MATH 474 – Probability and Statistics

Course Description from Bulletin: Elementary probability theory including discrete and continuous distributions, sampling, estimation, confidence intervals, hypothesis testing, and linear regression. (3-0-3)

Enrollment: Not applicable for AM majors. Credit not granted for both MATH 474 and MATH 475

Textbook(s): Walpole, Meyers, Meyers, Ye, *Probability and Statistics for Engineers and Scientists*, 7th ed., Prentice Hall

Other required material: None

Prerequisites: MATH 251

Objectives:

- 1. Students will learn basic rules of probability, basic counting techniques, and be able to compute and interpret means and variances.
- 2. Students will learn discrete random variables such as the binomial, the geometric, the negative binomial, the hypergeometric and the Poisson.
- 3. Students will explore continuous random variables such as the uniform, the gamma (which includes the exponential and the chi-square) and the normal. Applications such as the normal approximation via the central limit theorem to the binomial will be discussed.
- 4. Students will learn point and interval estimation for various parameters. The parameters will include the population mean and variance and the binomial probability of a success. After exploring the one sample situation the two sample case will also be covered. Also prediction intervals, for future observations, will be explored.
- 5. Students will explore hypothesis testing of various parameters for both one sample and two. The parameters are those included in our confidence interval estimation.

Lecture schedule: 3 50 minute (or 2 75 minute) lectures per week

Course Outline:		
1.	Probability	4
2.	Random variables and probability distributions	5
3.	Mathematical Expectation	5
4.	Some discrete probability distributions	5
5.	Some continuous probability distributions	5
6.	Functions of random variables, Moments	4
7.	Random sampling, Data description, and Fundamental sampling distributions	5
8.	One- and two- sample estimation problems	5
9.	One- and two- sample tests of hypothesis	4

Assessment:	Homework	20-30%
	Quizzes/Tests	40-50%
	Final Exam	20-30%

Syllabus prepared by: Andre Adler and Art Lubin **Date**: 12/17/05