Math 350 - Homework Assignment 4, due March 3, 2011

1. Find the formula for the natural cubic spline that interpolates the data points $(0,1),(1,1)$, and $(2,5)$ and sketch the graph (or include a Matlab plot) of the interpolating spline function for $0 \leq x \leq 2$.
2. Determine the coefficients in the function

$$
s(x)= \begin{cases}x^{3}-1, & -9 \leq x \leq 0 \\ a x^{3}+b x^{2}+c x+d, & 0 \leq x \leq 5\end{cases}
$$

so that it is a cubic spline that takes the value 2 when $x=1$. Note we do not care about the end conditions in this problem. This problem is easiest if you stick with the representation given here and just follow a check list very similar to the one at the top of p .30 of the slides for Chapter 3.
3. Determine the values of the parameters a, b, c, d, and e so that s is a natural cubic spline:

$$
s(x)= \begin{cases}a+b(x-1)+c(x-1)^{2}+d(x-1)^{3}, & 0 \leq x<1 \\ (x-1)^{3}+e x^{2}-1, & 1 \leq x \leq 2\end{cases}
$$

Hint: Similar to the previous problem, but now with end conditions.
4. Use the bisection method to find the maximum of the function

$$
f(x)=-2 x^{6}-1.5 x^{4}+10 x+2
$$

on the interval $[0,1]$. Perform as many iterations by hand/calculator/Matlab as are needed for you to be able to guarantee that you have found the maximum location to a relative accuracy of 5%. Note that the Matlab code used in class provides relative machine accuracy.
5. One of the models used in Chapter 1 gave the velocity of a falling parachutist as

$$
v(t)=\frac{g m}{c}\left(1-\mathrm{e}^{-(c / m) t}\right)
$$

(a) Assuming the gravitational constant g and drag coefficient c are known, find a nonlinear equation of the form $f(m)=0$ that allows you to calculate the mass for which $v(5)=30 \mathrm{~m} / \mathrm{s}$.
(b) Use the the equation from (a) along with the values $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ and $c=15 \mathrm{~kg} / \mathrm{s}$ to find the mass m such that $v(5)=30 \mathrm{~m} / \mathrm{s}$ by performing three iterations of Newton's method by hand with a starting value of $m_{0}=80$.
(c) Solve the same problem with the bisection method on the interval [60, 80]. Iterate (also by hand) until you match the first four digits of your answer from (b), i.e., $m=69.64 \ldots$. How many iterations did it take you?

