Gaussian Processes: Questions and Answers

Mike McCourt

Meshfree Seminar
Illinois Institute of Technology
June 4, 2013
Outline

1. Fundamental Problem: Approximation Theory
2. Fundamental Problem: Gaussian Processes
3. Comparing Gaussian Processes and Approximation Theory
4. Hilbert-Schmidt SVD for Gaussian Processes
5. HS SVD Application: Covariance Matrix Determinant
6. HS SVD Application: LOOCV Shape Parameter Optimization
7. Summary
Kernel-based Interpolation

Given data \((x_i, y_i)_{i=1}^N\), use a data-dependent linear function space

\[s_f(x) = \sum_{j=1}^N c_j K(x, x_j), \quad x \in \Omega \subseteq \mathbb{R}^d \]

with \(K : \Omega \times \Omega \rightarrow \mathbb{R}\) a positive definite reproducing kernel.
Kernel-based Interpolation

Given data \((x_i, y_i)_{i=1}^{N}\), use a data-dependent linear function space

\[
s_f(x) = \sum_{j=1}^{N} c_j K(x, x_j), \quad x \in \Omega \subseteq \mathbb{R}^d
\]

with \(K: \Omega \times \Omega \to \mathbb{R}\) a positive definite reproducing kernel.

To find \(c_j\) solve the interpolation equations

\[
s_f(x_i) = f(x_i) = y_i, \quad i = 1, \ldots, N.
\]

Leads to linear system \(Kc = y\) with symmetric positive definite – often ill-conditioned – system matrix

\[
K_{ij} = K(x_i, x_j), \quad i, j = 1, \ldots, N.
\]
Kernel-based Interpolation

The goal of kernel-based interpolation is to produce this function \(s_f \).

Given the data locations \(\{x_i\}_{i=1}^N \), the function \(s_f \) is defined by the \(c_j \) coefficients.

These coefficients are our *solution* to the interpolation problem.

With them, we can evaluate our interpolant at any location \(x \in \Omega \).

We can also evaluate a linear operator on \(\mathcal{L} \) to \(s_f \) by applying it to the kernels: \(\mathcal{L}K(\cdot, x_i) \).
Gaussian Processes

Definition

y_x is a Gaussian process if, for a choice of distinct locations $\{x_i\}_{i=1}^N$ in Ω, the random vector

\[
y = \begin{pmatrix}
y_{x_1} \\
\vdots \\
y_{x_N}
\end{pmatrix}
\]

has a multivariate normal distribution with mean vector $\mu = E(y)$ and covariance matrix $K = \text{cov}(y, y)$.

We will write $y \sim N(\mu, K)$ to indicate the multivariate normal with mean μ and covariance K.
Gaussian Processes

Density Function

If \(y \sim N(\mu, K) \), the probability density function is

\[
p(y; \mu, K) = \frac{1}{(2\pi)^{d/2} \det K} \exp \left(-\frac{1}{2} (y - \mu)^T K^{-1} (y - \mu) \right)
\]

This can also be called the likelihood function?
Fundamental Problem: Gaussian Processes

Gaussian Processes

Density Function

If $y \sim N(\mu, K)$, the probability density function is

$$p(y; \mu, K) = \frac{1}{(2\pi)^{d/2} \det K} \exp \left(-\frac{1}{2} (y - \mu)^T K^{-1} (y - \mu) \right)$$

This can also be called the likelihood function?

Therefore, a Gaussian process is uniquely defined by its mean and covariance functions

$$\mu(x) = \mathbb{E} y_x, \quad \text{and} \quad K(x, z) = \text{cov}(y_x, y_z).$$

We will write $y_x \sim GP(\mu, K)$ for such a Gaussian process.
Fundamental Problem: Gaussian Processes

Gaussian Processes

Density Function

If \(y \sim N(\mu, K) \), the probability density function is

\[
p(y; \mu, K) = \frac{1}{(2\pi)^{d/2} \det K} \exp \left(-\frac{1}{2} (y - \mu)^T K^{-1} (y - \mu) \right)
\]

This can also be called the likelihood function?

Therefore, a Gaussian process is uniquely defined by its mean and covariance functions

\[
\mu(x) = \mathbb{E} y_x, \quad \text{and} \quad K(x, z) = \text{cov}(y_x, y_z).
\]

We will write \(y_x \sim GP(\mu, K) \) for such a Gaussian process.

Question

What is the meaning of a singular \(K \) (Factor Analysis)?
Gaussian Processes: Goal

In practice, we assume that data \(\{ x_i, y_{x_i} \}^{N}_{i=1} \) is generated by a Gaussian process such that \(y \sim N(\mu, \Sigma) \).

Based on this, we may be interested in many things:

- Making predictions of unobserved values,
- Estimating the mean \(\mu(x) \) of the process, or
- Determining confidence for predictions.
In practice, we assume that data \(\{x_i, y_{x_i}\}_{i=1}^{N} \) is generated by a Gaussian process such that \(y \sim N(\mu, \Sigma) \).

Based on this, we may be interested in many things:

- Making predictions of unobserved values,
- Estimating the mean \(\mu(x) \) of the process, or
- Determining confidence for predictions.

Question

Are we interested in estimating the covariance of the process?
Approximation Theory

Your data \(\{x_i, y_i\}_{i=1}^N \) are the values of some function \(f \), possibly contaminated by noise. Your job is to reconstruct a good approximation \(s_f \) which can be used in place of \(f \).

- We assume that a deterministic function generated the data.
 - There may be some stochastic noise, but \(f \) is deterministic.
- Values in the convex hull of \(\{x_i\}_{i=1}^N \) can be interpolated using \(s_f \).
 - In the cardinal basis, these are a linear combination of the \(\{y_i\}_{i=1}^N \) values. Without the cardinal basis, we use \(K(\cdot, x_j) \) and \(c_j \), \(1 \leq j \leq N \).
- Our interpolant \(s_f \) can serve as a **surrogate** for \(f \) in future computations, such as optimization or integration.
Gaussian Processes

Your data \(\{x_i, y_{x_i}\}_{i=1}^{N} \) are the values of one realization of \(y_x \sim GP(\mu, K) \). Your job is to use the values you are given to make predictions for \(y_{x_0} \) at as yet unobserved values \(x_0 \in \Omega \).

- We assume that a stochastic process generated the data.
 - There may be a deterministic component, as we will see later.
- Predictions can be made for any values in \(\Omega \).
 - The confidence with which we can make predictions is a function of (among other things) the design \(\{x_i\}_{i=1}^{N} \).
- The likelihood function gives a mechanism for determining “optimal” \(\mu \) and \(K \) functions.
Overlap Between Statistics and Analysis

Despite these different approaches, predicting unseen values x may actually be identical for both Gaussian Processes and kernel interpolation.

Kernel Interpolation

Recall the interpolation system $Kc = y$, which defines the unique coefficients c which interpolate the data for the chosen basis. Call

$$k(x)^T = (K(x, x_1), \cdots, K(x, x_N)).$$

If K is invertible, then unknown x can be interpolated as

$$s_f(x) = \sum_{j=1}^{N} c_j K(x, x_j) = k(x)^T c = k(x)^T K^{-1} y.$$

The situation for Gaussian Processes requires a lot more work.
Overlap Between Statistics and Analysis

To make predictions, we will consider two random vectors:

1. the vector y at the points $\{x_i\}_{i=1}^N$, and
2. a (one element) vector y_{x_0} which is our prediction at the point x_0.

Jointly, these have the normal distribution

$$
\begin{pmatrix}
 y \\
 y_{x_0}
\end{pmatrix}
\sim
\mathcal{N}
\left(
\begin{pmatrix}
 \mu \\
 \mu(x_0)
\end{pmatrix},
\begin{pmatrix}
 K & \mathbf{k}(x_0) \\
 \mathbf{k}(x_0)^T & K(x_0, x_0)
\end{pmatrix}
\right).
$$

Here we have assumed that K is a symmetric kernel. We will denote the covariance matrix above as \tilde{K}.

Prediction

To make our prediction we need the distribution of $y_{x_0} | y$.

Predictions for Gaussian Processes

With a whole lot of work (See Appendix A), we can show that

\[y_{x_0} | y \sim N \left(\mu(x_0) + k(x_0)^T K^{-1}(y - \mu), K(x_0, x_0) - k(x_0)^T K^{-1} k(x_0) \right), \]

so the expected value is

\[E y_{x_0} | y = \mu(x_0) + k(x_0)^T K^{-1}(y - \mu). \]

That is our prediction for future values \(x \) given \((y_{x_i}, x_i)_{i=1}^N \).

Note

We will just use \(x \) rather than \(x_0 \) from now on. This is a bit ambiguous since \(y_x \) is how we denote the Gaussian Process as well. I need to think about how to handle this in general.
Matching the Predictions

For the kernel interpolation setting, our prediction for x is

$$s_f(x) = k(x)^T K^{-1} y,$$

but for the Gaussian Processes setting we would predict

$$E y_x | y = \mu(x) + k(x)^T K^{-1}(y - \mu).$$

The Gaussian Process prediction looks much more complicated.
Matching the Predictions

For the kernel interpolation setting, our prediction for x is

$$s_f(x) = k(x)^T K^{-1} y,$$

but for the Gaussian Processes setting we would predict

$$E y_x | y = \mu(x) + k(x)^T K^{-1} (y - \mu).$$

The Gaussian Process prediction looks much more complicated.

If we choose to restrict the class of Gaussian Processes we will consider to those with $\mu(x) \equiv 0$, then both predictions coincide.

Question

When we assume that $y_x \sim GP(0, K)$, both methods will yield the same predictions. Does that mean both methods are equivalent?
Distinct Differences

In what ways are these methods different, despite making the same predictions?

- **Kernel methods**
 - The interpolation points need not be equal to the kernel centers.
 - The kernels need not be positive definite.
 - Derivatives of s_f can be computed directly.

- **Gaussian processes**
 - The (co)variance of our prediction is $K(x, x) - k(x)^T K^{-1} k(x)$.
 - We don’t need to assume that $\mu(x) = 0$.
 - The likelihood function p helps quantify the role of K.

There is also a disconnect in terminology which can slow the movement of data between communities.
The variance of our (zero mean) prediction $y_x|y$ is $K(x, x) - k(x)^TK^{-1}k(x)$. This value comes from the assumption that y and y_x have a joint normal distribution.

This term is sometimes referred to as the **Kriging variance**, because the process of fitting spatial data is sometimes called Kriging.
Mismatched Jargon

The variance of our (zero mean) prediction $y_x | y$ is $K(x, x) - k(x)^T K^{-1} k(x)$. This value comes from the assumption that y and y_x have a joint normal distribution.

This term is sometimes referred to as the Kriging variance, because the process of fitting spatial data is sometimes called Kriging.

In a totally different setting, the power function is defined as

$$P(x) = \sqrt{K(x, x) - k(x)^T K^{-1} k(x)},$$

which has a relationship to the native space norm derived by K.

This value arises in native space norm error estimates for kernel interpolants.
Mismatched Jargon
Some of the most popular kernels are so-called Radial Basis Functions. These kernels satisfy

\[K(x, z) = \phi(\|x - z\|). \]

Kernels of this type are easier to work with because, among other reasons, they are translation invariant.
Mismatched Jargon

Some of the most popular kernels are so-called Radial Basis Functions. These kernels satisfy

\[K(x, z) = \phi(||x - z||). \]

Kernels of this type are easier to work with because, among other reasons, they are translation invariant.

Gaussian Process users may want similar properties for their covariance function:

\[K(x + h, x) = \text{cov}(y_{x+h}, y_x) \]

is independent of \(x \), but the term often used is stationary. A stationary process must have constant mean.

In this setting, we may see the use of an autocovariance function:

\[\gamma(h) = \text{cov}(y_{x+h}, y_x). \]

which means that \(y_x \sim N(\mu, \gamma(0)) \) for constant \(\mu \).
Recall the Hilbert-Schmidt SVD of the interpolation matrix K as introduced by Dr. Fasshauer last week:

$$K = \psi \Lambda_1 \phi_1^T.$$

The Λ_1 matrix contains the first N Hilbert-Schmidt eigenvalues in descending order and the ψ and ϕ_1 matrices are generated using the eigenfunctions.

This decomposition moves as much of the ill-conditioning as possible to the Λ_1 matrix.

Let’s take a look at how this plays a role in the stability of Gaussian Processes.
Hilbert-Schmidt SVD in Pieces
Recall the structure of the decomposition

\[K = \Phi \left(\begin{array}{c} 1 \\ \Lambda_2 \Phi_2^T \Phi_1^{-T} \Lambda_1^{-1} \end{array} \right) \Lambda_1 \Phi_1^T \]

The data-dependence of the \(\psi_j \) basis is isolated to the “correction” term, meaning if we define

\[\phi(x)^T = (\varphi_1(x), \cdots, \varphi_M(x)) \]

we can write our kernel basis using the HS SVD

\[k(x)^T = \phi(x)^T \left(\begin{array}{c} 1 \\ \Lambda_2 \Phi_2^T \Phi_1^{-T} \Lambda_1^{-1} \end{array} \right) \Lambda_1 \Phi_1^T = \psi(x)^T \Lambda_1 \Phi_1^T, \]

where we have substituted in the stable basis

\[\psi(x)^T = (\psi_1(x), \cdots, \psi_N(x)). \]
Computing Predictions

Our prediction for unobserved values of our Gaussian process is

$$E_y(x | y) = \mu(x) + k(x)^T K^{-1}(y - \mu).$$

Substituting the HS SVD gives

$$E_y(x | y) = \mu(x) + \psi(x)^T \Lambda_1 \Phi_1^T (\psi \Lambda_1 \Phi_1^T)^{-1} (y - \mu),$$

$$= \mu(x) + \psi(x)^T \Lambda_1 \Phi_1^T \Phi_1^{-T} \Lambda_1^{-1} \psi^{-1} (y - \mu),$$

$$= \mu(x) + \psi(x)^T \psi^{-1} (y - \mu),$$

which shows that by establishing the stable basis we can eliminate the ill-conditioning (caused by Λ_1^{-1}) in the predictions.
Likelihood functions for Gaussian Processes

As described earlier, the likelihood function associated with $y_x \sim GP(\mu, K)$ provides an opportunity to optimize (by some standard) the choice of covariance kernel.

Maximizing the likelihood function

$$p(y; \mu, K) = \frac{1}{\sqrt{(2\pi)^N \det K}} \exp \left(-\frac{1}{2} (y - \mu)^T K^{-1} (y - \mu) \right)$$

would find the kernel that most likely generated the data.
Likelihood functions for Gaussian Processes

Often times we want to maximize p independent of any scaling of K.

In the interpolation setting, such a scaling $\sigma > 0$ of K is immaterial, but for Gaussian Processes this scaling can affect the prediction variance, and in turn the likelihood.

The effect of the process variance on the likelihood is

$$p(y; \mu, \sigma K) = \frac{1}{\sqrt{(2\pi\sigma)^N \det K}} \exp \left(-\frac{1}{2\sigma} (y - \mu)^T K^{-1} (y - \mu) \right).$$
Likelihood functions for Gaussian Processes

In Appendix B, we substitute in the optimal value σ_{opt} to find

$$p(y; \mu, \sigma_{opt}K) = \frac{1}{(2\pi)^{N/2}} \left[(y - \mu)^T K^{-1} (y - \mu) \right]^{-N/2} \det(K)^{-1/2}$$

This function is subject to overflow and underflow. Instead we will take the logarithm and dispose of an additive and multiplicative factor (shown in the appendix) to produce

$$\tilde{p}(y; \mu, K) = \log \left((y - \mu)^T K^{-1} (y - \mu) \right) + \frac{1}{N} \log \det K.$$

The kernel that maximizes the likelihood function p is also the kernel that minimizes \tilde{p}.

Mike McCourt
Gaussian Processes Q&A
Maximum Likelihood Estimation

We can use Maximum Likelihood Estimation to optimize our shape parameter. Minimizing

$$\tilde{\rho}(y; \mu, K) = \log \left(\left(y - \mu \right)^T K^{-1} (y - \mu) \right) + \frac{1}{N} \log \det K.$$

requires evaluating $\det(K)$, which, given its ill-conditioning, is a dicey proposition.

Using the Hilbert-Schmidt SVD this determinant can be computed in pieces

$$\det(K) = \det(\Psi \Lambda_1 \Phi_1) = \det(\Psi) \det(\Lambda_1) \det(\Phi_1)$$

The values $\det(\Psi)$ and $\det(\Phi_1)$ can be computed stably (we presume) using standard techniques.

Evaluating $\det(\Lambda_1)$ can be done analytically because it is a diagonal matrix populated by our Hilbert-Schmidt eigenvalues.
Maximum Likelihood Parameter Estimation

Of course, searching the entire space of all possible covariance kernels for the (possibly nonunique) optimal choice is a hopeless task.

A common practice (albeit not the only one) is to pick a family of kernels with a shape parameter ε, and try to determine the best possible ε.

We will demonstrate the benefit of the HS SVD on evaluating $\log \det K$ for a compact Matérn interpolant in 1D as $\varepsilon \to 0$ where K becomes more ill-conditioned.
Stable Determinant Evaluation

Figure: $N = 30$ equally spaced points, $\beta = 8$
Some Problems Remain

Although we can be fairly confident in our computation of the determinant, there is another component of the \tilde{p} function:

$$\log \left((y - \mu)^T K^{-1} (y - \mu) \right).$$

Using the HS SVD does not really absolve us of our travails

$$\log \left((y - \mu)^T \Phi_1^{-T} \Lambda_1^{-1} \Psi^{-1} (y - \mu) \right).$$

If we define the, hopefully, stably computable

$$y_\Psi = \Psi^{-1} (y - \mu)$$
$$y_\Phi = \Phi_1^{-1} (y - \mu)$$

then we can write

$$(y - \mu)^T \Phi_1^{-T} \Lambda_1^{-1} \Psi^{-1} (y - \mu) = y_\Phi^T \Lambda_1^{-1} y_\Psi,$$

and the ill-conditioning in the Λ_1^{-1} remains.
Some Problems Remain

Although we haven’t completed this research yet, it is possible that working with the term

\[y_\Phi^T \Lambda_1^{-1} y_\Psi, \]

is actually a tenable proposition.

We should be able to compute \(y_\Psi \) and \(y_\Phi \) without too much trouble if the \(\Psi \) basis and eigenfunction basis are reasonable choices to approximate \(y_x \).

If this is the case, then hopefully all the values of \(y_\Psi \) and \(y_\Phi \) should be roughly the same order, i.e.,

\[\|y_\Psi\|_1 \approx N \|y_\Psi\|_\infty. \]

Under this assumption, only the final few values of \(y_\Phi^T \Lambda_1^{-1} y_\Psi \) are significant in the inner product. This may allow us to approximate it reasonably well.
LOOCV: How it works

Let \(s_f^{[k]} \) be the kernel interpolant to the training data \(\{ f_1, \ldots, f_{k-1}, f_{k+1}, \ldots, f_N \} \), i.e.,

\[
s_f^{[k]}(x) = \sum_{j=1}^{N} c_j^{[k]} K(x, x_j),
\]

such that

\[
s_f^{[k]}(x_i) = f_i, \quad i = 1, \ldots, k - 1, k + 1, \ldots, N,
\]
LOOCV: How it works

Let $s_f^{[k]}$ be the kernel interpolant to the training data $\{f_1, \ldots, f_{k-1}, f_{k+1}, \ldots, f_N\}$, i.e.,

$$s_f^{[k]}(x) = \sum_{j=1}^{N} \sum_{j \neq k} c_j^{[k]} K(x, x_j),$$

such that

$$s_f^{[k]}(x_i) = f_i, \quad i = 1, \ldots, k - 1, k + 1, \ldots, N,$$

and let $e_k(\varepsilon)$ be the error

$$e_k(\varepsilon) = f_k - s_f^{[k]}(x_k)$$

at the one validation point x_k not used to determine the interpolant.
LOOCV: How it works

Let $s_f^{[k]}$ be the kernel interpolant to the training data \(\{ f_1, \ldots, f_{k-1}, f_{k+1}, \ldots, f_N \} \), i.e.,

$$s_f^{[k]}(x) = \sum_{j=1}^{N} \sum_{j \neq k} c_j^{[k]} K(x, x_j),$$

such that

$$s_f^{[k]}(x_i) = f_i, \quad i = 1, \ldots, k-1, k+1, \ldots, N,$$

and let $e_k(\varepsilon)$ be the error

$$e_k(\varepsilon) = f_k - s_f^{[k]}(x_k)$$

at the one validation point x_k not used to determine the interpolant. Find

$$\varepsilon_{opt} = \arg\min_{\varepsilon} \|e(\varepsilon)\|, \quad e = [e_1, \ldots, e_N]^T$$
Efficient formula for the LOOCV criterion:

\[e_k(\varepsilon) = \frac{c_k}{K_{kk}^{-1}}, \quad k = 1, \ldots, N, \quad (1) \]

with

- \(c_k \): \(k \)th coefficient of full interpolant \(s_f \)
- \(K_{kk}^{-1} \): \(k \)th diagonal element of inverse of corresponding interpolation matrix

was given by Rippa and Wahba.
Efficient formula for the LOOCV criterion:

\[e_k(\varepsilon) = \frac{c_k}{K_{kk}^{-1}}, \quad k = 1, \ldots, N, \quad (1) \]

with

- \(c_k \): \(k^{th} \) coefficient of full interpolant \(s_f \)
- \(K_{kk}^{-1} \): \(k^{th} \) diagonal element of inverse of corresponding interpolation matrix

was given by Rippa and Wahba.

Remark

- Since both \(c_k \) and \(K_{kk}^{-1} \) need to be computed only once for each value of \(\varepsilon \) this results in \(\mathcal{O}(N^3) \) computational complexity.
Efficient formula for the LOOCV criterion:

\[e_k(\varepsilon) = \frac{c_k}{K_{kk}^{-1}}, \quad k = 1, \ldots, N, \]

(1)

with

- \(c_k \): \(k \)th coefficient of full interpolant \(s_f \)
- \(K_{kk}^{-1} \): \(k \)th diagonal element of inverse of corresponding interpolation matrix

was given by Rippa and Wahba.

Remark

- *Since both \(c_k \) and \(K_{kk}^{-1} \) need to be computed only once for each value of \(\varepsilon \) this results in \(\mathcal{O}(N^3) \) computational complexity.*

- *All entries in the error vector \(\mathbf{e} \) can be computed in a single statement in MATLAB if we vectorize the component formula (1):*

\[
\text{errorvector} = \frac{(\text{invIM*rhs})}{\text{diag(invIM)}};
\]
LOOCV via Hilbert-Schmidt SVD

Since the LOOCV criterion requires the inverse of K (which may be very ill-conditioned), we use the Hilbert-Schmidt SVD

$$K = \Psi \Lambda \Phi^T,$$

accurate to within machine precision (i.e., truncation length $M > N$).
LOOCV via Hilbert-Schmidt SVD

Since the LOOCV criterion requires the inverse of K (which may be very ill-conditioned), we use the Hilbert-Schmidt SVD

$$K = \Psi \Lambda_1 \Phi_1^T,$$

accurate to within machine precision (i.e., truncation length $M > N$). Then

$$K^{-1} = \Phi_1^{-T} \Lambda_1^{-1} \Psi^{-1}.$$
LOOCV via Hilbert-Schmidt SVD

Since the LOOCV criterion requires the inverse of K (which may be very ill-conditioned), we use the Hilbert-Schmidt SVD

$$K = \Psi \Lambda_1 \Phi_1^T,$$

accurate to within machine precision (i.e., truncation length $M > N$). Then

$$K^{-1} = \Phi_1^{-T} \Lambda_1^{-1} \Psi^{-1}.$$

- The matrices Ψ and Φ_1 are usually “well-behaved”.
- But Λ_1 by itself still contains the basic ill-conditioning, i.e., potentially very small eigenvalues.
- We therefore use the pseudoinverse Λ_1^\dagger instead of Λ_1^{-1}, i.e., we drop some of the smallest eigenvalues of the kernel K.
LOOCV via Hilbert-Schmidt SVD

Since the LOOCV criterion requires the inverse of K (which may be very ill-conditioned), we use the Hilbert-Schmidt SVD

$$K = \Psi \Lambda_1 \Phi_1^T,$$

accurate to within machine precision (i.e., truncation length $M > N$). Then

$$K^{-1} = \Phi_1^{-T} \Lambda_1^{-1} \Psi^{-1}.$$

- The matrices Ψ and Φ_1 are usually “well-behaved”.
- But Λ_1 by itself still contains the basic ill-conditioning, i.e., potentially very small eigenvalues.
- We therefore use the pseudoinverse Λ_1^\dagger instead of Λ_1^{-1}, i.e., we drop some of the smallest eigenvalues of the kernel K.

Remark

Note that truncating the Hilbert-Schmidt SVD is fundamentally different from performing a standard SVD of K and then truncating that.
Example (Optimal ε-β surfaces using MaternQR)

Determine the optimal ε and β for interpolation with compact Matérn kernels

\[K_{\beta,\varepsilon}(x, z) = \sum_{n=1}^{\infty} 2 \left(n^2 \pi^2 + \varepsilon^2 \right)^{-\beta} \sin(n\pi x) \sin(n\pi z) \]

on $[0, 1]$ using $N = 24$ evenly spaced samples from

\[f_\gamma(x) = \frac{1}{\left(\frac{1}{2} - \gamma\right)^2} \left((x - \gamma)^2 + (1 - \gamma - x)^2 \right) e^{-36(x-0.4)^2}, \]

with $\gamma = 0.0567$.
Optimal ε-β surfaces using MaternQR (cont.)

- Error of true solution with $\varepsilon_{opt} = 18.047$, $\beta_{opt} = 4$ (left)
- Third out CV with $\varepsilon_{opt} = 14.251$, $\beta_{opt} = 6$ (right)
Optimal ε-β surfaces using MaternQR (cont.)

- Half out CV with $\varepsilon_{\text{opt}} = 0.1$, $\beta_{\text{opt}} = 8$ (left)
- LOOCV with $\varepsilon_{\text{opt}} = 10.0$, $\beta_{\text{opt}} = 7$ (right).

For a smooth kernel (large β) we see instabilities for LOOCV for small ε – even though the Hilbert-Schmidt SVD is used.
Summary

- Gaussian Processes are a useful way to describe scattered data interpolation problems.
- Some recent progress in kernel interpolation helps address problems in Gaussian Processes.
- We need to better consolidate knowledge from these two fields.

Other questions:
- What are Gaussian Linear Processes?
 - How does the Wold Decomposition play a part?
- What about Gaussian Processes in time?
- What is a best nonlinear predictor?
Appendix A: The Conditional Distribution $y_{x_0}|y$

Using the definition of conditional probability,

$$p(y_{x_0}|y; \mu, K)p(y; \mu, K) = p(y, y_{x_0}; \mu, K),$$

$$p(y_{x_0}|y; \mu, K) = \frac{1}{p(y; \mu, K)} p(y, y_{x_0}; \mu, K).$$

The joint probability density function is

$$p(y, y_{x_0}; \mu, K) = \frac{1}{(2\pi)^{d/2} \det \tilde{K}} \exp \left(-\frac{1}{2} \left(\begin{pmatrix} y \\ y_{x_0} \end{pmatrix} - \begin{pmatrix} \mu \\ \mu(x_0) \end{pmatrix} \right)^T \tilde{K}^{-1} \left(\begin{pmatrix} y \\ y_{x_0} \end{pmatrix} - \begin{pmatrix} \mu \\ \mu(x_0) \end{pmatrix} \right) \right).$$

Plugging this into the condition distribution gives

$$p(y_{x_0}|y; \mu, K) = Z_1 \exp \left(-\frac{1}{2} \left(\begin{pmatrix} y - \mu \\ y_{x_0} - \mu(x_0) \end{pmatrix} \right)^T \tilde{K}^{-1} \left(\begin{pmatrix} y - \mu \\ y_{x_0} - \mu(x_0) \end{pmatrix} \right) \right).$$

where Z_1 are the remaining terms that are omitted. It is a proportionality constant independent of y_{x_0} that serves the purpose of normalizing the distribution.
Appendix A: The Conditional Distribution $y_{x_0} | y$

We need to understand the structure of \tilde{K}^{-1} in terms of K. A quick study of the structure of a block matrix gives

$$\tilde{K}^{-1} = \begin{pmatrix} K & k(x_0) \\ k(x_0)^T & K(x_0, x_0) \end{pmatrix}^{-1} = \begin{pmatrix} A & B \\ B^T & C \end{pmatrix},$$

where

$$A = (K - k(x_0)K(x_0, x_0)^{-1}k(x_0)^T)^{-1}$$
$$B = -(K - k(x_0)K(x_0, x_0)^{-1}k(x_0)^T)^{-1}k(x_0)K(x_0, x_0)^{-1}$$
$$C = (K(x_0, x_0) - k(x_0)^T K^{-1} k(x_0))^{-1}$$

All these inverses are guaranteed to exist if K is a positive definite kernel.
Appendix A: The Conditional Distribution \(y_{x_0} | y \)

Using this with \(\tilde{K} \) allows us to compute

\[
\left(\begin{array}{c}
 y - \mu \\
 y_{x_0} - \mu(x_0)
\end{array} \right)^T \tilde{K}^{-1} \left(\begin{array}{c}
 y - \mu \\
 y_{x_0} - \mu(x_0)
\end{array} \right) =
\]

\[
(y - \mu)^T A (y - \mu) + (y - \mu)^T B (y_{x_0} - \mu(x_0)) +
\]

\[
(y_{x_0} - \mu(x_0))^T B^T (y - \mu) + (y_{x_0} - \mu(x_0))^T C (y_{x_0} - \mu(x_0)) =
\]

\[
(y - \mu)^T A (y - \mu) +
\]

\[
y^T B y_{x_0} - \mu^T B y_{x_0} - y^T B \mu(x_0) + \mu^T B \mu(x_0) +
\]

\[
y_{x_0}^T B^T y - \mu(x_0)^T B^T y - y_{x_0}^T B^T \mu + \mu(x_0)^T B^T \mu +
\]

\[
y_{x_0}^T C y_{x_0} - \mu(x_0)^T C y_{x_0} - y_{x_0}^T C \mu(x_0) + \mu(x_0)^T C \mu(x_0)
\]

Only the brown terms involve \(y_{x_0} \), so the magenta terms are consolidated into \(\hat{Z}_2 \). We will also use symmetry (i.e., \(y^T B y_{x_0} = y_{x_0}^T B^T y \)), which is necessary, although I’m not sure how to prove that it holds.
Appendix A: The Conditional Distribution $y_{x_0}|y$

Putting this result into $p(y_{x_0}|y)$ gives

$$p(y_{x_0}|y; \mu, K) = Z_1 \exp \left(-\frac{1}{2} \left(y_{x_0}^T C y_{x_0} - 2y_{x_0} C \mu(x_0) + y_{x_0}^T B^T (y - \mu) + \hat{Z}_2 \right) \right).$$

By defining

$$Z_2 = Z_1 e^{-\frac{1}{2} \hat{Z}_2},$$

we can write

$$p(y_{x_0}|y; \mu, K) = Z_2 \exp \left(-\frac{1}{2} \left(y_{x_0}^T C y_{x_0} - 2y_{x_0}^T C \mu(x_0) + 2y_{x_0}^T B^T (y - \mu) \right) \right).$$

Some matrix manipulations will make this manageable.
Appendix A: The Conditional Distribution $y_{x_0} | y$

Completing the square in a matrix sense means:

$$u^T Qu - 2u^T v = u^T Qu - 2u^T QQ^{-1} v$$
$$= u^T Qu - 2u^T QQ^{-1} v + v^T Q^{-1} v - v^T Q^{-1} v$$
$$= (u - Q^{-1} v)^T Q (u - Q^{-1} v) - v^T Q^{-1} v$$

where Q is symmetric positive definite. Using this allows us to write

$$y_{x_0}^T C y_{x_0} - 2y_{x_0}^T \left(C \mu(x_0) - B^T (y - \mu) \right) =$$
$$\left(y_{x_0} - C^{-1} \left(C \mu(x_0) - B^T (y - \mu) \right) \right)^T C \left(y_{x_0} - C^{-1} \left(C \mu(x_0) - B^T (y - \mu) \right) \right)$$
$$- \left(C \mu(x_0) - B^T (y - \mu) \right)^T C^{-1} \left(C \mu(x_0) - B^T (y - \mu) \right)$$

Note that the second term related to $v^T Q^{-1} v$ has no y_{x_0} terms in it.
Appendix A: The Conditional Distribution $y_{x_0} | y$

Let’s try and use what we know to clean this up some. First off, we replace the term without any y_{x_0} with \hat{Z}_3:

$$\hat{Z}_3 = - \left(C\mu(x_0) - B^T (y - \mu) \right)^T C^{-1} \left(C\mu(x_0) - B^T (y - \mu) \right).$$

Defining

$$Z_3 = Z_2 e^{-\frac{1}{2} \hat{Z}_3}$$

allows us to write

$$p(y_{x_0} | y; \mu, K) = Z_3 \exp\left(- \frac{1}{2} \left((y_{x_0} - \bar{\mu})^T C (y_{x_0} - \bar{\mu}) \right) \right),$$

where

$$\bar{\mu} = \mu(x_0) - C^{-1} B^T (y - \mu).$$
Appendix A: The Conditional Distribution $y_{x_0} | y$

With some work, we can simplify this expression for $\tilde{\mu}$. We can invoke the role of the inverse

$$\tilde{K}^{-1}\tilde{K} = I_{N+1}$$

$$\begin{pmatrix} A & B \\ B^T & C \end{pmatrix} \begin{pmatrix} K & k(x) \\ k(x)^T & K(x,x) \end{pmatrix} = \begin{pmatrix} I_N & I_1 \end{pmatrix}$$

The bottom left corner of the inverse requires

$$B^T K + C k(x)^T = 0$$

$$C^{-1}B^T = -k(x)^TK^{-1}$$

When plugged into $\tilde{\mu}$ we get

$$\tilde{\mu} = \mu(x_0) + k(x)^TK^{-1}(y - \mu).$$
Appendix A: The Conditional Distribution $y_{x_0} | y$

At this point, we can conclude that

$$p(y_{x_0} | y; \mu, K) = Z_3 \exp \left(-\frac{1}{2} \left((y_{x_0} - \bar{\mu})^T C (y_{x_0} - \bar{\mu}) \right) \right),$$

which means that $y_{x_0} | y$ has a normal distribution

$$y_{x_0} | y \sim N(\bar{\mu}, C)$$

where

$$\bar{\mu} = \mu(x_0) + k(x)^T K^{-1} (y - \mu),$$

$$C = (K(x_0, x_0) - k(x_0)^T K^{-1} k(x_0))^{-1}$$
Appendix B: Considering the Process Variance

Recall that the likelihood of y for a mean μ and covariance σK (where $\sigma > 0$ is the process variance) is

$$p(y; \mu, \sigma K) = \frac{1}{\sqrt{(2\pi\sigma)^N \det K}} \exp \left(-\frac{1}{2\sigma} (y - \mu)^T K^{-1} (y - \mu) \right).$$

I think that we can look at the profile likelihood, which is to say the marginal distribution

$$\int_0^\infty p(y; \mu, \sigma K) d\sigma$$

but I don’t remember how to do it. I’ll look at it some time.

Instead, we will determine the optimal value σ_{opt} and use its value in our likelihood function.
Appendix B: Considering the Process Variance

We need to take the log to make this manageable,

\[\log p = -\frac{N}{2} \log(2\pi \sigma) - \frac{1}{2} \log \det K - \frac{1}{2\sigma}(y - \mu)^T K^{-1}(y - \mu) \]

Differentiating gives

\[\frac{d}{d\sigma} p(y; \mu, \sigma K) = -\frac{N}{2\sigma} + \frac{1}{2\sigma^2}(y - \mu)^T K^{-1}(y - \mu). \]

Setting this derivative equal to zero gives

\[\sigma_{opt} = \frac{1}{N}(y - \mu)^T K^{-1}(y - \mu), \]

which is the optimal process variance.
Appendix B: Considering the Process Variance

Substituting in this optimal process variance gives

\[
p(y; \mu, \sigma^2_{opt}K) = \frac{1}{\sqrt{(2\pi)^{1/N}(y - \mu)^T K^{-1}(y - \mu))^N \det K}} e^{-N/2}.
\]

Taking the log gives

\[
\log p(y; \mu, \sigma^2_{opt}K) = -\frac{1}{2} \log \det K - \frac{N}{2} \left(1 + \log \left(\frac{2\pi}{N}(y - \mu)^T K^{-1}(y - \mu)\right)\right)
\]
\[
\propto -\frac{1}{2} \log \det K - \frac{N}{2} \log ((y - \mu)^T K^{-1}(y - \mu))
\]

We create the function \(\tilde{p}\) which we will minimize to maximize \(p\):

\[
\tilde{p}(y; \mu, K) = \log \det K + N \log ((y - \mu)^T K^{-1}(y - \mu)) .
\]