Math 350 - Homework Assignment 2, due Feb. 3, 2011

1. Consider the linear system

$$
\begin{aligned}
3 x_{1}+4 x_{2}+3 x_{3} & =16 \\
x_{1}+5 x_{2}-x_{3} & =-12 \\
6 x_{1}+3 x_{2}+7 x_{3} & =102 .
\end{aligned}
$$

(a) Solve the system using basic Gaussian elimination (LU decomposition) without pivoting. Make sure you follow the algorithm as described in the notes. Do not use any "shortcuts" that a clever human might recognize to simplify his/her work. Use four significant digits and show all steps of your work.
(b) What are the factors L and U ?
2. Show that the system of equations

$$
\begin{array}{r}
x_{1}+4 x_{2}+\alpha x_{3}=6 \\
2 x_{1}-x_{2}+2 \alpha x_{3}=3 \\
\alpha x_{1}+3 x_{2}+x_{3}=5
\end{array}
$$

possesses a unique solution when $\alpha=0$, no solution when $\alpha=-1$, and infinitely many solutions when $\alpha=1$. Also, investigate the corresponding situation when the right-hand side is replaced by all zeros.
3. Show how Gaussian elimination with partial pivoting works on the system of Problem 1. Show all steps of your work. What do the matrices P, L and U look like?
4. (a) Describe in words what the results of applying the elementary matrices

$$
E_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-\ell_{21} & 1 & 0 \\
-\ell_{31} & 0 & 1
\end{array}\right], \quad \text { and } \quad E_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -\ell_{32} & 1
\end{array}\right]
$$

to a non-singular 3×3 matrix A are, i.e., what are the effects of $E_{1} A$ and $E_{2} A$?
(b) Show that the inverse of the unit lower triangular matrix

$$
\mathrm{L}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
\ell_{21} & 1 & 0 \\
\ell_{31} & \ell_{32} & 1
\end{array}\right]
$$

of the $L U$-factorization $A=L U$ is obtained as the product of elementary matrices, i.e., $\mathrm{L}^{-1}=\mathrm{E}_{2} \mathrm{E}_{1}$ by discussing how the system $\mathrm{A} \boldsymbol{x}=\boldsymbol{b}$ can be converted to $\mathrm{L}^{-1} \mathrm{~A} \boldsymbol{x}=\mathrm{L}^{-1} \boldsymbol{b}$ such that $\mathrm{L}^{-1} \mathrm{~A}=\mathrm{U}$, an upper triangular matrix.
(c) What are the inverses of E_{1} and E_{2} given in (a)?
(d) Based on the above discussion, how can one obtain the inverse of a unit lower triangular matrix?
5. Given

$$
\mathrm{A}=\left[\begin{array}{ccc}
3 & 2 & -1 \\
5 & 3 & 2 \\
-1 & 1 & -3
\end{array}\right], \quad \mathrm{L}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{5}{3} & 1 & 0 \\
-8 & 5 & 1
\end{array}\right], \quad \mathrm{U}=\left[\begin{array}{ccc}
3 & 2 & -1 \\
0 & -\frac{1}{3} & \frac{11}{3} \\
0 & 0 & 15
\end{array}\right],
$$

obtain the inverse of A by solving $\mathrm{UX}(:, j)=\mathrm{L}^{-1} \mathbf{I}(:, j)$ for $j=1,2,3$.

