented in the Matlab script cheb.m that was already used in
the Matlab function PSBVP.m that we used in our motivational example PSBVPDemo.m
at the beginning of this chapter. Note that only the off-diagonal entries are computed
via the formulas given in the theorem. For the diagonal entries the formula

(DN )ii = −
N∑

j=0
j 6=i

(DN )ij

was used.

Example The spectral accuracy of Chebyshev differentiation matrices is illustrated in
the Matlab script ChebyshevAccuracyDemo.m. One should compare this to the earlier
script SpectralAccuracyDemo.m in the periodic case.

The functions used for the Chebyshev example are

y1(t) = |t|3,
y2(t) = exp(−t−2),

y3(t) =
1

1 + t2
,

y4(t) = t10.

These functions are again arranged according to their (increasing) smoothness. The
function y1 has a third derivative of bounded variation, y2 is infinitely differentiable
(but not analytic), y3 is analytic in [−1, 1], and y4 is a polynomial (which corresponds
to the band-limited case earlier).

124



Note that the error for the derivative of the function y2 dips to zero for N = 2 since
the true derivative is given by

y′2(t) = 2
exp(−t−2)

t3
,

and the values at t0 = 1, t1 = 0, and t2 = −1 are 2/e, 0, and −2/e, respectively. These
all lie on a line (the linear derivative of the quadratic interpolating polynomial).

11.7 Boundary Value Problems

We can now return to our introductory example, the 2-pt boundary value problem

y′′(t) = e4t, t ∈ (−1, 1)

with boundary conditions y(−1) = y(1) = 0. Its analytic solution was given earlier as

y(t) =
[
e4t − t sinh(4)− cosh(4)

]
/16.

How do we solve this problem in the Matlab programs PSBVPDemo.m and PSBVP.m?
First, we note that – for Chebyshev differentiation matrices – we can obtain higher

derivatives by repeated application of the matrix DN , i.e., if

y′ = DNy,

then
y′′ = DNy′ = D2

Ny.

In other words, for Chebyshev differentiation matrices

D
(k)
N = Dk

N , k = 1, . . . , N,

and DN+1
N = 0.

Remark We point out that this fact is true only for the Chebyshev case. For the
Fourier differentiation matrices we established in the periodic case we in general have
Dk

N 6= D
(k)
N (see Assignment 8).

With the insight about higher-order Chebyshev differentiation matrices we can view
the differential equation above as

D2
Ny = f ,

where the right-hand side vector f = exp(4t), with t = [t0, t1, . . . , tN ]T the vector of
Chebyshev points. This linear system, however, cannot be solved uniquely (one can
show that the matrix (N + 1) × (N + 1) matrix D2

N has an (N + 1)-fold eigenvalue
of zero). Of course, this is not a problem. In fact, it is reassuring, since we have not
yet taken into account the boundary conditions, and the ordinary differential equation
(without appropriate boundary conditions) also does not have a unique solution.

So the final question is, how do we deal with the boundary conditions?
We could follow either of two approaches. First, we can build the boundary condi-

tions into the spectral interpolant, i.e.,

125



1. Take the interior Chebyshev points t1, . . . , tN−1 and form the polynomial in-
terpolant of degree at most N that satisfies the boundary conditions p(−1) =
p(1) = 0 and interpolates the data vector at the interior points, i.e., p(tj) = yj ,
j = 1, . . . , N − 1.

2. Obtain the spectral derivative by differentiating p and evaluating at the interior
points, i.e.,

y′′j = p′′(tj), j = 1, . . . , N − 1.

3. Identify the (N − 1)× (N − 1) matrix D̃2
N from the previous relation, and solve

the linear system

D̃2
Ny(1 : N − 1) = exp(4t(1 : N − 1)),

where we used Matlab-like notation.

The second approach is much simpler to implement, but not as straightforward to
understand/derive. Since we already know the value of the solution at the boundary,
i.e., y0 = 0 and yN = 0, we do not need to include these values in our computa-
tion. Moreover, the values of the derivative at the endpoints are of no interest to us.
Therefore, we can simply solve the linear system

D̃2
Ny(1 : N − 1) = exp(4t(1 : N − 1)),

where
D̃2

N = D2
N (1 : N − 1, 1 : N − 1).

This is exactly what was done in the Matlab program PSBVP.m.

Remark One can show that the eigenvalues of D̃2
N are given by λn = −π2n2

4 , n =
1, 2, . . . , N − 1. Clearly, these values are all nonzero, and the problem has (as it should
have) a unique solution.

We are now ready to deal with more complicated boundary value problems. They
can be nonlinear, have non-homogeneous boundary conditions, or mixed-type boundary
conditions with derivative values specified at the boundary. We give examples for each
of these cases.

Example As for our initial value problems earlier, a nonlinear ODE-BVP will be
solved by iteration (either fixed-point, or Newton).

Consider
y′′(t) = ey(t), t ∈ (−1, 1)

with boundary conditions y(−1) = y(1) = 0. In the Matlab program NonlinearPSBVPDemo.m
we use fixed-point iteration to solve this problem.

Example Next, we consider a linear BVP with non-homogeneous boundary condi-
tions:

y′′(t) = e4t, t ∈ (−1, 1)

with boundary conditions y(−1) = 0, y(1) = 1. In the Matlab program PSBVPNonHomoBCDemo.m
this is simply done by replacing the first and last rows of the differentiation matrix D2
by corresponding rows of the identity matrix and then imposing the boundary values
in the first and last entries of the right-hand side vector f.

126



Example For a linear BVP with mixed boundary conditions such as

y′′(t) = e4t, t ∈ (−1, 1)

with boundary conditions y′(−1) = y(1) = 0 we can follow the same strategy as in the
previous example. Now, however, we need to replace the row of D2 that corresponds to
the derivative boundary condition with a row from the first-order differentiation matrix
D. This leads to the Matlab program PSBVPMixedBCDemo.m.

127


