## Math 350 - Homework Assignment 5, due March 24, 2011

General comment: For the small least squares problems you are solving below by hand it is fine to use the normal equations, but please remember this is not a good idea for larger (or ill-conditioned) problems.

1. Carry out four steps of the golden section search algorithm by hand to find
(a) the local minimum,
(b) the local maximum
of the function $f(x)=2 x^{3}-9 x^{2}+12 x+2$ on the interval $[0,3]$.
2. Describe an algorithm that allows you to use the secant method to find the minimum of a given function $f$. Assume you are able to evaluate both $f$ and $f^{\prime}$ at any point you need.
3. Find the constant $c$ that best fits the following data in the least squares sense:

| $x$ | -1 | 2 | 3 |
| :---: | :---: | :---: | :---: |
| $y$ | $\frac{5}{4}$ | $\frac{4}{3}$ | $\frac{5}{12}$ |

4. Find the best least squares fit of the form

$$
f(x)=c_{1} \sin \pi x+c_{2} \cos \pi x
$$

for the data

| $x$ | -1 | $-\frac{1}{2}$ | 0 | $\frac{1}{2}$ | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | -1 | 0 | 1 | 2 | 1 |.

5. Assume you are finding the best least squares fit by a line to the data $\left(x_{i}, y_{i}\right), i=1, \ldots, m$, i.e., the matrix A of the overdetermined linear system $\mathrm{A} \boldsymbol{c}=\boldsymbol{y}$ is given by

$$
\mathrm{A}=\left[\begin{array}{cc}
x_{1} & 1 \\
x_{2} & 1 \\
\vdots & \vdots \\
x_{m} & 1
\end{array}\right]
$$

(a) What are the entries of the matrix $A^{T} A$ and right-hand side $A^{T} \boldsymbol{y}$ of the normal equations?
(b) Solve the normal equations to find formulas for the coefficients $\boldsymbol{c}=\left[c_{1}, c_{2}\right]^{T}$ of the fitting line $L(x)=c_{1} x+c_{2}$ in terms of the given data.
(c) Let

$$
\bar{x}=\frac{1}{m} \sum_{k=1}^{m} x_{k}, \quad \bar{y}=\frac{1}{m} \sum_{k=1}^{m} y_{k}, \quad \hat{x}=\sum_{k=1}^{m}\left(x_{k}-\bar{x}\right)^{2},
$$

and verify that the formulas

$$
\begin{aligned}
& c_{1}=\frac{1}{\hat{x}} \sum_{k=1}^{m}\left(x_{k}-\bar{x}\right)\left(y_{k}-\bar{y}\right) \\
& c_{2}=\bar{y}-c_{1} \bar{x}
\end{aligned}
$$

are equivalent to those found in part (b).

