Light Spanners in Weighted Graphs with Forbidden Minors

Papa Amar Sissokho Illinois State University

Abstract

Given an edge weighted graph G with n vertices and no K_r -minor and a small positive ϵ , we show that a simple greedy algorithm (of Althöfer et al.) finds a spanning subgraph approximating all shortest-path distances within a factor of $1+\epsilon$, and with total edge weight at most $O((r\sqrt{\log r} \cdot \log n)/\epsilon)$ times the weight of a minimum spanning tree. This result implies a quasi-polynomial time approximation scheme (QPTAS) for the traveling salesman problem (TSP) in such graphs, with running time $n^{O((r^4\sqrt{\log r} \cdot \log n)/\epsilon^2)}$.

Our analysis uses the concept of "gap number," and it shows that a graph with gap number $\Omega(r\sqrt{\log r} \cdot \log n)$ has a K_r -minor. We also show that this dependence on n is nearly tight, by exhibiting graphs with no K_6 -minor (apex graphs) and detour gap number $\Omega((\log n)/\log \log n)$.

As a step toward eliminating the $\log n$ factors in the first paragraph, we propose a generalized gap number, now depending on ϵ , and we show that it remains bounded for apex graphs, circular-arc graphs, and some similar graph families.

This is a joint work with M. Grigni.

Definition: Let G be a connected graph. We define i)

$$gap(e) \stackrel{\text{def}}{=} d_{G-e}(u,v) - w(e) \quad \text{and} \quad gap(G,T) \stackrel{\text{def}}{=} \max_{w} \frac{\sum gap(e)|e \in G - T\}}{w(T)},$$

where w ranges over nonnegative edge-weighting on G for which T = MST(G). ii)

$$\operatorname{gap}(G) \stackrel{\text{def}}{=} \max_{T} \operatorname{gap}(G, T),$$

where T ranges over all spanning trees of G.

Definition: A *detour* is a pair (P, e) where e is an edge and P is a path such that e + P is a simple cycle (so, P connects the endpoints of e).

We can interpret gap(G, T) as the value of a Linear Program. In such case, we say *detour gap number* instead of *gap number*. However, the two notions are equivalent.