Supplier Commitment & Production Decisions Under a Forecast-Commitment Forecast

Elizabeth J. Durango-Cohen, Ph. D.

Assistant Professor of Operations Management Stuart School of Business Illinois Institute of Technology

(Joint work with Candace Yano)

Overview

- Background & Problem Motivation
- Taxonomy of Supply Contracts Literature
- Operational Model of Production Planning with Commitments under a Forecast-Commitment Contract
 - Single Product, Single Customer Problem
 - ▼ Model Formulation
 - Results & Managerial Insights
 - ▼ Effect of a Capacity Constraint
- Related Research
 - Customer Problem of Forecast Selection
- Concluding Remarks

Background: Supply Chain Management

- What is a Supply Chain?
 - A network of facilities that perform the functions of:
 - Procurement of Materials
 - Transformation of Materials
 - Distribution of Finished Goods to Customers
- Supply Chain Management
 - Logistics of Controlling Material and Information flows

Problem Motivation

- Worked with Application Specific Integrated Circuits (ASICs) Manufacturer
 - ICs embedded in other divisions' products
- Originally: Internal supplier and cost center
 Capacity allocation strategy set at corporate level
- At the time: Profit center with internal customers
 - Allocation based on maximizing division's profit (myopic)
 - Transitioning: Wholly-owned Subsidiary; mix of internal and external customers (customer relationship management!)
- Conflicting Short-term and Long-term Goals

Problem Motivation (cont.)

- ASICs market is extremely volatile To gain a competitive advantage
 - Manufacturer willing to make commitments against 1-period-ahead forecasts (viewed as strategic weapon)
 - Alternative to point-system for prioritizing customers under development
- Contracts are negotiated as new product generations are introduced. Contracts specify:
 - Prices, production, holding and penalty costs
- Research Goal: Develop commitment and capacity allocation models that incorporate existing business practices

Contract Structure

- One period in advance:
 - Customer provides order forecast, \overline{f}
 - \circ Supplier makes a commitment to the customer based on forecast, C
 - Supplier decides on a production quantity, q

• When orders are placed:

• Customer bound to order a fraction of forecast, α , unless supplier committed to a lesser value, $\underline{d} = \min(\alpha f, C)$ Delivery Amt. Let $x \equiv$ demand

Customer takes delivery of

 $= \min(q, \max(x, \underline{d}))$

Supplier's Problem

Goal: choose commitment and production quantity that maximize profits

Taxonomy – Brief Overview

- Different Contract Types:
 - O Buy-Back Contracts (Pasternack 1985)
 - ▼ Full price returns for partial order, or partial refund for all returns
 - Pay-to-Delay (Brown and Lee 1999)
 - ▼ Fixed-fee upfront
 - Contracts with Options (Barnes-Schuster et al. (2002))
 - ▼ Apparel industry Two period Model
 - Revenue-Sharing Contracts (Lariviere and Cachon (2005))
 - Video industry Supply Chain Coordination
 - Push, Pull and Advance Purchase Contracts (Cachon 2004)
 - Push (Price-only), Pull (Vendor-Managed Inventory) Allocation of Inventory Risk
 - Quantity Flexibility (Tsay 1999)
 - **K** Customer agrees to purchase a fraction of forecast
 - Supplier agrees to supply up to a fraction above

Supplier's Problem

Goal: choose commitment and production quantity that maximize profits

Notation

- Wholesale price W
- Variable production C
- Fraction of forecast that customer is obligated to purchase
- Minimum required order quantity
- Customer forecast provided to supplier
- $\frac{\frac{d}{f}}{x}$ R.V. for the customer demand in the current period
- $f_{s}(x \mid f)$ Conditional density of customer demand given forecast (f)

Decision Variables:

- Production quantity \boldsymbol{Q}
- \boldsymbol{C} Amount committed to the customer

 $\Pi_{s}(q,C,f)$ is the supplier's profit function given customer's forecast

Stuart School of Business

Solution Approach

Want C and q that maximizes $\Pi_{S}(q, C, f)$

1. For all production quantity values, *q*, we find the optimal commitment value

14

•
$$C^*(q) = \arg \max_C \left[\Pi_S(q, C, f)\right]$$

2. Given $C^*(q)$, we find q that maximizes $\Pi_{\mathcal{S}}(q, C^*(q), f)$.

Optimal Commitment Response — Results

15

• **Theorem:** An optimal supplier commitment response, $C^*(q)$, for a given production quantity, q, and the customer forecast, f, is

 $C^*(q) = q \text{ or } \overline{f}.$

That is, the supplier will either commit to the amount to be produced or commit to the amount forecasted by the customer.

• **Lemma:** The supplier's optimal commitment, $C^*(q)$, is non-decreasing in the amount to be produced, q.

Find Optimal Production Quantity, given Commitment Response, $\max_{q} \prod_{S} (q, C(q), f)$.

• When C(q) = q. For $\alpha f \le q < f$ the value function is

$$\Pi(q, C(q) = q, f) = -cq + w \left[\int_{x=0}^{\alpha f} (\alpha f) f_{S}(x) dx + \int_{x=\alpha f}^{q} x f_{S}(x) dx + \int_{x=q}^{\infty} q f_{S}(x) dx \right] - \pi_{1} [f-q]$$

174

a f

• The first and second derivatives are:

$$\frac{\partial \Pi(q, q, f)}{\partial q} = -c + w [1 - F_s(q)] + \pi_1$$
$$\frac{\partial^2 \Pi(q, q, f)}{\partial q^2} = -w f_s(q) \le 0$$

with stationary point

$$\hat{q} = q_C^* = F_S\left(\frac{w + \pi_1 - c}{w}\right)$$

• So $\Pi_{S}(q,q,f)$ can be concave, concave increasing or decreasing in $\mathcal{G}_{S}(q,q,f)$ can be concave, concave increasing or decreasing $\mathcal{G}_{S}(q,q,f)$ can be concave.

Finding q^* under C(q) = q (cont.)

• For $f \leq q$ the value function is

$$\Pi(q,q,f) = -cq + w \left[\int_{x=0}^{\alpha f} (\alpha f) f_S(x) dx + \int_{x=\alpha f}^{q} x f_S(x) dx + \int_{x=q}^{\infty} q f_S(x) dx \right]$$

 Π

af

Stuart School of Busines

ILLINOIS INSTITUTE OF TECHNOLOGY

• The first and second derivatives are:

$$\frac{\partial \Pi(q,q,f)}{\partial q} = -c + w [1 - F_s(q)]$$
$$\frac{\partial^2 \Pi(q,q,f)}{\partial q^2} = -w f_s(q) \le 0$$

with stationary point

$$\hat{q} = q_A^* = F_S^{-1} \left(\frac{w - c}{w} \right)$$

• So $\Pi_{S}(q, q, f)$ can be concave, or concave decreasing in q.

Finding q^* under strategy C(q) = f

• If the supplier's commitment strategy is to commit to the forecasted amount, the optimal production quantities are:

19

$$q^* = \begin{cases} \alpha f \text{ or } f \text{ or } f \text{ or } F_S^{-1} \left(\frac{w + \pi_2 - c}{w + \pi_2} \right) & \alpha f \le q < f \\ f \text{ or } F_S^{-1} \left(\frac{w - c}{w} \right) & f \le q \end{cases}$$

Related Problems

>Problem A: Supplier not liable for any shortages

$$q_A^* = F_s^{-1} \left(\frac{w - c}{w} \right)$$

> **Problem B:** Supplier is fully liable for any shortages

$$q_B^* = F_s^{-1} \left(\frac{w + \pi_2 - c}{w + \pi_2} \right)$$

Problem C: Supplier liable only for commitment amount

$$q_{c}^{*} = F_{s}^{-1} \left(\frac{w + \pi_{1} - c}{w} \right)$$

Optimal Policy Depends on these Critical Values

Optimal Commitment and Production Quantity Policy

• **Theorem:** The optimal commitment and production quantity pair for the supplier is:

$$\begin{pmatrix} C^*, q^* \end{pmatrix} = \underset{ \begin{pmatrix} f, q_A^* \end{pmatrix}, \begin{pmatrix} f, q_B^* \end{pmatrix}, \begin{pmatrix} q_C^*, q_C^* \end{pmatrix} \\ (f, f), (\alpha f, \alpha f), (f, \alpha f) \end{pmatrix}}{ \operatorname{arg\,max}} V_S \left(C, q \right)$$

 A subset of candidate strategies can be eliminated based on ordering of critical values, *f* and *αf*

Summary of Analytical Results

- Optimal Commitment Strategy
 - Commitment quantity, $C^*(q)$, non-decreasing in q
 - Supplier incurs either type 1 or type 2 penalty, never both
 - Either Dominant Strategy or Threshold Policy
- Optimal Value Function
 - Sufficient Conditions for Unimodality
- Optimal Strategy
 - Given forecast, compute Ordering of Critical Values
 - Optimal Production Quantity given for Each Strategy
 - Choice of optimal pair based on trade-offs

The Multi-product Problem

- Distinct products
- No substitution
- Forecasts and orders generated independently
- Formulation:

$$\max_{C_i, q_i} \sum_{i=1}^{N} V_s \left(q_i, C_i, \overline{f_i} \right)$$

 $\mathbf{26}$

Subject to:

$$\sum_{i=1}^{N} \mu_i q_i \leq \text{Capacity}$$

 $q_i \ge 0, \quad i = 1, 2, ..., N$

Multi-product Problem: Optimal Policy

- Case 1: Capacity is not binding
 - Problem decomposes into single product problems

Case 2: Capacity is binding -- A mess!!
Value function becomes highly irregular (multimodal)
Must consider all possible capacity & allocations

Effect of Capacity Constraint on Productive Capacity allocated to Customers

Effect of Capacity on Allocations and Profits

• Optimal Capacity Allocation to Customers Not Monotonic in Total Available Capacity

 May Not be Optimal to Allocate Entire Capacity, even if Union of Unconstrained Solutions Exceeds Capacity Limit

Value of Forecast-Commitment Contracts

33

- Contract Curbs Supplier's Motivation to Underproduce
 - No Contract:

$$q^* = F^{-1}\left(\frac{w-c}{w}\right)$$

- Less than Optimal Production amount(s) in the Presence of the Contract
- Contract Limits Customer's Incentive to Over-forecast
- Provides a Means for Customer to Plausibly Pass High Forecasts to Supplier

Current and Future Research Directions

• Related Research:

- Customer's Forecasting Problem
 - × Sequential Game, with Customer as First Mover
 - × Assume Common Beliefs about Demand and Common Information about Costs
 - Coordination in high number of instances
- ▼ FC-Contract with Strategic Customer (under review)
 - × Captures customer incentive to lie in order to receive the delivery penalty

• Other Research Interest

- Intersection of Operations and Marketing
 - × Store-brands vs. National Brands Capacity Allocation
- Supply Chain Management with Strategic Consumers
 - Conspicuous Consumption (Effect of Snobs & Followers)
 - Forward-Looking Consumers

Stuart School of Business