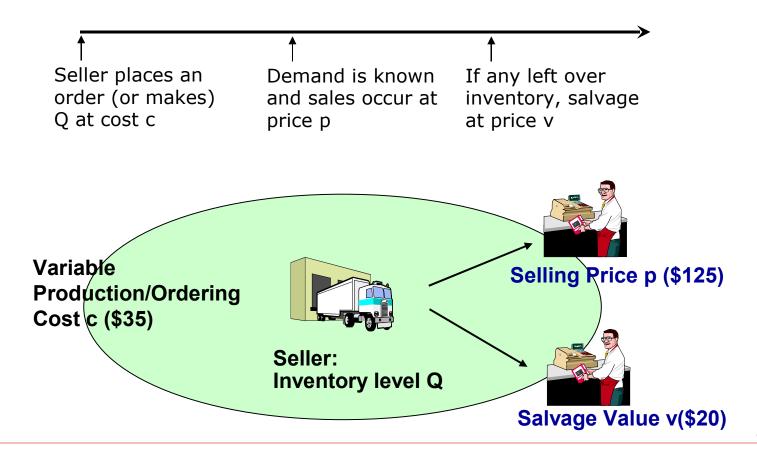
Selling to Strategic Customers in the Presence of Consumption Network Externalities

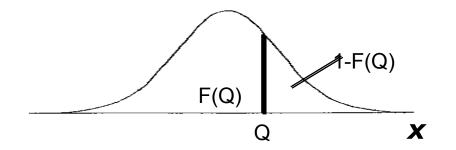
Jiong Sun

IIT Stuart

May 4, 2009

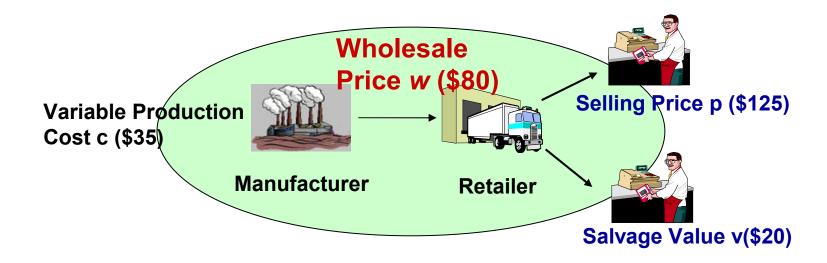

My background

- Assistant Professor of Management Science, Stuart School, since Fall 2007
- Ph.D. in Operations Management
- Research interests:
 - Operations and marketing issues, considering strategic consumer behavior, social network effects, etc.
 - Technological innovation management
- Research methodologies:
 - Optimization (deterministic, dynamic and stochastic)
 - Game Theory
 - Economic Models


Background and motivation

- Consumers have full rationality
 - Equilibrium
 - Value of quantity commitment
 - Vertically decentralized channel
 - Horizontally decentralized channel
- Consumers have bounded rationality
- Concluding remarks

- Demand is uncertain, and the seller has to order/make a certain amount of quantity before demand is realized
- Sequence of events:



- Basic trade-off: stocking too much vs. stock too little
- The optimal Q* is achieved when expected overstocking cost = expected understocking cost
- Demand X follows cdf F

C_o=c-v: overstocking cost C_u =p-c: understocking cost F(Q): service level $C_o * F(Q) = C_u * [1- F(Q)]$ $F(Q^*) = \frac{C_u}{C_u + C_o}$

A decentralized channel, i.e., the retailer orders from a supplier at a wholesale price w

It has been shown that in a decentralized channel (under wholesale price contracts), the optimal order quantity is lower than the system-optimal quantity: Q' < Q*.</p>

That is, the decentralized channel performs *worse* (i.e., channel is *not coordinated*).

□ This is due to "*Double marginalization*" effects.

- How to motivate the retailer to order the system-optimal quantity Q*?
- Solutions: Instead of whole-sale price contracts, buy-back, revenue-sharing, etc., can achieve channel coordination. (The idea is to have the supplier share some risk of the channel.)

BUT!

A basic assumption of the newsvendor model is that *customers are not strategic*!

- They don't look forward, i.e., wait for price markdown
- Retail price p (consumers' willingness-to-pay) is fixed, and independent of the sales quantity.

Motivation

- For many products, a consumer's willingness-to-pay depends upon the total number of other consumers – Consumption Network Externalities.
- Their willingness-to-pay (retailer price p) can increase or decrease with the total expected sales, min(X,Q)
 - Positive externalities: computer games, road navigation systems, movie DVDs
 - Negative externalities: fashion products
- For the seller:

 How much Q to order because now the price it can charge depends upon the expected sales quantity, i.e., min(Q, X)?
 Still, centralized channels overperform decentralized ones?

Model

- Full rationality assumptions: Rational Expectations (RE) theory: Economic outcomes do not differ systematically from what people expect them to be.
- In our problem, RE means in equilibrium, consumers' willingness-to-pay equals, i.e.,

$$p = v + \gamma \cdot E[\min(X,Q)]$$

where v is the intrinsic value of the product, $\gamma \in (-\infty, +\infty)$ denotes the strength of network externalities.

expected sale quantity

The seller determines the order quantity by solving:

Maximize pE[min(X,Q)] - cQThe retail price is given by

 $p = E[v + \gamma \cdot \min(X, Q)]$

This leads to

Proposition 1 (1) There is a unique RE equilibrium (p_c, Q_c) , where the quantity Q_c is the larger solution (or unique solution) of

$$\left[v + \gamma S\left(Q\right)\right]\overline{F}\left(Q\right) - c = 0 \tag{1}$$

and the price is: $p_c = v + \gamma S(Q_c)$; and (2) $\underline{dQ_c/dc} < 0$.

Centralized Channel with quantity commitment

Q: Can the seller do better if the seller announces a fixed selling quantity Q and is able to commit to this quantity.

The seller's problem now becomes $Max_{Q} \qquad E[v + \gamma \cdot \min(X,Q)] \cdot E[\min(X,Q)] - cQ$

This leads to

Proposition 2 If the seller can make credible quantity commitment, (1) The seller's optimal selling quantity, Q_q , is the larger solution (or <u>unique solution</u>) of

$$\left[v + 2\gamma S\left(Q\right)\right]\overline{F}\left(Q\right) - c = 0. \tag{2}$$

and the optimal price is $p_q = v + \gamma S(Q_q)$; and (2) When $\gamma < 0$, $Q_q < Q_c$, and $\Pi_q > \Pi_c$; when $\gamma > 0$, $Q_q > Q_c$, and $\Pi_q > \Pi_c$.

With quantity commitment, the seller achieves a higher profit!

Vertically Decentralized Channel

- One supplier, one retailer
- wholesale-price contracts
- Wholesale price contract: Retailer orders from supplier at the wholesale price w. Retailer maximizes: $\prod_{w=1}^{r} p \cdot E[\min(X,Q)] - wQ$ Supplier maximizes: $\prod_{w=1}^{m} Q \cdot (w - c)$
- Q: Can they achieve the system optimum, or even the optimum with quantity commitment?

Proposition 3 (1) When $\gamma < 0$, there exists some $w^* \in (c, v)$ such that when $w = w^*$, $\Pi_w(w^*) = \Pi_q^*$, and for $w \in (c, w^*]$, $\Pi_w(w) > \Pi_c$. (2) When $\gamma > 0$, for any $w \in (c, v)$, $\Pi_w(w) < \Pi_c < \Pi_q^*$.

> A vertically decentralized channel over-performs the
> centralized one without quantity commitment when the externality effect is negative.
> <u>12</u>
> Double marginalization effect plays a positive role!

Vertically Decentralized Channel

Instead of wholesale price contracts, can other contracts achieve coordination?

Proposition 4 When $\gamma < 0$, under the buy-back contract,

$$w_b = \left(1 - \frac{\lambda}{\lambda^*}\right)p^* + \frac{\lambda}{\lambda^*}w^*, \ b = \left(1 - \frac{\lambda}{\lambda^*}\right)p^*,$$

the optimal profit Π_q under quantity commitment is achieved and the retailer's share is $\lambda \Pi_q$, where $\lambda \in [0, 1]$. When $\gamma > 0$, buy-back contracts cannot achieve quantity commitment profit Π_q .

Proposition 5 For any $\gamma < 0$ or $\gamma > 0$, under the revenue-sharing contract,

$$\eta = 1 - \frac{\lambda}{1 + \frac{c\gamma S(Q_q)}{\gamma S(Q_q) + p_q} \frac{Q_q}{\Pi_q}}, \ w_s = c \frac{\lambda}{1 + \frac{c\gamma S(Q_q)}{\gamma S(Q_q) + p_q} \frac{Q_q}{\Pi_q}} \frac{v + \gamma S\left(Q_q\right)}{v + 2\gamma S\left(Q_q\right)},$$

the optimal profit $\underline{\Pi}_q$ under quantity commitment is achieved and the retailer's share is $\lambda \Pi_q$, where $\lambda \in (0, 1]$.

Horizontally Decentralized Channel

- Instead of a single retailer, what is there are multiple competing retailers?
- Model setting: Two retailers each face a random demand X_i ~ F_i(.), and each places an order Q_i. Consumers' reservation price is now given by:

 $E[v + \gamma \cdot \min(X_1 + X_2, Q_1 + Q_2)]$

Proposition 6 There exists a positive critical $\hat{\gamma} > 0$, such that for $\gamma \leq \hat{\gamma}$: (1) In a decentralized system, there is a unique RE equilibrium (p_h^d, Q_1^d, Q_2^d) , where the quantities (Q_1^d, Q_2^d) solve

$$\begin{cases} \{v + \gamma E\left[(X_1 + X_2) \land (Q_1 + Q_2)\right]\} \left[1 - \int_0^{Q_1} F_2\left(Q_1 + Q_2 - x_1\right) f_1\left(x_1\right) dx_1\right] = c \\ \{v + \gamma E\left[(X_1 + X_2) \land (Q_1 + Q_2)\right]\} \left[1 - \int_0^{Q_2} F_1\left(Q_1 + Q_2 - x_2\right) f_2\left(x_2\right) dx_2\right] = c \end{cases}$$
(3)

and the price is: $p_h^d = v + \gamma E \left[(X_1 + X_2) \land (Q_1^d + Q_2^d) \right];$ (2) In the decentralized system, the industry inventory level is higher than that in the centralized one, i.e.,

$$Q_1^d + Q_2^d > Q_1^c + Q_2^c,$$

and $p_h^d < p_h^c$.

Bounded Rationality and Consumer Learning

- Consumers do not necessarily have a full rationality, and they learn through repeated experiences.
- In each period t, consumers' reservation price is given by

$$p_t = E[v + \gamma \hat{\xi_t}]$$

and at the end of period t, consumers update its belief on the sales quantity

$$\hat{\xi}_{t+1} = \alpha E[\min(Q_t, X_t)] + (1 - \alpha)\hat{\xi}_t$$

The seller now faces a dynamic optimization problem, with the Bellman equation:

$$V(\hat{\xi}) = \max_{Q} [\prod (Q, \hat{\xi}) + \delta \cdot V(\alpha E[\min(Q_t, X_t)] + (1 - \alpha)\hat{\xi})]$$

Bounded Rationality and Consumer Learning

^{**D**} Quantities Q_t^* and beliefs $\hat{\xi}_t$ are governed by the following dynamic process:

$$\begin{split} Q_1^* &= Q^*(\hat{\xi}_1), \quad \hat{\xi}_2 = \alpha S(Q_1^*) + (1-\alpha)\hat{\xi}_1, \\ Q_2^* &= Q^*(\hat{\xi}_2), \quad \hat{\xi}_3 = \alpha S(Q_2^*) + (1-\alpha)\hat{\xi}_2, \dots \\ Q_t^* &= Q^*(\hat{\xi}_t), \quad \hat{\xi}_{t+1} = \alpha S(Q_t^*) + (1-\alpha)\hat{\xi}_t, \dots \end{split}$$

We are interested in if the optimal quantities and beliefs converge to a long run steady state?

Bounded Rationality and Consumer Learning

Proposition 7 $\hat{\gamma} < 0, \dot{\xi} = S(\dot{Q})$ When $\gamma > \hat{\gamma}$, there exists some threshold $\dot{\xi}$ such that $Q_t^* \to \dot{Q}$ and $\hat{\xi}_t \to \dot{\xi}$, where $\hat{\gamma} < 0, \dot{\xi} = S(\dot{Q})$ and $\dot{Q} > 0$ is the larger solution (or unique solution) of

$$\left[v + \left(1 + \frac{\alpha\delta}{1 - (1 - \alpha)\delta}\right)\gamma S(Q)\right]\overline{F}(Q) - c = 0.$$
(11)

Proposition 8 Let $Q^*[\gamma]$ be the RE equilibrium quantity in the base model when the externality coefficient is γ . Then the equilibrium quantity under consumer learning is given by

$$\dot{Q} = Q^* \left[\left(1 + \frac{\alpha \delta}{1 - (1 - \alpha) \,\delta} \right) \gamma \right]. \tag{12}$$

- In this adaptive learning model, there is a unique long-run equilibrium as long as the network externality is positive or not too negative.
- The long-run equilibrium in the dynamic model approaches the commitment benchmark when the discount factor δ approaches 1 from below, i.e., when the seller's reputational concern is strong enough

Concluding Remarks

Value of quantity commitment

- With positive (negative) externality effect, the seller's profit can be enhanced if he is able to commit to stock a higher (lower) quantity than that in the RE equilibrium.
- How does strategic consumer behavior affect supply chain contracting decisions
 - Under the presence of negative externalities, a vertically decentralized channel with a wholesale-price contract may perform strictly better than a centralized one.
 - Via properly structured contracts, a decentralized channel may achieve the quantity commitment outcomes of the centralized channel.
 - Under negative externalities, we expect that buy-back contracts can be used to achieve the quantity commitment outcomes.
 - Under positive externalities, revenue-sharing contracts may achieve the desirable quantity commitment outcomes.
 - Under the presence of positive externalities, a horizontally decentralized channel may perform strictly better than a centralized one.

Concluding Remarks

- Seller's optimal strategy when rationality is bounded and consumers learn
 - When consumers learn through repeated experiences, the seller's reputational concern may serve as a surrogate for commitment power.

