13 Fast Fourier Transform (FFT)

The fast Fourier transform (FFT) is an algorithm for the efficient implementation of the discrete Fourier transform. We begin our discussion once more with the continuous Fourier transform.

13.1 Continuous and Discrete Fourier Transforms Revisited

Let E_{k} be the complex exponential defined by

$$
E_{k}(x):=e^{i k x}
$$

and consider the complex inner product

$$
\langle f, g\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} d x
$$

Then

$$
\left\langle E_{k}, E_{k}\right\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \underbrace{e^{i k x} e^{-i k x}}_{=1} d x=1
$$

and for $k \neq \ell$ we have

$$
\begin{aligned}
\left\langle E_{k}, E_{\ell}\right\rangle & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i k x} e^{-i \ell x} d x \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i(k-\ell) x} d x \\
& =\left.\frac{1}{2 \pi} \frac{e^{i(k-\ell) x}}{i(k-\ell)}\right|_{-\pi} ^{\pi} \\
& =\frac{1}{2 \pi i(k-\ell)}\left[e^{i(k-\ell) \pi}-e^{-i(k-\ell) \pi}\right] \\
& =\frac{1}{2 \pi i(k-\ell)} e^{i(k-\ell) \pi}[1-\underbrace{2 \pi(\ell-k) i}_{=1}]=0 .
\end{aligned}
$$

As we just saw, the complex exponentials are orthonormal on the interval $[-\pi, \pi]$. In fact, they are used as the basis functions for complex Fourier series

$$
f(x) \sim \sum_{k=-\infty}^{\infty} c_{k} e^{i k x}
$$

with Fourier coefficients

$$
c_{k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) e^{-i k t} d t=\left\langle f, E_{k}\right\rangle=\hat{f}(k)
$$

As mentioned earlier, the coefficients $c_{k}=\hat{f}(k)$ are also known as the Fourier transform of f.

Remark Note that the notation used here is a bit different from that used in Chapter 11. In particular, earlier we used the interval $(-\infty, \infty)$.

In order to get to the discrete Fourier transform we first truncate the Fourier series and obtain

$$
P(x)=\sum_{k=0}^{n} c_{k} E_{k}(x)
$$

- a trigonometric polynomial. This can be verified by writing

$$
P(x)=\sum_{k=0}^{n} c_{k} e^{i k x}=\sum_{k=0}^{n} c_{k}\left(e^{i x}\right)^{k}
$$

so that P is a polynomial of degree n in the complex exponential $e^{i x}$.
We now also consider equally spaced data in the interval $[0,2 \pi)$, i.e.,

$$
\begin{equation*}
\left(x_{j}, f\left(x_{j}\right)\right) \quad \text { with } \quad x_{j}=\frac{2 \pi j}{N}, j=0,1, \ldots, N-1 \tag{122}
\end{equation*}
$$

and introduce a discrete (pseudo-)inner product

$$
\begin{equation*}
\langle f, g\rangle_{N}=\frac{1}{N} \sum_{j=0}^{N-1} f\left(\frac{2 \pi j}{N}\right) \overline{\left(\frac{2 \pi j}{N}\right)} \tag{123}
\end{equation*}
$$

Remark This is only a pseudo-inner product since $\langle f, f\rangle_{N}=0$ implies $f=0$ only at the discrete nodes $\frac{2 \pi j}{N}, j=0,1, \ldots, N-1$.

Theorem 13.1 The set $\left\{E_{k}\right\}_{k=0}^{N-1}$ of complex exponentials is orthonormal with respect to the inner product \langle,\rangle_{N} defined in (123).

Proof First,

$$
\begin{aligned}
\left\langle E_{k}, E_{k}\right\rangle_{N} & =\frac{1}{N} \sum_{j=0}^{N-1} E_{k}\left(\frac{2 \pi j}{N}\right) \overline{E_{k}\left(\frac{2 \pi j}{N}\right)} \\
& =\frac{1}{N} \sum_{j=0}^{N-1} \underbrace{e^{i k 2 \pi j / N} e^{-i k 2 \pi j / N}}_{=1}=1 .
\end{aligned}
$$

Next, for $k \neq \ell$ we have

$$
\begin{aligned}
\left\langle E_{k}, E_{\ell}\right\rangle_{N} & =\frac{1}{N} \sum_{j=0}^{N-1} E_{k}\left(\frac{2 \pi j}{N}\right) \overline{E_{\ell}\left(\frac{2 \pi j}{N}\right)} \\
& =\frac{1}{N} \sum_{j=0}^{N-1} e^{i k 2 \pi j / N} e^{-i \ell 2 \pi j / N} \\
& =\frac{1}{N} \sum_{j=0}^{N-1}\left(e^{i \frac{2 \pi(k-\ell)}{N}}\right)^{j}
\end{aligned}
$$

Now, since $k \neq \ell$,

$$
e^{i \frac{2 \pi(k-\ell)}{N}} \neq 1
$$

we can apply the formula for the sum of a finite geometric series to get

$$
\left\langle E_{k}, E_{\ell}\right\rangle_{N}=\frac{1}{N} \frac{\left(e^{i \frac{2 \pi(k-\ell)}{N}}\right)^{N}-1}{e^{i \frac{2 \pi(k-\ell)}{N}}-1} .
$$

Finally, since

$$
\left(e^{i \frac{2 \pi(k-\ell)}{N}}\right)^{N}=1
$$

the orthogonality result follows.
This gives rise to a best approximation result (just as for standard Fourier series):
Corollary 13.2 Let data be given as in (122) and consider $G=\operatorname{span}\left\{E_{k}\right\}_{k=0}^{n}$ with $n<N$. Then the best least squares approximation to the data from G (with respect to the inner product (123)) is given by the discrete Fourier series

$$
g(x)=\sum_{k=0}^{n} c_{k} E_{k}(x)
$$

with

$$
c_{k}=\left\langle f, E_{k}\right\rangle_{N}=\frac{1}{N} \sum_{j=0}^{N-1} f\left(\frac{2 \pi j}{N}\right) e^{-i k \frac{2 \pi j}{N}}, \quad k=0,1, \ldots, n .
$$

Remark 1. The coefficients c_{k} of the discrete Fourier series are called the discrete Fourier transform (DFT) of f.
2. It is our goal to compute the DFT (and also evaluate g) via the fast Fourier transform (FFT).
3. Note that, even if the data is real, the DFT will in general be complex. If, e.g., $N=4$, and the values $f\left(\frac{2 \pi j}{N}\right), j=0,1,2,3$ are $4,0,3,6$ respectively, then the coefficients c_{k} are

$$
\begin{aligned}
& c_{0}=13 \\
& c_{1}=1+6 i \\
& c_{2}=1 \\
& c_{3}=1-6 i .
\end{aligned}
$$

13.2 The FFT Algorithm

We start with the trigonometric polynomial

$$
P(x)=\sum_{k=0}^{N-1} c_{k} E_{k}(x)
$$

with DFT coefficients

$$
c_{k}=\frac{1}{N} \sum_{j=0}^{N-1} f\left(\frac{2 \pi j}{N}\right) e^{-i k \frac{2 \pi j}{N}}
$$

$$
=\frac{1}{N} \sum_{j=0}^{N-1} f\left(x_{j}\right)\left(\lambda_{k}\right)^{j}
$$

where $x_{j}=\frac{2 \pi j}{N}$ and we set

$$
\lambda_{k}=e^{-i \frac{2 \pi k}{N}} .
$$

Remark The values λ_{k} (or more naturally λ_{-k}) are often referred to as the N-th roots of unity. This is illustrated in Figure 8 for $N=5$.

Figure 8: Roots of unity $\lambda_{k}, k=0,1, \ldots, N-1$, for $N=5$.
The computation of each coefficient c_{k} corresponds to evaluation of a polynomial of degree $N-1$ in λ_{k}. Using nested multiplication (Horner's method) this can be done in $\mathcal{O}(N)$ operations. Since we have N coefficients, the polynomial P can be constructed in $\mathcal{O}\left(N^{2}\right)$ operations.

The major benefit of the fast Fourier transform is that it reduces the amount of work to $\mathcal{O}\left(N \log _{2} N\right)$ operations.

The FFT was discovered by Cooley and Tukey in 1965. However, Gauss seemed to already be aware of similar ideas. One of the most popular modern references is the "DFT Owners Manual" by Briggs and Henson (published by SIAM in 1995). It is the dramatic reduction in computational complexity that earned the FFT a spot on the list of "Top 10 Algorithms of the 20th Century" (see handout).

The FFT is based on the following observation:
Theorem 13.3 Let data $\left(x_{k}, f\left(x_{k}\right)\right), x_{k}=\frac{k \pi}{n}, k=0,1, \ldots, 2 n-1$, be given, and assume that p and q are exponential polynomials of degree at most $n-1$ which interpolate
part of the data according to

$$
p\left(x_{2 j}\right)=f\left(x_{2 j}\right), \quad q\left(x_{2 j}\right)=f\left(x_{2 j+1}\right), \quad j=0,1, \ldots, n-1,
$$

then the exponential polynomial of degree at most $2 n-1$ which interpolates all the given data is

$$
\begin{equation*}
P(x)=\frac{1}{2}\left(1+e^{i n x}\right) p(x)+\frac{1}{2}\left(1-e^{i n x}\right) q\left(x-\frac{\pi}{n}\right) . \tag{124}
\end{equation*}
$$

Proof Since $e^{i n x}=\left(e^{i x}\right)^{n}$ has degree n, and p and q have degree at most $n-1$ it is clear that P has degree at most $2 n-1$.

We need to verify the interpolation claim, i.e., show that

$$
P\left(x_{k}\right)=f\left(x_{k}\right), \quad k=0,1, \ldots, 2 n-1 .
$$

By assumption we have

$$
P\left(x_{k}\right)=\frac{1}{2}\left(1+e^{i n x_{k}}\right) p\left(x_{k}\right)+\frac{1}{2}\left(1-e^{i n x_{k}}\right) q\left(x_{k}-\frac{\pi}{n}\right)
$$

where

$$
e^{i n x_{k}}=e^{i n \frac{k \pi}{n}}=\left(e^{i \pi}\right)^{k}=(-1)^{k} .
$$

Therefore

$$
P\left(x_{k}\right)= \begin{cases}p\left(x_{k}\right) & \text { if } k \text { even }, \\ q\left(x_{k}-\frac{\pi}{n}\right) & \text { if } k \text { odd }\end{cases}
$$

Let k be even, i.e., $k=2 j$. Then, by the assumption on p

$$
P\left(x_{2 j}\right)=p\left(x_{2 j}\right)=f\left(x_{2 j}\right), \quad j=0,1, \ldots, n-1
$$

On the other hand, for $k=2 j+1$ (odd), we have (using the assumption on q)

$$
P\left(x_{2 j+1}\right)=q\left(x_{2 j+1}-\frac{\pi}{n}\right)=q\left(x_{2 j}\right)=f\left(x_{2 j+1}\right), \quad j=0,1, \ldots, n-1 .
$$

This is true since

$$
x_{2 j+1}-\frac{\pi}{n}=\frac{(2 j+1) \pi}{n}-\frac{\pi}{n}=\frac{2 j \pi}{n}=x_{2 j} .
$$

The second useful fact tells us how to obtain the coefficients of P from those of p and q.

Theorem 13.4 Let

$$
p=\sum_{j=0}^{n-1} \alpha_{j} E_{j}, \quad q=\sum_{j=0}^{n-1} \beta_{j} E_{j}, \quad \text { and } \quad P=\sum_{j=0}^{2 n-1} \gamma_{j} E_{j} .
$$

Then, for $j=0,1, \ldots, n-1$,

$$
\begin{aligned}
\gamma_{j} & =\frac{1}{2} \alpha_{j}+\frac{1}{2} e^{-i j \pi / n} \beta_{j} \\
\gamma_{j+n} & =\frac{1}{2} \alpha_{j}-\frac{1}{2} e^{-i j \pi / n} \beta_{j} .
\end{aligned}
$$

Proof In order to use (124) we need to rewrite

$$
\begin{aligned}
q\left(x-\frac{\pi}{n}\right) & =\sum_{j=0}^{n-1} \beta_{j} E_{j}\left(x-\frac{\pi}{n}\right) \\
& =\sum_{j=0}^{n-1} \beta_{j} e^{i j\left(x-\frac{\pi}{n}\right)} \\
& =\sum_{j=0}^{n-1} \beta_{j} e^{i j x} e^{-i j \pi / n}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
P(x) & =\frac{1}{2}\left(1+e^{i n x}\right) p(x)+\frac{1}{2}\left(1-e^{i n x}\right) q\left(x-\frac{\pi}{n}\right) \\
& =\frac{1}{2} \sum_{j=0}^{n-1}\left(1+e^{i n x}\right) \alpha_{j} e^{i j x}+\frac{1}{2} \sum_{j=0}^{n-1}\left(1-e^{i n x}\right) \beta_{j} e^{i j x} e^{-i j \pi / n} \\
& =\frac{1}{2} \sum_{j=0}^{n-1}\left[\left(\alpha_{j}+\beta_{j} e^{-i j \pi / n}\right) e^{i j x}+\left(\alpha_{j}-\beta_{j} e^{-i j \pi / n}\right) e^{i(n+j) x}\right] .
\end{aligned}
$$

However, the terms in parentheses (together with the factor $1 / 2$) lead precisely to the formulæ for the coefficients γ.

Example We consider the data

$$
\begin{array}{c|c|c}
x & 0 & \pi \\
\hline y & f(0) & f(\pi)
\end{array} .
$$

Now we apply the DFT to find the interpolating polynomial P. We have $n=1$ and

$$
P(x)=\sum_{j=0}^{1} \gamma_{j} E_{j}(x)=\gamma_{0} e^{0}+\gamma_{1} e^{i x}
$$

According to Theorem 13.4 the coefficients are given by

$$
\begin{aligned}
\gamma_{0} & =\frac{1}{2}\left(\alpha_{0}+\beta_{0} e^{0}\right), \\
\gamma_{1} & =\frac{1}{2}\left(\alpha_{0}-\beta_{0} e^{0}\right) .
\end{aligned}
$$

Therefore, we still need to determine α_{0} and β_{0}. They are found via interpolation at only one point (cf. Theorem 13.3):

$$
\begin{aligned}
& p(x)=\sum_{j=0}^{0} \alpha_{j} E_{j}(x)=\alpha_{0} \quad \text { such that } \quad p\left(x_{0}\right)=f\left(x_{0}\right) \quad \Longrightarrow \quad \alpha_{0}=f\left(x_{0}\right) \\
& q(x)=\sum_{j=0}^{0} \beta_{j} E_{j}(x)=\beta_{0} \quad \text { such that } \quad q\left(x_{0}\right)=f\left(x_{1}\right) \quad \Longrightarrow \quad \beta_{0}=f\left(x_{1}\right) .
\end{aligned}
$$

With $x_{0}=0$ and $x_{1}=\pi$ we obtain

$$
P(x)=\frac{1}{2}(f(0)+f(\pi))+\frac{1}{2}(f(0)-f(\pi)) e^{i x} .
$$

Example We now refine the previous example, i.e., we consider the data

x	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$
y	$f(0)$	$f\left(\frac{\pi}{2}\right)$	$f(\pi)$	$f\left(\frac{3 \pi}{2}\right)$

Now $n=2$, and P is of the form

$$
P(x)=\sum_{j=0}^{3} \gamma_{j} E_{j}(x) .
$$

According to Theorem 13.4 the coefficients are given by

$$
\begin{aligned}
\gamma_{0} & =\frac{1}{2}\left(\alpha_{0}+\beta_{0}\right), \\
\gamma_{1} & =\frac{1}{2}(\alpha_{1}+\beta_{1} \underbrace{e^{-i \pi / 2}}_{=-i}), \\
\gamma_{2} & =\frac{1}{2}\left(\alpha_{0}-\beta_{0}\right), \\
\gamma_{3} & =\frac{1}{2}(\alpha_{1}-\beta_{1} \underbrace{e^{-i \pi / 2}}_{=-i}) .
\end{aligned}
$$

This leaves the coefficients α_{0}, β_{0} and α_{1}, β_{1} to be determined. They are found via interpolation at two points (cf. Theorem 13.3):

$$
\begin{aligned}
p(x) & =\sum_{j=0}^{1} \alpha_{j} E_{j}(x) \quad \text { such that } \quad p\left(x_{0}\right)=f\left(x_{0}\right), p\left(x_{2}\right)=f\left(x_{2}\right), \\
q(x) & =\sum_{j=0}^{1} \beta_{j} E_{j}(x) \quad \text { such that } \quad q\left(x_{0}\right)=f\left(x_{1}\right), q\left(x_{2}\right)=f\left(x_{3}\right) .
\end{aligned}
$$

These are both problems of the form dealt with in the previous example, so a recursive strategy is suggested.

A general recursive algorithm for the FFT is given in the Kincaid/Cheney textbook on pages 455 and 456 .

In order to figure out the computational complexity of the FFT algorithm we assume $N(=2 n)=2^{m}$ so that the recursive strategy for the FFT can be directly applied. (If N is not a power of 2 , then the data can be padded appropriately with zeros). In order to evaluate the interpolating exponential polynomial

$$
P(x)=\sum_{k=0}^{N-1} c_{k} E_{k}(x)=\sum_{j=0}^{2 n-1} \gamma_{j} E_{j}(x)
$$

we can use the FFT to compute the coefficients c_{k} (or γ_{j}).
Instead of giving an exact count of the arithmetic operations involved in this task, we estimate the minimum number of multiplications required to compute the coefficients of an exponential polynomial with N terms.

Lemma 13.5 Let $R(N)$ be the minimum number of multiplications required to compute the coefficients of an exponential polynomial with $N=2 n$ terms. Then

$$
R(N) \leq 2 R(n)+2 n
$$

Proof There are N coefficients γ_{j} computed recursively via the formulas

$$
\begin{aligned}
\gamma_{j} & =\frac{1}{2} \alpha_{j}+\frac{1}{2} e^{-i j \pi / n} \beta_{j} \\
\gamma_{j+n} & =\frac{1}{2} \alpha_{j}-\frac{1}{2} e^{-i j \pi / n} \beta_{j}
\end{aligned}
$$

listed in Theorem 13.4. If the factors $\frac{1}{2} e^{-i j \pi / n}, n=0,1, \ldots, n-1$, are pre-computed, then each of these formulas involves 2 multiplications for a total of $2 n$ multiplications. Moreover, the coefficients α_{j} and β_{j} are determined recursively using $R(n)$ multiplications each.

Theorem 13.6 Under the same assumptions as in Lemma 13.5 we have

$$
R\left(2^{m}\right) \leq m 2^{m} .
$$

Proof We use induction on m. For $m=0$ there are no multiplications since $P(x)=c_{0}$. Now, assume the inequality holds for m. Then, by Lemma 13.5 (with $n=2^{m}$)

$$
R\left(2^{m+1}\right)=R\left(2 \cdot 2^{m}\right) \leq 2 R\left(2^{m}\right)+2 \cdot 2^{m} .
$$

By the induction hypothesis this is less than or equal to

$$
2 m 2^{m}+2 \cdot 2^{m}=(m+1) 2^{m+1}
$$

Setting $N=2^{m} \Leftrightarrow m=\log _{2} N$ in Theorem 13.6 implies

$$
R(N) \leq N \log _{2} N
$$

i.e., the fast Fourier transform reduces the amount of computation required to evaluate an exponential polynomial from $\mathcal{O}\left(N^{2}\right)$ (if done directly) to $\mathcal{O}\left(N \log _{2} N\right)$. For $N=1000$ this means roughly 10^{4} instead of 10^{6} operations.

Remark 1. Application of the classical fast Fourier transform is limited to the case where the data is equally spaced, periodic, and of length 2^{m}. The often suggested strategy of padding with zeros (to get a data vector of length 2^{m}) or the application of the FFT to non-periodic data may produce unwanted noise.
2. Various version of the FFT for non-equally spaced data have also been proposed in recent years (e.g., NFFT by Daniel Potts, Gabriele Steidl and Manfred Tasche).

Remark Given a vector $a=\left[a_{0}, a_{1}, \ldots, a_{N-1}\right]^{T}$ of discrete data, Corollary 13.2 tells us that the discrete Fourier transform \hat{a} of a is computed componentwise as

$$
\hat{a}_{k}=\frac{1}{N} \sum_{j=0}^{N-1} a_{j} e^{-i k \frac{2 \pi j}{N}}, \quad k=0,1, \ldots, N-1 .
$$

Of course, the FFT can be used to compute these coefficients. There is an analogous formula for the inverse DFT, i.e.,

$$
a_{j}=\sum_{k=0}^{N-1} \hat{a}_{k} e^{i k \frac{2 \pi j}{N}}, \quad j=0,1, \ldots, N-1 .
$$

We close with a few applications of the FFT. Use of the FFT for many applications benefits from the fact that convolution in the function domain corresponds to multiplication in the transform domain, i.e.,

$$
\widehat{f * g}=\hat{f} \hat{g}
$$

so that we have

$$
f * g=(\hat{f} \hat{g}) .
$$

Some applications are now

- Filters in signal or image processing.
- Compression of audio of video signals. E.g., the MP3 file format makes use of the discrete cosine transform.
- De-noising of data contaminated with measurement error (see, e.g., the Maple worksheet 478578_FFT.mws).
- Multiplication with cyclic matrices. A cyclic matrix is of the form

$$
C=\left[\begin{array}{ccccc}
a_{0} & a_{1} & \ldots & a_{n-1} & a_{n} \\
a_{n} & a_{0} & a_{1} & \ldots & a_{n-1} \\
a_{n-1} & a_{n} & a_{0} & a_{1} & \ldots \\
\ddots & \ddots & \ddots & \ddots & \ddots \\
a_{1} & \ldots & a_{n-1} & a_{n} & a_{0}
\end{array}\right]
$$

and multiplication by C corresponds to a discrete convolution, i.e.,

$$
(C y)_{i}=\sum_{j=0}^{n} C_{i j} y_{j}=\sum_{j=0}^{n} a_{j-i} y_{j}, \quad i=0, \ldots, n
$$

where the subscript on a is to be interpreted cyclically, i.e., $a_{n+1+i} \equiv a_{i}$ or $a_{-i} \equiv a_{n+1-i}$. Thus, a coupled system of linear equations with cyclic system matrix can be decoupled (and thus trivially solved) by applying the discrete Fourier transform.

- High precision integer arithmetic also makes use of the FFT.
- Numerical solution of differential equations.

Remark Another transform technique that has some similarities to (but also some significant differences from) the FFT is the fast wavelet transform. Using so-called scaling functions and associated wavelets as orthogonal basis functions one can also perform best approximation of functions (or data). An advantage of wavelets over the trigonometric basis used for the FFT is the fact that not only do we have localization in the transform domain, but also in the function domain.

