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The results presented here are collaborated with my student Ping Xu at IIT.
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Widespread of Wireless Devices: Need Spectrum
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Traditionally: Fixed Spectrum Allocation

Fixed spectrum allocation
traditionally;
ISM band: industrial,
scientific and medical
(ISM) radio bands.

WLAN: Bluetooth,
802.11
Cordless phones
RFID
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Pros and Cons of Fixed Allocation

Pros: easy to manage

Cons: White Space (spectral, temporal, and spatial)
Even in more congested areas, there is still ample space 1

Dallas – 40 percent
Boston – 38 percent
Seattle – 52 percent
San Francisco – 37 percent.

1from www.tvtechnology.com
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More Spectrum By Technology Changes

The planned switchover to digital television may free up large
areas between 54MHz and 698MHz.

"Battle Heats Up for TV Spectrum White Space Use" –
WIMAX.com

On November 4, 2008 the FCC: unlicensed and free use of TV
white space frequencies for all.

Exact amount depends on
1 Broadcast TV channels going on and off the air
2 Wireless microphone users registering for protected status
3 Changes in White Space rules and regulations
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New Spectrum Usage Technologies

To improve spectrum usage:

Dynamic Spectrum Allocation: allocated when needed
Opportunistic Spectrum Usage: use it when no
interference

Software defined radio,
Cognitive Radio (Licensed Band Cognitive Radio and
Unlicensed Band Cognitive Radio)
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New Spectrum Usage Technologies

To improve spectrum usage:

Dynamic Spectrum Allocation: allocated when needed
Opportunistic Spectrum Usage: use it when no
interference

Software defined radio,
Cognitive Radio (Licensed Band Cognitive Radio and
Unlicensed Band Cognitive Radio)

Challenges of opportunistic spectrum usage:
How to deal with selfish behavior?
Need combine game theory with wireless communication
modeling
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Market Driven Approach

Construct an allocation/auction to assign spectrum

Auctioneer: central authority represents primary users

Bidders: secondary users, selfish but rational

We need determine winners and payments with objectives

Maximize the social efficiency - total valuation of winners ,
or

Maximize the revenue - total payment collected from
bidders.
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Models, models, and models, ,

What is our network model, the bidding model and
more....
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Bidding and Network Model

Primary user U who holds the right of some spectrum channels
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Time-Space model for Single Channel

secondary users
V = {v1, v2, · · · , vn} who wants to
lease the right of some spectrum
channels

arrived at time ai

in some geometry region
D(vi , ri)
for some time period Ti

for some frequencies Fi

with bid bi ,

In summary, a bidding by a user
vi can be written as follows

Bi = [bi , ai , Fi , D(vi , ri), Ti ]
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Objective of Spectrum Allocation/Auction

Find an allocation of spectrum to users, which must be

conflict free in geometry region, time period and
frequencies

maximize the social efficiency
∑m

i=1 xibi , where bi is the
true valuation if the mechanism is truthful.

This problem is obviously NP-hard .
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When should we make decisions?

The decisions could be

offline: make decisions after know all requests;

online: make decisions when requests arrived.
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Next:

Offline allocation model: knows everything.
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Problem Formulation of Offline Model

For notational convenience, we use CRT to denote a version of
problem, where

Channel requirement
S(single-minded), F(flexible-minded), Y(single channel)

Region requirement
O(overlap), U(unit disks), G(general regions)

Time requirement
I(time interval), D(time duration), M(time interval or
duration)

XiangYang Li, xli@cs.iit.edu Efficient Spectrum Allocation and Auction for Wireless Netw orks



Introduction System Model Instantaneous Requests Non-instantaneous Requests Conclusions

Example of An Offline Spectrum Allocation Problem

For example, problem SUI represents

Channel requirement: Single-minded — all or nothing

Region requirement: Unit Disks

Time requirement: Interval of a time period.
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Some Well-known Problems

Problem YOI ⇒ maximum weighted independent set
problem in interval graphs.

Problem YOD ⇒ knapsack problem.

Problem YGI with ei − si ≥ T/2 for each secondary user i
⇒ maximum weighted independent set problem of a disk
graph

Problem YUD ⇒ multi-knapsack problem is a special case

problem SOI with ei − si ≥ T/2 for each secondary user i
⇒ set packing problem.
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Hardness of Offline Allocation

Thus, offline spectrum allocation is NP-hard.

When users required for some subsets of spectrums, no
algorithm can achieve ratio o(

√
m) for social efficiency.

m is the total number of channels.
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Our Results: Offline Spectrum Allocation

When we can make decisions offline, we have, for

problem YOM: 1/2 approximation algorithm

problem YUI: PTAS

problem YUD: 1/9 approximation algorithm

problem YUM: 1/10 approximation algorithm

problem SUI: Θ(
√

m) approximation algorithm

Problem SUD: open

Problem SUM: solved if SUD solved
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Our Results: Offline Spectrum Auction

What happen if users are selfish?
Based on these methods, we designed truthful mechanisms:

Incentive Compatibility : bidding truthfully is a best
choice, regardless of what others do

Individual Rationality : bidding truthfully has non-negative
profit

Here we assume that agents only manipulate bid values.
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Offline is almost solved (not completely , ,);

What will happen if the requests come online and decisions
have to be made soon?

⇒ Online Spectrum Allocation and Auction, ,

XiangYang Li, xli@cs.iit.edu Efficient Spectrum Allocation and Auction for Wireless Netw orks



Introduction System Model Instantaneous Requests Non-instantaneous Requests Conclusions

Offline is almost solved (not completely , ,);

What will happen if the requests come online and decisions
have to be made soon?

⇒ Online Spectrum Allocation and Auction, ,

XiangYang Li, xli@cs.iit.edu Efficient Spectrum Allocation and Auction for Wireless Netw orks



Introduction System Model Instantaneous Requests Non-instantaneous Requests Conclusions

Online Spectrum Allocation Problem

Challenges:

what we will get in future?

should we admit current request(s)?

what if no spare channels, but we have a bid too good to
give up?

How much should every user be charged?
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Measure Performance of Online Algorithms

Definition (Competitive Ratio)

̺(A) = min
I

A(I)

OPT(I)
, where

I is any possible sequence of requests arrival,

A(I) is the profit produced by online algorithm A on I,

OPT(I) is the profit produced by optimum offline algorithm
OPT on I when I is known in advance by OPT.
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Nothing is Known About Requests

Theorem

If we know nothing about future requests, we cannot guarantee
any competitive ratio of any online spectrum allocation method.

Adversary model:

e1 = (2, 0, 2)

e = (M , 1, ∆)
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Something Must Be Known about Spectrum Requests

In this talk, we assume that one of the following is known

time-ratio ∆: the maximum time requirement by any job is
∆ time slots while the minimum one is 1 time slot,
ti ∈ [1,∆].

bid-ratio B: B is defined as the ratio of maximum bid value
to the minimum one, i.e., D = maxi ,j bi/bj .

bid density ratio D: The density di of each request ei is
defined as bi

ti
. D is defined as the ratio of maximum density

to minimum one among all jobs, i.e., D = maxi ,j di/dj .
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Preemption or Non-preemption?

If non-preemption, will such known info (time-ratio, bid-ratio, or
bid density ratio) be enough for good competitive ratio?% known time-ratio ∆,

e1 = (b1 = 1, s1 = 1, t1 = 2), e2 = (b2 = ∞, s2 = 2, t2 = ∆)% bid-ratio B
e1 = (b1 = 1, s1 = 1, t1 = ∞),
e2 = (b2 = B, s2 = 2, t2 = 1), · · · ,
en = (bn = B, sn = n, tn = 1)%bid density ratio D
e1 = (b1 = 2, s1 = 1, t1 = 2),
e2 = (b2 = D∆, s2 = 2, t2 = ∆)
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Thus, without preemption, the competitive ratio of any online
method could be arbitrarily bad (even know some other info).
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Need good online method?

To get bounded worst case competitive ratio, we need
1 Preemption, and
2 some other additional info about time-ratio, bid-ratio, or

bid-density ratio

Is Preemption Free?

XFree: admit the best current choice (simple, ,)

Not-Free: need pay penalty for preempting a spectrum
usage.
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How much should we compensate?

ei = (bi, ai, ti) e

t ′i

First assume that the preempted spectrum usage is
compensated with

γ(bi , ti , t ′i ) = β
t ′i
ti

bi

for a constant β > 0. Here

t ′i is the unserved timeslots of user i

ti is the requested timeslots of user i

bi is the bid by i
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Efficient Methods and Upper bounds

Assume that we know the time-ratio ∆ only

0 ≤ β < 1

β > 1

β = 1
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0 ≤ β < 1: Simple Greedy

ej = (bj, aj , tj) ei = (bi, ai , ti)

t ′j

Greedy Algorithm G<1

1: Select the request ei which has the largest bid among all
coming requests that arrive at time t .

2: If channel is empty, satisfy ei ; Otherwise, satisfy ei by
preempting current request.
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It is Competitive

ej = (bj, aj , tj) ei = (bi, ai , ti)

t ′j

At each time aj , algorithm G<1 makes at least (1 − β)bj

profit.

On the other hand, the optimal algorithm makes at most bj

at each time aj since bj is the largest bid at that time.

Therefore, G<1 is (1 − β)-competitive.
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Efficient Methods and Upper bounds

Assume that we know the time-ratio ∆ only

0 ≤ β < 1

β > 1

β = 1
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Efficient Online Spectrum Allocation with β > 1

ej = (bj, aj , tj) ei = (bi, ai , ti)

t ′j

Greedy Algorithm G>1

1: If the channel is empty, ei will be satisfied anyway.
2: If channel is being used by a request ej , ei preempts ej only

if
bi ≥ 2γ(bj , tj , t ′j )
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Competitive Ratio of G>1 when β > 1

Theorem

Algorithm G>1 is 1
4β

∆−1-competitive.
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When β > 1, what is the upper bound on
competitive ratio of any deterministic method?
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Performance Upper Bound

Theorem

There is no online algorithm with competitive ratio more than
2β

(β−1)2 ∆−1 when β > 1.

Recall that our algorithm G>1 has competitive ratio

1
4β

∆−1.
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Performance Upper Bound (β > 1)

e = (1, 0, ∆)

e1

Figure: Requests arrive at/before time 1

e1 = (β ∆−1
∆ − 1, 1, 1).

Central Authority has to accept e and reject e1.
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Performance Upper Bound (β > 1)

e1

e = (1, 0, ∆)

e2

Figure: Requests arrive at/before time 2

e2 = (β ∆−2
∆ − 1, 2, 1).

Central Authority has to reject e2.
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Performance Upper Bound (β > 1)

e2

e = (1, 0, ∆)

e1 ei· · ·

Figure: Requests arrive at/before time i

ei = (β ∆−i
∆ − 1, i , 1).

Central Authority has to reject ei .
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Performance Upper Bound (β > 1)

e2

e = (1, 0, ∆)

e1 ei· · ·

Figure: Requests arrive at/before time i

Any online algorithm makes at most 1 profit, while the optimal

offline algorithm makes
∑

β−1
β

∆

i=0 β ∆−i
∆ − 1 = (β−1)2

2β
∆ − β−1

2 .

The competitive ratio is no more than 2β

(β−1)2 ∆−1.

XiangYang Li, xli@cs.iit.edu Efficient Spectrum Allocation and Auction for Wireless Netw orks



Introduction System Model Instantaneous Requests Non-instantaneous Requests Conclusions

Efficient Methods and Upper bounds

Assume that we know the time-ratio ∆ only

0 ≤ β < 1

β > 1

β = 1
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What to preempt?

ej = (bj, aj , tj) ei = (bi, ai , ti)

t ′j

Two possible preemption scenarios:

the bid of new request is much larger;

even the new request is later preempted after only one
time slot, the profit made is not small, compared with its bid
and bids of preempted requests.
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Efficient Online Spectrum Allocation with β = 1

Greedy Algorithm GT With Constant c > 1

1: If the channel is empty, ei will be satisfied anyway.
2: If the channel is being used by other request ej , ei

preempts ej if and only if

{

Strong Preemption: bi ≥ c · bj or

Weak Preemption: bi
ti

+
(

bj − γ(bj , tj , t ′j )
)

> ∆− 1
2 bj
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Performance Analysis

Theorem

Algorithm GT is c−1
2c(c+2)∆

− 1
2 -competitive.

When c = 1 +
√

3, competitive ratio is maximized at
√

3

12 + 8
√

3
∆− 1

2 .
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When β = 1, what is the upper bound on
competitive ratio of any deterministic method?
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Performance Upper Bound: First Try

Theorem

There is no online algorithm with competitive ratio more than
2∆− 1

3 .

We will prove by adversary model.
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Performance Upper Bound (β = 1): First Try

e = (1, 0, ∆)

e1

Figure: Requests arrive at/before time 0

e1 = (2∆− 1
3 , 0, 1).

Central Authority has to accept e and reject e1.
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Performance Upper Bound (β = 1): First Try

e = (1, 0, ∆)

e1 e2

Figure: Requests arrive at/before time 1

e2 = (2∆− 1
3 − 1

∆ , 1, 1).
Central Authority has to reject e2.
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Performance Upper Bound (β = 1): First Try

e3

e = (1, 0, ∆)

e1 e2

Figure: Requests arrive at/before time 2

e3 = (2∆− 1
3 − 2

∆ , 2, 1).
Central Authority has to reject e3.
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Performance Upper Bound (β = 1): First Try

· · ·

e = (1, 0, ∆)

e1 e2 e3 ei

Figure: Requests arrive at/before time i − 1

ei = (2∆− 1
3 − i−1

∆ , i − 1, 1).
Central Authority has to reject ei .
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Performance Upper Bound (β = 1): First Try

· · ·

e = (1, 0, ∆)

e1 e2 e3 ei

Figure: Requests arrive at/before time i − 1

Any online algorithm makes at most 1 profit, while the optimal

offline algorithm makes
∑2∆

2
3

i=0 (2∆− 1
3 − i

∆) = 2∆
1
3 + ∆− 1

3 .

The competitive ratio is no more than 2∆− 1
3 .
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Performance Upper Bound (β = 1): Second Try

Theorem

There is no online algorithm with competitive ratio more than 1
ρ

for constant ρ with 1
2∆

1
3 ≤ ρ <

√
2

2 ∆
1
2 .

Thus, the best competitive ratio, for β = 1, is

√
2∆− 1

2

Recall that, our algorithm achieved
√

3

12 + 8
√

3
∆− 1

2 .

We will prove by adversary model.
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Thus, the best competitive ratio, for β = 1, is
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2∆− 1
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Recall that, our algorithm achieved
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12 + 8
√

3
∆− 1

2 .

We will prove by adversary model.
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Performance Upper Bound (β = 1): Second Try

ek

e = (1, 0, ∆)

e1 e2 e3 · · ·

Figure: Requests arrive at/before time k − 1

Similarly, all online algorithm will reject
ei = (2∆− 1

3 − i−1
∆ , i − 1, 1) for i = 1, · · · , k .

Here k is the smallest integer such that
∑k

i=1 bi = Sk > 1.
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Performance Upper Bound (β = 1): Second Try

ek+1

e = (1, 0, ∆)

e1 e2 e3 · · · ek

Figure: Requests arrive at/before time k

Central authority has to reject ek+1 while
bk+1 + k

∆ < 1
ρ
(Sk + bk+1).

bk+1 = 1
∆ +

√
∆2−2ρ2∆

ρ∆ is a feasible value.

XiangYang Li, xli@cs.iit.edu Efficient Spectrum Allocation and Auction for Wireless Netw orks



Introduction System Model Instantaneous Requests Non-instantaneous Requests Conclusions

Performance Upper Bound (β = 1): Second Try

ep

e = (1, 0, ∆)

e1 e2 e3 · · · ek ek+1 · · ·

Figure: Requests arrive at/before time p − 1

Central authority has to reject ep while
bp + p−1

∆ < 1
ρ
(Sk +

∑p−1
i=k+1 bi).

It can be proved by induction that bi ≥ bk+1 = 1
∆ +

√
∆2−2ρ2∆

ρ∆
for all i ≥ k + 1.
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Performance Upper Bound: Second Try

ep

e = (1, 0, ∆)

e1 e2 e3 · · · ek ek+1 · · ·

Figure: Requests arrive at/before time p − 1

Any online algorithm makes at most 1 profit, while the optimal
offline algorithm makes at least

(∆ − k)bk+1 ≥ (∆ − k)( 1
∆ +

√
∆2−2ρ2∆

ρ∆ ).

This profit is always larger than ρ when 1
2∆

1
3 ≤ ρ <

√
2

2 ∆
1
2 .
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If we know some other information instead?

Know the bid ratio B only: design asymptotically optimum
method;

Know the bid density ratio D only: design asymptotically
optimum method;
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If we know some other information instead?

Know the bid ratio B only: design asymptotically optimum
method;

Know the bid density ratio D only: design asymptotically
optimum method;
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With other known info: Bid Ratio B

When β = 1,
1 Designed a method with competitive ratio 1

1+B .

2 Showed that no method guarantees competitive ratio > 1
B .

When β > 1, no method can guarantee any ratio.
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With other known info: Bid Density Ratio D

When β = 1,
1 Designed a method with competitive ratio 1

1+D .

2 Showed that no method guarantees competitive ratio > 2
D .
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With other known info: Bid Density Ratio D

When β > 1,
1 Designed a method with competitive ratio 1

2(β+D) .

2 Showed that no method guarantees competitive ratio
> 2β

(β−1)D .
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More General Penalty Function

We also study the case when the penalty function

γ(bi , ti , t ′i ) = (α + β
t ′i
ti

)bi

We designed asymptotically optimum methods for
1 α + β < 1
2 α + β = 1
3 α + β > 1
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Experiments Setup

In our experiment, we generate random requests with random
bid, time or density requirements.

1 uniformly pick ti ∈ [1,∆]

2 bid bi ∈ [1, 10000].

For algorithm GB,
1 bid randomly in [1, B], and time ti ∈ [1, 1000].

For algorithm GD,
1 bid randomly in [1, ⌊

√
D⌋] and time ti ∈ [1, ⌊

√
D⌋].
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The Achieved Competitive Ratio GT
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The Achieved Competitive Ratio GB
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The Achieved Competitive Ratio GD
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Non-instantaneous Requests

So far, we assumed that

Each request arrived at time ai , asked for ti timeslots
starting from ai .

The request thus must be immediately processed.
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Non-instantaneous Requests

In rest of talk, we assume that

Each request arrived at time ai , asked for ti timeslots
starting from si with si ≥ ai + α.

The request should be processed within γ.

We call it (β, α, γ) problem.

ei = (bi, ai, si , ti)

≥ α

γ

t si
ti
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What do we know at time t?

All requests Ra(t)

t t + γ

γ

γ

γ
e4

e2

e1

e3

e5

Ra(t)

t − γ

α

γ
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What do we know at time t?

All requests R(t) ⊆ Ra(t)

t t + γ

γ

γ

γ
e4

e2

e1

e3

e5

R(t)

t − γ

α

γ
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Candidate Requests Set

Definition (Strong Candidate Requests Set)

A strong candidate requests set at time t , denoted as C1(t), is a
subset of requests from R(t) that has the largest total bids if
C1(t) is allowed to run without preemption, from time t − γ + α
to timeslots at most t + α + ∆.

For set C1(t), let P(C1(t), t ′) denote the profit made from C1(t) if
these requests are admitted and then possibly being
preempted at a time-slot t ′.
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Candidate Requests Set

Definition (Weak Candidate Requests Set)

A weak candidate requests set at time t , denoted as C2(t), is a
subset of requests from R(t) that has the largest total bids if
C2(t) is allowed to run during time interval [t − γ + α, t + α]
(thus, these requests may be preempted by some requests
started on time-slot t + α + 1).
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Candidate Requests Sets

candidate requests sets C1(t), C2(t) ⊆ R(t)

t t + γ

e4

b2 = 20

b1 = 10

b3 = 13

e5

C1(t)

t − γ

γ

α

t + γ + ∆

γ

t t + γ

e4

b2 = 20

b1 = 10

b3 = 13

e5

t − γ

γ

α

γ

t + α

C2(t)

Strong C1(t) ⊆ R(t) Weak C2(t) ⊆ R(t)
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Efficient Methods

1 for β = 1
2 for β > 1
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Efficient Methods for β = 1

Input : A constant parameter c1 > 1, an adjustable control
parameter c2 > 0, C1(t), and C2(t).

Current candidate requests set C from time t ′ < t . Here
C = C1(t ′) if C1(t ′) strongly preempted others, or C = C2(t ′) if
C2(t ′) strongly preempted others.

Output : new current candidate requests set C.
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Efficient Methods for β = 1

1: if C = C2(t ′) then
2: if t − t ′ ≥ γ then
3: C = ∅;
4: else
5: Accept earliest request ei ∈ C2(t)
6: if C = C1(t ′) or ∅ then
7: if C1(t) ≥ c1 · C1(t ′) then
8: C = C1(t); Accept earliest request ei ∈ C1(t)
9: else if C2(t) + P(C1(t ′), t) ≥ c2 · C1(t) then

10: C = C2(t); Accept earliest request ei ∈ C2(t)
11: else
12: Accept request ei ∈ C1(t ′) such that si = t − γ + α.
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Competitive Ratio when β = 1

Theorem

Algorithm G is Θ(
√

γ + 1∆− 1
2 )-competitive when γ = O(∆).
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Efficient Methods

1 for β = 1
2 for β > 1
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Efficient Online Method H when β > 1

Input : A constant parameter c > 1 + β, γ, α, ∆, Ra(t), R(t),
C1(t). Previous current candidate requests set C = C1(t ′) where
t ′ < t . Here C1(t ′) may be empty.
Output : whether requests submitted at time t − γ will be
admitted and new current candidate requests set C.

1: if C1(t) ≥ c · C1(t ′) then
2: C = C1(t);
3: Accept request ei ∈ C1(t) such that ai = t − γ.
4: else
5: Accept request ei ∈ C1(t ′) such that ai = t − γ.
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Competitive Ratio

Theorem

Algorithm H is (c−β−1)
c2

γ+1
∆+γ+1 competitive.

When γ = a∆ − 1, it is easy to show that

Theorem
Method H has a competitive ratio at least, by choosing
c = 2(1 + β),

a
4(1 + a)(1 + β)

.
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Upper bounds

What is the best we can do?
1 for β = 1
2 for β > 1
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Performance Upper Bound (β = 1): First Try

e1

e = (1, 0, α, ∆)

α time slots

α time slots

Figure: Requests arrive at/before time 0

e1 = ( 3
√

2(γ + 1)∆− 1
3 , 0, α, 1).

Central Authority has to accept e and reject e1.
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Performance Upper Bound (β = 1): First Try

e2e1

e = (1, 0, α, ∆)

α time slots

α time slots

γ time slots

Figure: Requests arrive at/before time γ + 1

e2 = ( 3
√

2(γ + 1)∆− 1
3 − γ+1

∆ , γ + 1, γ + 1 + α, 1).
Central Authority has to reject e2.
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Performance Upper Bound (β = 1): First Try

eie1

e = (1, 0, α, ∆)

α time slots

α time slots

γ time slots e2 · · ·

Figure: Requests arrive at/before time (i − 1)(γ + 1)

ei = ( 3
√

2(γ + 1)∆− 1
3 − (i−1)(γ+1)

∆ , (i−1)γ+1, (i−1)(γ+1)+α, 1).
Central Authority has to reject ei .
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Performance Upper Bound (β = 1): First Try

eie1

e = (1, 0, α, ∆)

α time slots

α time slots

γ time slots e2 · · ·

Figure: Requests arrive at/before time (i − 1)(γ + 1)

Any online algorithm makes at most 1 profit, while the optimal

offline algorithm makes
∑n

i=1 bi ≥ ∆
1
3

3
√

2(γ+1)
profit (bn > 0).

The competitive ratio is no more than 3
√

2(γ + 1)∆− 1
3 .
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Performance Upper Bound (β = 1): Second Try

ek

e = (1, 0, α, ∆)

α time slots

α time slots

· · ·

Figure: Requests arrive at/before time (k − 1)(γ + 1)

Similarly, all online algorithm will reject
ei = ( 3

√

2(γ + 1)∆− 1
3 − (i−1)(γ+1)

∆ , (i−1)γ+1, (i−1)(γ+1)+α, 1)
for i = 1, · · · , k .
Here k is the smallest integer such that

∑k
i=1 bi = Sk > 1.
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Performance Upper Bound (β = 1): Second Try

ek+1

e = (1, 0, α, ∆)

α time slots

α time slots

· · · ek γ time slots

Figure: Requests arrive at/before time k(γ + 1)

Central authority has to reject ek+1 while
bk+1 + k(γ+1)

∆ < 1
c (Sk + bk+1).

bk+1 = 1
∆ +

√
∆2−2(γ+1)c2∆

c∆ is a feasible value.
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Performance Upper Bound (β = 1): Second Try

ep

e = (1, 0, α, ∆)

α time slots

α time slots

· · · ek γ time slots ek+1 · · ·

Figure: Requests arrive at/before time (p − 1)(γ + 1)

Central authority has to reject ep while
bp + (p−1)(γ+1)

∆ < 1
c (Sk +

∑p−1
i=k+1 bi).

It can be proved by induction that

bi ≥ bk+1 = 1
∆ +

√
∆2−2(γ+1)c2∆

c∆ for all i ≥ k + 1.
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Performance Upper Bound (β = 1): Second Try

ep

e = (1, 0, α, ∆)

α time slots

α time slots

· · · ek γ time slots ek+1 · · ·

Figure: Requests arrive at/before time (p − 1)(γ + 1)

Any online algorithm makes at most 1 profit, while the optimal
offline algorithm makes at least

(∆ − k)bk+1 ≥ (∆ − k)( 1
∆ +

√
∆2−2(γ+1)c2∆

c∆ ).
This profit is always larger than c when
√

2(γ + 1)∆− 1
2 < 1

c ≤ 3
√

2(γ + 1)∆− 1
3 .
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Upper bounds

What is the best we can do?
1 for β = 1
2 for β > 1
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Performance Upper Bound (β > 1)

e = (1, 0, α, ∆)α time slots

α + γ time slots e1

Figure: Requests arrive at/before time γ + 1

e1 = (β − 1 − β(γ+1)
∆ , γ + 1, γ + 1 + α, 1).

Central Authority has to accept e and reject e1.
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Performance Upper Bound (β > 1)

e2

e = (1, 0, α, ∆)α time slots

α + γ time slots e1 γ time slots

Figure: Requests arrive at/before time 2(γ + 1)

e2 = (β − 1 − 2β(γ+1)
∆ , 2(γ + 1), 2(γ + 1) + α, 1).

Central Authority has to reject e2.
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Performance Upper Bound (β > 1)

· · ·

e = (1, 0, α, ∆)α time slots

α + γ time slots e1 γ time slots e2 ei

Figure: Requests arrive at/before time i(γ + 1)

ei = (β − 1 − iβ(γ+1)
∆ , i(γ + 1), i(γ + 1) + α, 1).

Central Authority has to reject ei .
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Performance Upper Bound (β > 1)

· · ·

e = (1, 0, α, ∆)α time slots

α + γ time slots e1 γ time slots e2 ei

Figure: Requests arrive at/before time i(γ + 1)

Any online algorithm makes at most 1 profit, while the optimal

offline algorithm makes
∑n

i=1 bi ≥ (β−1)2

2β(γ+1)∆ (bn > 0).

The competitive ratio is no more than 2β(γ+1)
(β−1)2 ∆−1.
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Simulation Studies

1 Competitive Ratios
2 Efficiency ratio
3 Spectrum utilization
4 Compared with Simple Greedy Methods

XiangYang Li, xli@cs.iit.edu Efficient Spectrum Allocation and Auction for Wireless Netw orks



Introduction System Model Instantaneous Requests Non-instantaneous Requests Conclusions

Competitive ratios
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(a) Delay Factor γ = 0, (b) Delay Factor γ = 20,

Figure: The competitive ratios of method G in various cases.
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Competitive ratios

0 20 40 60 80 100
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Delay Factor γ

C
om

pe
tit

iv
e 

R
at

io

 

 

1,000 requests
5,000 requests
10,000 requests

0 20 40 60 80 100
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Delay Factor γ

C
om

pe
tit

iv
e 

R
at

io

 

 

1,000 requests
5,000 requests
10,000 requests

(c) Time Ratio ∆ = 20, (d) Time Ratio ∆ = 100.

Figure: The competitive ratios of method G in various cases.
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Efficiency Ratios
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(a) Time Ratio ∆ = 20, (b) Time Ratio ∆ = 100,

Figure: The efficiency ratios of our mechanism in various cases.
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Efficiency Ratios
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(c) Delay Factor γ = 0, (d) Delay Factor γ = 60

Figure: The efficiency ratios of our mechanism in various cases.
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Spectrum Utilization
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(a) Delay Factor γ = 0, (b) Delay Factor γ = 20

Figure: The spectrum utilization ratios of method G in various cases.

XiangYang Li, xli@cs.iit.edu Efficient Spectrum Allocation and Auction for Wireless Netw orks



Introduction System Model Instantaneous Requests Non-instantaneous Requests Conclusions

Compared with other methods
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(a) Delay Factor γ = 0, (b) Delay Factor γ = 20,

Figure: Compare algorithm G with two simple greedy algorithms.
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Compared with other methods
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Figure: Compare algorithm G with two simple greedy algorithms.
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Summary

In this talk, we studied online spectrum allocation for wireless
networks.

1 Instaneous Requests
1 Designed efficient methods for β < 1, β = 1 and β > 1
2 Present upper bounds for each of these cases.
3 General penality function and conflict among nodes
4 Designed truthful auction mechanisms (only manipulate bid

b)
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Summary

In this talk, we studied online spectrum allocation for wireless
networks.

1 Instaneous Requests
2 Requests in advance

1 Designed efficient methods for β < 1, β = 1 and β > 1
2 Find that α not affects performance (α > γ)
3 Present upper bounds for each of these cases.
4 General penality function and conflict among nodes
5 Designed auction mechanisms (only manipulate bid b),

when each users will bid b′

i ≥ bi
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Future Work

1 Design allocation methods when we know probability
distributions of requests (bid value, arrival time, and
duration)

2 Design truthful online mechanisms (worst case and
expected truthful)

3 Multiple channels for allocation (partial results done)
4 More general penality functions (partial results done)
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Thanks for your attention.

Questions and Comments?
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