
5 Error Control

5.1 The Milne Device and Predictor-Corrector Methods

We already discussed the basic idea of the predictor-corrector approach in Section 2.
In particular, there we gave the following algorithm that made use of the 2nd-order
AB and AM (trapezoid) methods.

Algorithm

ỹn+2 = yn+1 + h
2 [3f(tn+1,yn+1)− f(tn,yn)]

yn+2 = yn+1 + h
2

[
f(tn+1,yn+1) + f(tn+2, ỹn+2)

]
κ = 1

6 |ỹn+2 − yn+2|

if κ is relatively large, then

h← h/2 (i.e., reduce the stepsize)

repeat

else if κ is relatively small, then

h← 2h (i.e., increase the stepsize)

else

continue (i.e., keep h)

end

The basic idea of this algorithm is captured in a framework known as the Milne
device (see the flowchart on p.77 of the Iserles book). Earlier we explained how we
arrived at the formula for the estimate, κ, of the local truncation error in the special
case above.

For a general pair of explicit AB and implicit AM methods of (the same) order p
we have local truncation errors of the form

y(tn+s)− ỹn+s = c̃hp+1y(p+1)(ηAB) (49)

y(tn+s)− yn+s = chp+1y(p+1)(ηAM). (50)

Note that (as in the earlier case of 2nd-order methods) we have shifted the indices for
the two methods so that they align, i.e., the value to be determined at the current time
step has subscript n+ s.

If we assume that the derivative y(p+1) is nearly constant over the interval of interest,
i.e., y(p+1)(ηAB) ≈ y(p+1)(ηAM) ≈ y(p+1)(η), then we can subtract equation (50) from
equation (49) to get

yn+s − ỹn+s ≈ (c̃− c)hp+1y(p+1)(η),

and therefore
hp+1y(p+1)(η) ≈ 1

c̃− c
(
yn+s − ỹn+s

)
.

69

If we substitute this expression back into (50) we get an estimate for the error at this
time step as

‖y(tn+2)−yn+2‖ = |c|hp+1‖y(p+1)(ηAM)‖ ≈ |c|hp+1‖y(p+1)(η)‖ ≈
∣∣∣∣ c

c̃− c

∣∣∣∣ ‖yn+s−ỹn+s‖.

Thus, in the flowchart, the Milne estimator κ is of the form

κ =
∣∣∣∣ c

c̃− c

∣∣∣∣ ‖yn+s − ỹn+s‖.

The reason for the upper bound hδ on κ for the purpose of stepsize adjustments (instead
of simply a tolerance δ for the global error) is motivated by the heuristics that the
transition from the local truncation error to the global error reduces the local error by
an order of h.

Remark 1. We point out that the use of the (explicit) predictor serves two pur-
poses here. First, it eliminates the use of iterative methods to cope with the
implicitness of the corrector, and secondly — for the same price — we also get
an estimator for the local error that allows us to use variable stepsizes, and thus
compute the solution more efficiently. Sometimes the error estimate κ is even
added as a correction (or extrapolation) to the numerical solution yn+s. How-
ever, this process rests on a somewhat shaky theoretical foundation, since one
cannot guarantee that the resulting value really is more accurate.

2. As mentioned earlier, since an s-step Adams method requires startup values at
equally spaced points, it may be necessary to compute these values via polynomial
interpolation (see the “remeshing” steps in the flowchart).

5.2 Richardson Extrapolation

Another simple, but rather inefficient, way to estimate the local error κ (and then again
use the general framework of the flowchart to obtain an adaptive algorithm) is to look
at two numerical approximations coming from the same method: one based on a single
step with stepsize h, and the other based on two steps with stepsize h/2. We first
describe the general idea of Richardson extrapolation, and then illustrate the idea on
the example of Euler’s method.

Whenever we approximate a quantity F by a numerical approximation scheme Fh

with a formula of the type

F = Fh +O(hp)︸ ︷︷ ︸
=Eh

, p ≥ 1, (51)

we can use an extrapolation method to combine already computed values (at stepsizes
h and h/2) to obtain a better estimate.

Assume we have computed two approximate values Fh (using stepsize h) and Fh/2

(using 2 steps with stepsize h/2) for the desired quantity F . Then the error for the
stepsize h/2 satisfies

Eh/2 ≈ c
(
h

2

)p

= c
hp

2p
≈ 1

2p
Eh.

70

Therefore, using (51),

F − Fh/2 = Eh/2 ≈
1
2p
Eh =

1
2p

(F − Fh).

This implies

F

(
1− 1

2p

)
≈ Fh/2 −

1
2p
Fh

or

F ≈ 2p

2p − 1

[
Fh/2 −

Fh

2p

]
.

The latter can be rewritten as

F ≈ 2p

2p − 1
Fh/2 −

1
2p − 1

Fh. (52)

This is the Richardson extrapolation formula, a weighted average of Fh/2 and Fh.
Since the error Eh is given by F −Fh, and F in turn can be approximated via (52)

we also obtain an estimate for the error Eh, namely

Eh = F − Fh ≈
2p

2p − 1
Fh/2 −

1
2p − 1

Fh − Fh =
2p

2p − 1
[
Fh/2 − Fh

]
.

We can use this in place of κ and obtain an adaptive algorithm following the flowchart.

Example We know that Euler’s method

yn+1 = yn + hf(tn,yn)

produces a solution that is accurate up to terms of order O(h) so that p = 1. If we
denote by yn+1,h the solution obtained taking one step with step size h from tn to tn+1,
and by yn+1,h/2 the solution obtained taking two steps with step size h from tn to tn+1,
then we can use

yn+1 = 2yn+1,h/2 − yn+1,h

to improve the accuracy of Euler’s method, or to obtain the error estimate

κ = ‖yn+1,h/2 − yn+1,h‖.

5.3 Embedded Runge-Kutta Methods

For (explicit) Runge-Kutta methods another strategy exists for obtaining adaptive
solvers: the so-called embedded Runge-Kutta methods. With an embedded Runge-
Kutta method we also compute the value yn+1 twice. However, it turns out that we
can design methods of different orders that use the same function evaluations, i.e., the
function evaluations used for a certain lower-order method are embedded in a second
higher-order method.

In order to see what the local error estimate κ looks like we assume we have the
(lower order) method that produces a solution yn+1 such that

yn+1 = y(tn+1) + chp+1 +O(hp+2),

71

where y is the exact (local) solution based on the initial condition y(tn) = yn. Similarly,
the higher-order method produces a solution ỹn+1 such that

ỹn+1 = y(tn+1) +O(hp+2).

Subtraction of the second of these equations from the first yields

yn+1 − ỹn+1 ≈ chp+1,

which is a decent approximation of the error of the lower-order method. Therefore, we
have

κ = ‖yn+1 − ỹn+1‖.

Example One of the simplest examples of an embedded Runge-Kutta method is the
following second-third-order scheme defined by its (combined) Butcher tableaux

0 0 0 0
2
3

2
3 0 0

2
3 0 2

3 0
1
4

3
4 0

1
4

3
8

3
8

.

This implies that the second-order method is given by

yn+1 = yn + h

[
1
4
k1 +

3
4
k2

]
with

k1 = f(tn,yn)

k2 = f(tn +
2
3
h,yn +

2
3
hk1),

and the third-order method looks like

ỹn+1 = yn + h

[
1
4
k1 +

3
8
k2 +

3
8
k3

]
with the same k1 and k2 and

k3 = f(tn +
2
3
h,yn +

2
3
hk2).

Now, the local error estimator is given by

κ = ‖yn+1 − ỹn+1‖

=
3
8
h‖k2 − k3‖.

If we again use the adaptive strategy outlined in the flowchart, then we have an adaptive
second-order Runge-Kutta method that uses only three function evaluations per time
step.

72

Remark 1. Sometimes people use the higher-order solution ỹn+1 as their numerical
approximation “justified” by the argument that this solution is obtained with a
higher-order method. However, a higher-order method need not be more accurate
than a lower-order method.

2. Another example of a second-third-order embedded Runge-Kutta method is im-
plemented in MATLAB as ode23. However, its definition is more complicated
since the third-order method uses the final computed value of the second-order
method as its initial slope.

Example We now describe the classical fourth-fifth-order Runge-Kutta-Fehlberg method
which was first published in 1970.

The fourth-order method is an “inefficient” one that uses five function evaluations
at each time step. Specifically,

yn+1 = yn + h

[
25
216

k1 +
1408
2565

k3 +
2197
4104

k4 −
1
5
k5

]
with

k1 = f(tn,yn),

k2 = f

(
tn +

h

4
,yn +

h

4
k1

)
,

k3 = f

(
tn +

3
8
h,yn +

3h
32

k1 +
9h
32

k2

)
,

k4 = f

(
tn +

12
13
h,yn +

1932h
2197

k1 −
7200h
2197

k2 +
7296h
2197

k3

)
,

k5 = f

(
t+ h,yn +

439h
216

k1 − 8hk2 +
3680h
513

k3 −
845h
4104

k4

)
.

The associated six-stage fifth-order method is given by

ỹn+1 = yn + h

[
16
135

k1 +
6656
12825

k3 +
28561
56430

k4 −
9
50

k5 +
2
55

k6

]
,

where k1–k5 are the same as for the fourth-order method above, and

k6 = f

(
tn +

h

2
,yn −

8h
27

k1 + 2hk2 −
3544h
2565

k3 +
1859h
4104

k4 −
11h
40

k5

)
.

The local truncation error is again estimated by computing the deviation of the fourth-
order solution from the fifth-order result, i.e.,

κ = ‖yn+1 − ỹn+1‖.

The coefficients of the two methods can be listed in a combined Butcher tableaux
(see Table 5).

The advantage of this embedded method is that an adaptive fifth-order method has
been constructed that uses only six function evaluations for each time step.

73

0 0 0 0 0 0 0
1
4

1
4 0 0 0 0 0

3
8

3
32

9
32 0 0 0 0

12
13

1932
2197 −7200

2197
7296
2197 0 0 0

1 439
216 -8 3680

513 − 845
4104 0 0

1
2 − 8

27 2 −3544
2565

1859
4104 −11

40 0
25
216 0 1408

2565
2197
4104 −1

5 0
16
135 0 6656

12825
28561
56430 − 9

50
2
55

Table 5: Combined Butcher tableaux for the fourth-fifth-order Runge-Kutta-Fehlberg
method.

Remark 1. Other embedded fourth-fifth order methods exist. Nearly every soft-
ware package has an implementation of (at least) one of them. In Maple the
default numerical solver for the dsolve command is the RKF45 method. The
function ode45 in MATLAB uses as 4-5 pair by Dormand and Prince. The default
fourth-fifth order method in Mathematica uses a pair by Bogacki and Shampine.

2. Other embedded Runge-Kutta methods also exist. For example, one of the first
fifth-sixth-order methods is due to Dormand and Prince (1980). The coefficients
of this method can be found in the Kincaid/Cheney textbook.

3. As mentioned earlier, Runge-Kutta methods are quite popular. This is probably
due to the fact that they have been known for a long time, and are relatively easy
to program. However, for stiff problems, i.e., problems whose solution exhibits
both slow and fast variations in time, we saw earlier (in the MATLAB script
StiffDemo2.m) that explicit Runge-Kutta methods become very inefficient.

74

