Resource Allocation Problem

Exchange Economies

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへぐ

Market Equilibrium : Resource Allocation Problem

Sanjiv Kapoor

Ill Inst of Tech.

Resource Allocation Problem

Exchange Economies

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへぐ

Market Equibrium Models

• m traders, n goods

Resource Allocation Problem

Exchange Economies

Market Equibrium Models

- m traders, n goods
- a non-empty convex set K_i ⊆ Rⁿ which is the set of all "feasible" allocations that trader *i* may receive (in many cases, K_i = Rⁿ₊),

Resource Allocation Problem

Exchange Economies

・ロト ・ 理 ト ・ 王 ト ・ 王 ・ つへの

Market Equibrium Models

- m traders, n goods
- a non-empty convex set K_i ⊆ ℜⁿ which is the set of all "feasible" allocations that trader *i* may receive (in many cases, K_i = ℜⁿ₊),
- a *concave* utility function u_i : K_i → ℜ₊ which represents her preferences for the different bundles of goods, and

Resource Allocation Problem

Exchange Economies

Market Equibrium Models

- m traders, n goods
- a non-empty convex set K_i ⊆ ℜⁿ which is the set of all "feasible" allocations that trader *i* may receive (in many cases, K_i = ℜⁿ₊),
- a *concave* utility function u_i : K_i → ℜ₊ which represents her preferences for the different bundles of goods, and
- an initial endowment of goods $w_i = (w_{i1}, \ldots, w_{in})^\top \in \mathcal{K}_i$.

Resource Allocation Problem

Exchange Economies

・ロト ・ 理 ト ・ 王 ト ・ 王 ・ つへの

Market Equibrium Models

- m traders, n goods
- a non-empty convex set K_i ⊆ ℜⁿ which is the set of all "feasible" allocations that trader *i* may receive (in many cases, K_i = ℜⁿ₊),
- a *concave* utility function u_i : K_i → ℜ₊ which represents her preferences for the different bundles of goods, and
- an initial endowment of goods $w_i = (w_{i1}, \ldots, w_{in})^\top \in \mathcal{K}_i$.
- Find prices for the goods so that traders are in equilibirum: Market equilibrium achieved when there is no incentive to trade

Resource Allocation Problem

Exchange Economies

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへぐ

• 1891 Fisher 1894 Walras (Walrasian Equilibrium) and Fisher (19th Century).

Resource Allocation Problem

Exchange Economies

イロト イロト イヨト イヨト ヨー シック

- 1891 Fisher
 1894 Walras (Walrasian Equilibrium) and Fisher (19th Century).
- 1954 Arrow and Debreu: Proved the existence of equilibiria.

Resource Allocation Problem

Exchange Economies

- 1891 Fisher 1894 Walras (Walrasian Equilibrium) and Fisher (19th Century).
- 1954 Arrow and Debreu: Proved the existence of equilibiria.
- Hydraulic apparatus by Fisher Walrasian tatonnement

Resource Allocation Problem

Exchange Economies

• Special case of the Walrasian Model

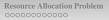
Resource Allocation Problem

Exchange Economies

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへぐ

- Special case of the Walrasian Model
- There are *n* buyers and *m* sellers

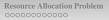
Fisher Model



Exchange Economies

- Special case of the Walrasian Model
- There are *n* buyers and *m* sellers
- Each seller has exactly one commodity (seller *j* has *a_j* amount of commodity *j*)

Fisher Model

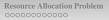


Exchange Economies

・ロト ・ 理 ト ・ 王 ト ・ 王 ・ つへの

- Special case of the Walrasian Model
- There are *n* buyers and *m* sellers
- Each seller has exactly one commodity (seller *j* has *a_j* amount of commodity *j*)
- Buyers have only money.(Buyer *i* has *e_i* units of money)

Fisher Model



Exchange Economies

・ロト ・ 理 ト ・ 王 ト ・ 王 ・ つへの

- Special case of the Walrasian Model
- There are *n* buyers and *m* sellers
- Each seller has exactly one commodity (seller *j* has *a_j* amount of commodity *j*)
- Buyers have only money.(Buyer *i* has *e_i* units of money)
- Sellers want only money, buyers want only commodities

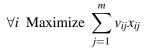
Resource Allocation Problem

Exchange Economies

(2)

・ロト・日本・日本・日本・今日・

Mathematical Formulation



Subject to:

$$\forall i : \sum_{j=1}^{m} x_{ij} p_j = \sum_{j=1}^{m} a_{ij} p_j$$

$$x_{ij} \geq 0$$

$$(1)$$

Good Availability Constraints:

$$\forall j: \sum_{i=1}^n x_{ij} = a_j$$

SK

Resource Allocation Problem

Exchange Economies

イロト イロト イヨト イヨト ヨー シック

Computation-Prior art

• Arrow et al. 1959 Stability of a local greedy price adjustment method for Gross Substitute utility functions

Resource Allocation Problem

Exchange Economies

・ロト ・ 理 ト ・ 王 ト ・ 王 ・ つへの

Computation-Prior art

- Arrow et al. 1959
 Stability of a local greedy price adjustment method for Gross Substitute utility functions
- Eisenberg and Gale, 1959 Fisher model, additive linear utilities Reduced the problem to a convex optimization problem

Resource Allocation Problem

Exchange Economies

・ロト ・ 理 ト ・ 王 ト ・ 王 ・ つへの

Computation-Prior art

- Arrow et al. 1959
 Stability of a local greedy price adjustment method for Gross Substitute utility functions
- Eisenberg and Gale, 1959 Fisher model, additive linear utilities Reduced the problem to a convex optimization problem
- Eaves, 1976 Linear complementarity problem Lemke's algorithm

Resource Allocation Problem

Exchange Economies

・ロト ・ 理 ト ・ 王 ト ・ 王 ・ つへの

Computation-Prior art

- Arrow et al. 1959
 Stability of a local greedy price adjustment method for Gross Substitute utility functions
- Eisenberg and Gale, 1959 Fisher model, additive linear utilities Reduced the problem to a convex optimization problem
- Eaves, 1976 Linear complementarity problem Lemke's algorithm
- Newman and Primak, 1992 Ellipsoid method: provably polynomial-time method

Resource Allocation Problem

Exchange Economies

イロト イロト イヨト イヨト ヨー シック

Recent Computer Science Interest:

• Recently complexity issues, Papadimtriou, Deng-Papadimitriou-Safra.

Resource Allocation Problem

Exchange Economies

Recent Computer Science Interest:

- Recently complexity issues, Papadimtriou, Deng-Papadimitriou-Safra.
- Primal-Dual Approaches: Devanur et al (2002)

Resource Allocation Problem

Exchange Economies

・ロト ・ 理 ト ・ 王 ト ・ 王 ・ つへの

Recent Computer Science Interest:

- Recently complexity issues, Papadimtriou, Deng-Papadimitriou-Safra.
- Primal-Dual Approaches: Devanur et al (2002)
- Auction Method: Garg-Kapoor (2004)

Resource Allocation Problem

Exchange Economies

・ロト ・ 理 ト ・ 王 ト ・ 王 ・ つへの

Recent Computer Science Interest:

- Recently complexity issues, Papadimtriou, Deng-Papadimitriou-Safra.
- Primal-Dual Approaches: Devanur et al (2002)
- Auction Method: Garg-Kapoor (2004)
- Convex Programming : Jain, Y. Ye (2004)

Resource Allocation Problem

Exchange Economies

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Recent Computer Science Interest:

- Recently complexity issues, Papadimtriou, Deng-Papadimitriou-Safra.
- Primal-Dual Approaches: Devanur et al (2002)
- Auction Method: Garg-Kapoor (2004)
- Convex Programming : Jain, Y. Ye (2004)
- Tattonement: Codenotti et al. (2005), Cole-Fleischer(2008)

Resource Allocation Problem

Exchange Economies

Parameterized LP

The market equilibrium conditions can be written as a solution to a specific primal-dual program.

Maximize
$$\sum_{i=1}^{n} \sum_{j=1}^{m} v_{ij} x_{ij}$$

Subject to:

$$\forall j : \sum_{i=1}^{n} x_{ij} = a_j \qquad (3)$$

$$\forall i : \sum_{j=1}^{m} x_{ij}p_j = \sum_{j=1}^{m} a_{ij}p_j \qquad (4)$$

$$x_{ij} \ge 0$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Resource Allocation Problem

Exchange Economies

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへぐ

Complementary slackness conditions

$$\forall j : \sum_{i=1}^{n} x_{ij} = a_j \tag{5}$$

$$\forall i: \sum_{j=1}^{m} x_{ij} p_j = \sum_{j=1}^{m} a_{ij} p_j \tag{6}$$

 $\forall i, j : x_{ij} > 0 \Rightarrow v_{ij}/p_j \geq v_{ik}/p_k, \ \forall k$ (7)

$$x_{ij} \ge 0, p_j \ge 0$$

Resource Allocation Problem

Exchange Economies

• Fix a bid increment factor $(1 + \epsilon)$.

《□》《圖》《言》《言》 늘 - ∽०.~

Resource Allocation Problem

Exchange Economies

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへぐ

- Fix a bid increment factor $(1 + \epsilon)$.
- Start with low prices

Resource Allocation Problem

Exchange Economies

・ロト ・ 理 ト ・ 王 ト ・ 王 ・ つへの

- Fix a bid increment factor $(1 + \epsilon)$.
- Start with low prices
- A trader with sufficient surplus money finds its best commodity a commodity that maximizes v_{ij}/p_j

Resource Allocation Problem

Exchange Economies

・ロト ・ 理 ト ・ 王 ト ・ 王 ・ つへの

Auction Algorithm

- Fix a bid increment factor $(1 + \epsilon)$.
- Start with low prices
- A trader with sufficient surplus money finds its best commodity a commodity that maximizes v_{ij}/p_j
- Acquires a best item by outbidding the current winning trader

Resource Allocation Problem

Exchange Economies

・ロト ・ 理 ト ・ 王 ト ・ 王 ・ つへの

Auction Algorithm

- Fix a bid increment factor $(1 + \epsilon)$.
- Start with low prices
- A trader with sufficient surplus money finds its best commodity a commodity that maximizes v_{ij}/p_j
- Acquires a best item by outbidding the current winning trader
- Raises the price of the acquired commodity by a factor of $(1 + \epsilon)$.

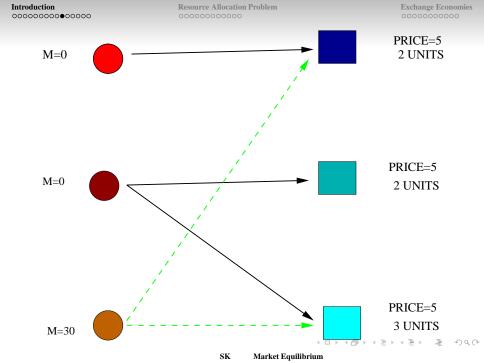
Resource Allocation Problem

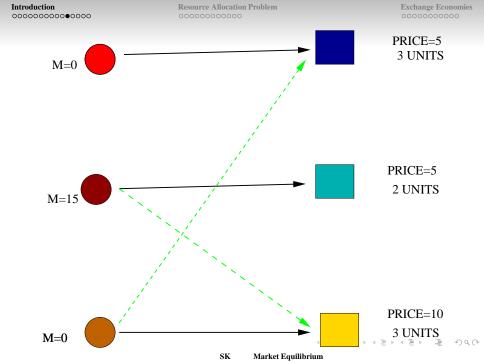
Exchange Economies

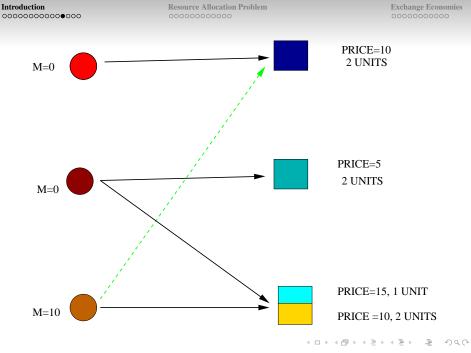
・ロト ・ 理 ト ・ 王 ト ・ 王 ・ つへの

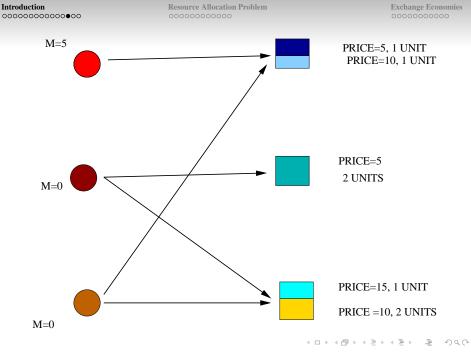
Auction Algorithm

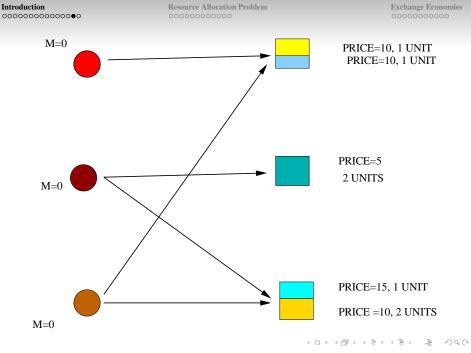
- Fix a bid increment factor $(1 + \epsilon)$.
- Start with low prices
- A trader with sufficient surplus money finds its best commodity a commodity that maximizes v_{ij}/p_j
- Acquires a best item by outbidding the current winning trader
- Raises the price of the acquired commodity by a factor of $(1 + \epsilon)$.
- Stop when all the traders have small surplus











Resource Allocation Problem

Exchange Economies

イロト イロト イヨト イヨト ヨー シック

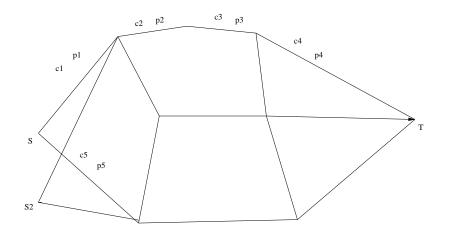
The auction Method convergence to a ϵ -approximate solution in $O((1/\epsilon)poly(n,m))$.

Resource Allocation Problem

Exchange Economies

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへぐ

Resource Allocation Problem

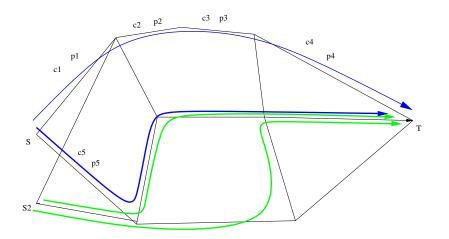


Resource Allocation Problem

Exchange Economies

200

Resource Allocation Problem



Find flows between source-sink pairs with restrictions provided by capacity and expenditure.

Resource Allocation Problem

Exchange Economies

4 日 ト 4 回 ト 4 王 ト 4 王 ト 9 4 (*)

Mathematical Formulation

Graph
$$N = (G(V, E), c, p)$$

 $p : E \to \mathcal{R}+$ is the price function
 $c : E \to \mathcal{Z}+$ is the capacity function

$$\forall (s_i, t_i) \text{ Max } U_i(f_i)$$

s.t. $\forall e = (u, v), \sum_i f_i(u, v) \leq c(u, v)$ (Capacity)
 $\forall i, \forall v \in V \sum_{e=(u,v)} f_i(u, v) = \sum_{e=(v,w)} f_i(v, w)$ (Conservation)
 $\forall i, \sum_e p_e \cdot f_i(e) \leq E_i$ (Endowment)

Resource Allocation Problem

Exchange Economies

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

• Convex Programming Approach Eisenberg-Gale.

Resource Allocation Problem

Exchange Economies

Possible approaches

- Convex Programming Approach Eisenberg-Gale.
- Primal-Dual Methodology Kelly, Vazirani, Jain-Vazirani.

Resource Allocation Problem

Exchange Economies

Possible approaches

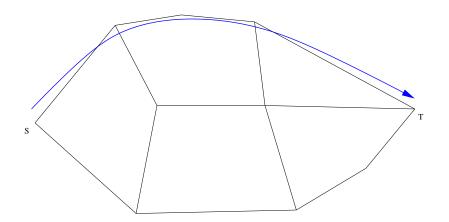
- Convex Programming Approach Eisenberg-Gale.
- Primal-Dual Methodology Kelly, Vazirani, Jain-Vazirani.
- Tattonement Similar to computing multi-commodity flows.

Tattonement

Resource Allocation Problem

Exchange Economies

▲ロト ▲御 ト ▲臣 ト ▲臣 ト ―臣 ― 釣へで

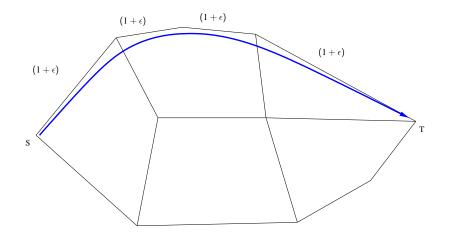


Tattonement

Resource Allocation Problem

Exchange Economies

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへぐ

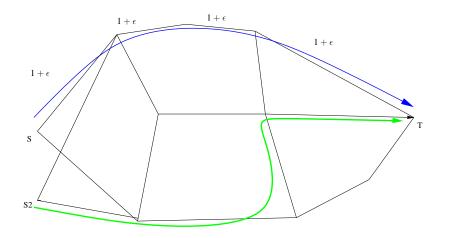


Tattonement

Resource Allocation Problem

Exchange Economies

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

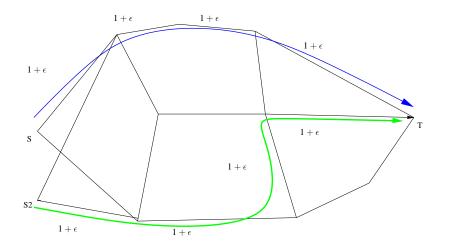


Tattonement

Resource Allocation Problem

Exchange Economies

▲ロト ▲御 ト ▲臣 ト ▲臣 ト ―臣 ― 釣へで

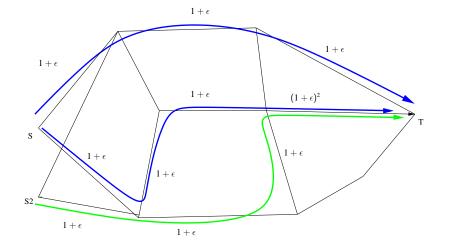


Tattonement

Resource Allocation Problem

Exchange Economies

▲ロト ▲御 ト ▲臣 ト ▲臣 ト ―臣 ― 釣へで



Resource Allocation Problem

Exchange Economies

イロト イロト イヨト イヨト ヨー シック

Does this optimize the utility of each source-sink pair

• Does not allow for a source-sink pair to withdraw flow

Resource Allocation Problem

Exchange Economies

Does this optimize the utility of each source-sink pair

- Does not allow for a source-sink pair to withdraw flow
- We need to optimize at each price point

Resource Allocation Problem

Exchange Economies

・ロト ・ 理 ト ・ 王 ト ・ 王 ・ つへの

Does this optimize the utility of each source-sink pair

- Does not allow for a source-sink pair to withdraw flow
- We need to optimize at each price point
- Use indirect utility functions

Resource Allocation Problem

Exchange Economies

・ロト ・ 理 ト ・ 王 ト ・ 王 ・ つへの

Does this optimize the utility of each source-sink pair

- Does not allow for a source-sink pair to withdraw flow
- We need to optimize at each price point
- Use indirect utility functions

Definition (Indirect utility function)

Trader i:

indirect utility function $\widetilde{u}_i : \Re^n_+ \times \Re_+ \to \Re_+$ gives the maximum utility achievable at given price and income:

$$\widetilde{u}_i(\pi, e) = \max\{u_i(x) \mid x \in \mathcal{K}_i, \pi \cdot x \leq e\}.$$

Resource Allocation Problem

Exchange Economies

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへぐ

• Initialize $p_e = 1$;

Resource Allocation Problem

Exchange Economies

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへぐ

- Initialize $p_e = 1$;
- **Repeat for** r = 1 to N iterations:

Resource Allocation Problem

Exchange Economies

- Initialize $p_e = 1$;
- Repeat for r = 1 to N iterations:
 - 1 Each source-sink pair *i* computes
 - $f_i \in \operatorname{argmax}\{U_i(f_i) \mid f_i \in \mathcal{K}_i, \pi \cdot f_i \leq E_i\}.$

Resource Allocation Problem

Exchange Economies

・ロト ・ 理 ト ・ 王 ト ・ 王 ・ つへの

Algorithmic Approach

- Initialize $p_e = 1$;
- Repeat for r = 1 to N iterations:
 - 1 Each source-sink pair *i* computes
 - $f_i \in \operatorname{argmax}\{U_i(f_i) \mid f_i \in \mathcal{K}_i, \pi \cdot f_i \leq E_i\}.$
 - 2 Compute the aggregate demand $F_e = \sum_i f_i(e)$ and let $\sigma_r = \frac{1}{\max_e F_e}$ where F_e denotes the aggregate demand on edge *e*.

Resource Allocation Problem

Exchange Economies

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Algorithmic Approach

- Initialize $p_e = 1$;
- Repeat for r = 1 to N iterations:
 - 1 Each source-sink pair *i* computes
 - $f_i \in \operatorname{argmax}\{U_i(f_i) \mid f_i \in \mathcal{K}_i, \pi \cdot f_i \leq E_i\}.$
 - 2 Compute the aggregate demand $F_e = \sum_i f_i(e)$ and let $\sigma_r = \frac{1}{\max_e F_e}$ where F_e denotes the aggregate demand on edge *e*.
 - **3** Update price of each edge $e: p_e \leftarrow p_e (1 + \delta \sigma_r F_e)$.

Resource Allocation Problem

Exchange Economies

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Algorithmic Approach

- Initialize $p_e = 1$;
- Repeat for r = 1 to N iterations:
 - 1 Each source-sink pair *i* computes
 - $f_i \in \operatorname{argmax}\{U_i(f_i) \mid f_i \in \mathcal{K}_i, \pi \cdot f_i \leq E_i\}.$
 - 2 Compute the aggregate demand $F_e = \sum_i f_i(e)$ and let $\sigma_r = \frac{1}{\max_e F_e}$ where F_e denotes the aggregate demand on edge *e*.
 - **3** Update price of each edge $e: p_e \leftarrow p_e (1 + \delta \sigma_r F_e)$.
- Output for each *e*: weighted average of $f_i(e)$ (weighted by σ_r)

Resource Allocation Problem

Exchange Economies

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨー ・ つへの

Algorithmic Approach

- Initialize $p_e = 1$;
- Repeat for r = 1 to N iterations:
 - 1 Each source-sink pair *i* computes
 - $f_i \in \operatorname{argmax} \{ U_i(f_i) \mid f_i \in \mathcal{K}_i, \pi \cdot f_i \leq E_i \}.$
 - 2 Compute the aggregate demand $F_e = \sum_i f_i(e)$ and let $\sigma_r = \frac{1}{\max_e F_e}$ where F_e denotes the aggregate demand on edge *e*.
 - **3** Update price of each edge $e: p_e \leftarrow p_e (1 + \delta \sigma_r F_e)$.
- Output for each *e*: weighted average of $f_i(e)$ (weighted by σ_r)
- Output for each edge e: weighted average of p(e) (weighted by σ_r)

Resource Allocation Problem ○○○○○○○○○● Exchange Economies

・ロト ・ 理 ト ・ 王 ト ・ 王 ・ つへの

Why does it Work?

Lemma The outputs $\overline{f_i(e)}$ and \overline{p} satisfy $U_i(\overline{f_i(e)}) \ge \widetilde{u}_i(\overline{p}, E_i)$ for each i $\widetilde{u}_i(\overline{p}, E_i)$ is the indirect utility function for each i.

This critically depends on the convexity of \tilde{u}_i .

Resource Allocation Problem

Exchange Economies

イロト イロト イヨト イヨト ヨー シック

Exchange Economy

Recall:

• a non-empty convex set $\mathcal{K}_i \subseteq \Re^n$ which is the set of all "feasible" allocations that trader *i* may receive

Resource Allocation Problem

Exchange Economies

・ロト ・ 理 ト ・ 王 ト ・ 王 ・ つへの

Exchange Economy

Recall:

- a non-empty convex set $\mathcal{K}_i \subseteq \Re^n$ which is the set of all "feasible" allocations that trader *i* may receive
- a *concave* utility function u_i : K_i → ℜ₊ which represents her preferences for the different bundles of goods, and

Resource Allocation Problem

Exchange Economies

・ロト ・ 理 ト ・ 王 ト ・ 王 ・ つへの

Exchange Economy

Recall:

- a non-empty convex set $\mathcal{K}_i \subseteq \Re^n$ which is the set of all "feasible" allocations that trader *i* may receive
- a *concave* utility function u_i : K_i → ℜ₊ which represents her preferences for the different bundles of goods, and
- an initial endowment of goods $w_i = (w_{i1}, \ldots, w_{in})^\top \in \mathcal{K}_i$.

Resource Allocation Problem

Exchange Economies

・ロト ・ 理 ト ・ 王 ト ・ 王 ・ つへの

Exchange Economy

Recall:

- a non-empty convex set $\mathcal{K}_i \subseteq \Re^n$ which is the set of all "feasible" allocations that trader *i* may receive
- a *concave* utility function u_i : K_i → ℜ₊ which represents her preferences for the different bundles of goods, and
- an initial endowment of goods $w_i = (w_{i1}, \ldots, w_{in})^\top \in \mathcal{K}_i$.
- A market equilibrium is a price vector $\pi \in \Re^n_+$ and bundles $x_i \in \mathcal{K}_i$ so as to:

(i) Maximize Utility subject to budget constraints.

(ii)
$$\sum_i x_i = \sum_i w_i$$
.

Resource Allocation Problem

Exchange Economies

・ロト ・ 理 ト ・ 王 ト ・ 王 ・ つへの

Theorem

The set of all market equilibria in the exchange economy is defined by.

$$\begin{array}{rcl}
\sum_{i} x_{i} &\leq \sum_{i} w_{i} \\
\widetilde{u}_{i}(\pi, \pi \cdot w_{i}) &\leq u(x_{i}) \quad \text{for all } i \\
\pi &\in \Re^{n}_{+} \\
x_{i} &\in \mathcal{K}_{i} \quad \text{for all } i.
\end{array}$$
(8)

Program (8) is convex when, for all *i*,
(i) the function *ũ_i*(π, π ⋅ w_i) is a convex function of π ∈ ℜⁿ₊
(ii) the utility function u_i is concave

Resource Allocation Problem

Exchange Economies

イロト イポト イヨト イヨト ヨー シベル

Convexity of the Indirect Utility Function

Homogenous utility functions u : ℜⁿ₊ → ℜ (of degree one),
 i.e., u(αx) = αu(x) for all α ∈ ℜ₊ and x ∈ ℜⁿ₊

Resource Allocation Problem

Exchange Economies

イロト イロト イヨト イヨト ニヨー りへの

Convexity of the Indirect Utility Function

- Homogenous utility functions $u : \Re^n_+ \to \Re$ (of degree one), i.e., $u(\alpha x) = \alpha u(x)$ for all $\alpha \in \Re^n_+$ and $x \in \Re^n_+$
- The indirect utility function ũ(π, λ) is convex in π for all λ ∈ ℜ₊₊.

Resource Allocation Problem

Exchange Economies

イロト イポト イヨト イヨト ヨー のくぐ

Convexity of the Indirect Utility Function

Homogenous utility functions:

The indirect utility function $\tilde{u}(\pi, \lambda)$ is convex in π for all $\lambda \in \Re_{++}$. homogeneous utility functions of degree one include:

• Linear utilities $u(x) = a \cdot x$

 $a \in \Re^n_+$.

Resource Allocation Problem

Exchange Economies

イロト イポト イヨト イヨト ヨー わへの

Convexity of the Indirect Utility Function

Homogenous utility functions:

The indirect utility function $\tilde{u}(\pi, \lambda)$ is convex in π for all $\lambda \in \Re_{++}$. homogeneous utility functions of degree one include:

- Linear utilities $u(x) = a \cdot x$
- Leontief utilities $u(x) = \min_{j \in S} a_j x_j$ where $S \subseteq \{1, \ldots, n\}$,

 $a \in \Re^n_+$.

Resource Allocation Problem

Exchange Economies

Convexity of the Indirect Utility Function

Homogenous utility functions:

The indirect utility function $\tilde{u}(\pi, \lambda)$ is convex in π for all $\lambda \in \Re_{++}$. homogeneous utility functions of degree one include:

- Linear utilities $u(x) = a \cdot x$
- Leontief utilities $u(x) = \min_{j \in S} a_j x_j$ where $S \subseteq \{1, \ldots, n\}$,
- Cobb-Douglas utilities $u(x) = \prod_j x_j^{a_j}$ assuming $\sum_j a_j = 1$,

 $a \in \Re^n_+$.

Resource Allocation Problem

Exchange Economies

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨー ・ つへの

Convexity of the Indirect Utility Function

Homogenous utility functions:

The indirect utility function $\tilde{u}(\pi, \lambda)$ is convex in π for all $\lambda \in \Re_{++}$. homogeneous utility functions of degree one include:

- Linear utilities $u(x) = a \cdot x$
- Leontief utilities $u(x) = \min_{j \in S} a_j x_j$ where $S \subseteq \{1, \ldots, n\}$,
- Cobb-Douglas utilities $u(x) = \prod_j x_j^{a_j}$ assuming $\sum_j a_j = 1$,
- CES utilities $u(x) = (\sum_j a_j x_j^{\rho})^{1/\rho}$ for $-\infty < \rho < 1$ and $\rho \neq 0$, and nested CES utilities.

 $a \in \Re^n_+$.

Resource Allocation Problem

Exchange Economies

イロト イロト イヨト イヨト ニヨー りへの

Resource allocation utilities

The resource allocation utility $u: \Re^n_+ \to \Re$

$$u(x) = \max\{c \cdot y \mid y \in \Re^k_+, Ay \le x\}.$$
(9)

where k is a positive integer, $A \in \Re^{n \times k}_+$ is a matrix and $c \in \Re^k_+$ be a vector.

• Columns of matrix *A* can be thought of as "objects" that the trader wants to "build".

Resource Allocation Problem

Exchange Economies

・ロト ・ 理 ト ・ 王 ト ・ 王 ・ つへの

Resource allocation utilities

The resource allocation utility $u: \Re^n_+ \to \Re$

$$u(x) = \max\{c \cdot y \mid y \in \Re^k_+, Ay \le x\}.$$
(9)

where k is a positive integer, $A \in \Re^{n \times k}_+$ is a matrix and $c \in \Re^k_+$ be a vector.

- Columns of matrix *A* can be thought of as "objects" that the trader wants to "build".
- A unit of an object *l* needs A_{jl} units of resource (or good) *j* and accrues c_l units of utility.

Resource Allocation Problem

Exchange Economies

イロア 人間 アイヨア イヨア ヨー うくつ

Resource allocation utilities

The resource allocation utility $u: \Re^n_+ \to \Re$

$$u(x) = \max\{c \cdot y \mid y \in \Re^k_+, Ay \le x\}.$$
(9)

where k is a positive integer, $A \in \Re^{n \times k}_+$ is a matrix and $c \in \Re^k_+$ be a vector.

- Columns of matrix *A* can be thought of as "objects" that the trader wants to "build".
- A unit of an object *l* needs A_{jl} units of resource (or good) *j* and accrues c_l units of utility.
- The trader builds y_l units of object *l* such that the total need for resources is at most x and the total utility $c \cdot y$ is maximized.

Resource Allocation Problem

Exchange Economies

・ロト ・ 理 ト ・ 王 ト ・ 王 ・ つへの

Interesting markets

1 Multi-commodity flow markets (in directed or undirected capacitated networks).

Trader *i* wants to send maximum amount of flow from source s_i to sink t_i such that the total cost of routing the flow under the prices π is at most her budget.

The objects here are s_i - t_i paths and the resources are the edges.

Resource Allocation Problem

Exchange Economies

・ロト ・ 理 ト ・ 王 ト ・ 王 ・ つへの

Interesting markets

Multi-commodity flow markets (in directed or undirected capacitated networks).

Trader *i* wants to send maximum amount of flow from source s_i to sink t_i such that the total cost of routing the flow under the prices π is at most her budget.

The objects here are s_i - t_i paths and the resources are the edges.

 2 Steiner-tree markets in undirected capacitated networks. Trader *i* is associated with a subset S_i of nodes and wants to build maximum fractional packing of Steiner trees connecting S_i

Total cost of building under the prices π is at most her budget.

Objects here are Steiner trees (resp. arborescences).

Resource Allocation Problem

A more general framework

Exchange Economies 00000000000

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへぐ

Consider the convex program:

$$\frac{\sum_{i} x_{i}}{\pi} \leq \sum_{i} w_{i} \\
\widetilde{u}_{i}(\pi, \pi \cdot w_{i}) \leq u(x_{i}) \quad \text{for all } i \\
\pi \in \Pi \\
x_{i} \in \mathcal{K}_{i} \quad \text{for all } i.$$
(10)

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨー ・ つへの

A more general framework

Definition (Weak $(1 + \epsilon)$ -approximate market equilibrium)

A price vector $\pi \in \Pi$ and allocation bundles $x_i \in \mathcal{K}_i$ for each trader i

 The utility of x_i to trader i is at least that of the utility-maximizing bundle under prices π: u_i(x_i) ≥ ũ_i(π, π · w_i) for each i,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A more general framework

Definition (Weak $(1 + \epsilon)$ -approximate market equilibrium)

A price vector $\pi \in \Pi$ and allocation bundles $x_i \in \mathcal{K}_i$ for each trader i

- **1** The utility of x_i to trader *i* is at least that of the utility-maximizing bundle under prices π : $u_i(x_i) \ge \tilde{u}_i(\pi, \pi \cdot w_i)$ for each *i*,
- 2 The total demand is at most $(1 + \epsilon)$ times the supply: $\sum_{i} x_{i} \leq (1 + \epsilon) \sum_{i} w_{i}$, and

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

A more general framework

Definition (Weak $(1 + \epsilon)$ -approximate market equilibrium)

A price vector $\pi \in \Pi$ and allocation bundles $x_i \in \mathcal{K}_i$ for each trader i

- **1** The utility of x_i to trader *i* is at least that of the utility-maximizing bundle under prices π : $u_i(x_i) \ge \tilde{u}_i(\pi, \pi \cdot w_i)$ for each *i*,
- 2 The total demand is at most $(1 + \epsilon)$ times the supply: $\sum_{i} x_i \le (1 + \epsilon) \sum_{i} w_i$, and
- **3** The market clears: $\pi \cdot \sum_i w_i = \pi \cdot \sum_i x_i$.

Resource Allocation Problem

Exchange Economies

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへぐ

A more general framework

Initialize
$$p_j = 1$$
 for $1 \le j \le n$.

SK

Resource Allocation Problem

SK

Exchange Economies

A more general framework

1 Initialize
$$p_j = 1$$
 for $1 \le j \le n$.

2 Repeat for
$$r = 1 \dots N = \frac{n}{\delta} \log_{1+\delta} n$$
 iterations:

Market Equilibrium

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへぐ

Resource Allocation Problem

Exchange Economies

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

A more general framework

- **1** Initialize $p_j = 1$ for $1 \le j \le n$.
- 2 Repeat for $r = 1 \dots N = \frac{n}{\delta} \log_{1+\delta} n$ iterations:
 - **1** Announce prices $\pi = \alpha p$.

Resource Allocation Problem

Exchange Economies

A more general framework

- 1 Initialize $p_j = 1$ for $1 \le j \le n$.
- 2 Repeat for $r = 1 \dots N = \frac{n}{\delta} \log_{1+\delta} n$ iterations:
 - 1 Announce prices $\pi = \alpha p$.
 - **2** Each trader *i* computes $x_i \in \operatorname{argmax}\{u_i(x) \mid x \in \mathcal{K}_i, \pi \cdot x \leq \pi \cdot w_i\}$.

(日)

Resource Allocation Problem

Exchange Economies

A more general framework

- 1 Initialize $p_j = 1$ for $1 \le j \le n$.
- 2 Repeat for $r = 1 \dots N = \frac{n}{\delta} \log_{1+\delta} n$ iterations:
 - 1 Announce prices $\pi = \alpha p$.
 - 2 Each trader *i* computes $x_i \in \operatorname{argmax}\{u_i(x) \mid x \in \mathcal{K}_i, \pi \cdot x \leq \pi \cdot w_i\}$.
 - **3** Compute the aggregate demand $X = \sum_i x_i$

$$\sigma_r = \frac{1}{\max_j X_j}.$$

<ロ > < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Resource Allocation Problem

Exchange Economies

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

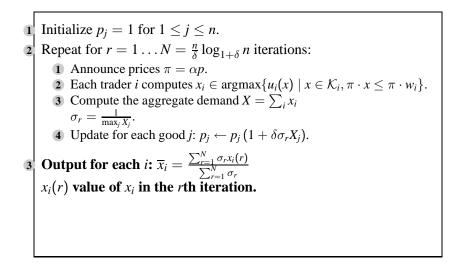
A more general framework

Initialize $p_i = 1$ for $1 \le j \le n$. Repeat for $r = 1 \dots N = \frac{n}{\delta} \log_{1+\delta} n$ iterations: 1 Announce prices $\pi = \alpha p$. **2** Each trader *i* computes $x_i \in \operatorname{argmax}\{u_i(x) \mid x \in \mathcal{K}_i, \pi \cdot x \leq \pi \cdot w_i\}$. 3 Compute the aggregate demand $X = \sum_{i} x_{i}$ $\sigma_r = \frac{1}{\max_i X_i}.$ **4** Update for each good *j*: $p_i \leftarrow p_i (1 + \delta \sigma_r X_i)$.

Resource Allocation Problem

Exchange Economies

A more general framework



SK Market Equilibrium

Resource Allocation Problem

Exchange Economies

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへぐ

A more general framework

Resource Allocation Problem

Exchange Economies

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへぐ

Two properties:

• \overline{x}_i and $\overline{\pi}$ satisfy optimality constraints.

Resource Allocation Problem

Exchange Economies

・ロト ・ 理 ト ・ 王 ト ・ 王 ・ つへの

Two properties:

• \overline{x}_i and $\overline{\pi}$ satisfy optimality constraints.

Lemma The outputs \overline{x}_i and $\overline{\pi}$ satisfy $u_i(\overline{x}_i) \geq \widetilde{u}_i(\overline{\pi}, \overline{\pi} \cdot w_i)$ for each *i*.

Resource Allocation Problem

Exchange Economies

・ロト ・ 理 ト ・ 王 ト ・ 王 ・ つへの

Two properties:

• \overline{x}_i and $\overline{\pi}$ satisfy optimality constraints.

Lemma

The outputs \overline{x}_i and $\overline{\pi}$ satisfy $u_i(\overline{x}_i) \geq \widetilde{u}_i(\overline{\pi}, \overline{\pi} \cdot w_i)$ for each *i*.

• \overline{x}_i satisfies the availability constraint.

Resource Allocation Problem

Exchange Economies

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Two properties:

• \overline{x}_i and $\overline{\pi}$ satisfy optimality constraints.

Lemma

The outputs \overline{x}_i and $\overline{\pi}$ satisfy $u_i(\overline{x}_i) \geq \widetilde{u}_i(\overline{\pi}, \overline{\pi} \cdot w_i)$ for each *i*.

• \overline{x}_i satisfies the availability constraint.

Lemma *The outputs* \overline{x}_i *satisfy* $\sum_i \overline{x}_i \leq \frac{1}{1-2\delta} \sum_i w_i$.

Resource Allocation Problem

Exchange Economies

• Use of indirect utility functions for the Market Equilibirum Problem

Resource Allocation Problem

Exchange Economies

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

- Use of indirect utility functions for the Market Equilibirum Problem
- A tattonement process for solving the MEP problem.