Math 350 - Homework Assignment 1, due Jan. 20, 2011

1. Consider our first skydive model given by equation (1) on page 8 in the slides. Assume we have two people jumping out of a plane, Stan, who has a mass of 65 kg and a drag coefficient of $10 \mathrm{~kg} / \mathrm{s}$, and Ollie, with a mass of 100 kg and drag coefficient of $15 \mathrm{~kg} / \mathrm{s}$. How long will it take Ollie to reach the same velocity Stan reached after 10 seconds?
2. Find the analytical solution for equation (1) in terms of a general (nonzero) initial velocity $v(0)=v_{0}$.
3. One refinement of the skydive model of equation (1) we did not discuss in class is to assume the drag coefficient to depend on time. In particular, use the function

$$
c(t)= \begin{cases}c_{1}, & t<T \\ c_{2}, & t \geq T\end{cases}
$$

where T denotes the time at which the skydiver opens his/her parachute, and then find the general solution assuming the initial velocity $v(0)=0$. Hint: break the solution into two pieces.
4. (a) Determine the Taylor series for $\sinh x=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}$ about $x_{0}=0$.
(b) Evaluate $\sinh (0.9)$ by using the first three terms of the series.
(c) Provide an error estimate assuming you know the value of $\sinh (1)=\frac{\mathrm{e}-1 / \mathrm{e}}{2}=1.175201194$. How does this error estimate compare with the true error?
5. Write the Taylor series for the function $f(x)=x^{3}-2 x^{2}+4 x-1$ expanded about $x_{0}=2$, i.e., write a formula for $f(2+h)$.
6. (a) Use the alternating series test and the triangle inequality to determine the least number of terms required to compute π as 3.14 (correctly rounded) from the series

$$
\pi=4-\frac{4}{3}+\frac{4}{5}-\frac{4}{7}+\ldots ?
$$

(b) Determine experimentally what the smallest number of terms is to get this done.
(c) What happens if you add one more term to the expansion you used in (b)? Explain.

