1. Approximate the value of the integral

$$
\int_{-1}^{1}\left|x-\frac{1}{2}\right| d x
$$

using L_{n}, R_{n}, and T_{n} for $n=1,2,4,8$ intervals of equal length. Account for the differences in the results and compare with the exact solution.
2. Derive the basic Simpson's rule by integrating a quadratic interpolating polynomial over the intervals $\left[x_{i-1}, x_{i}\right] \cup\left[x_{i}, x_{i+1}\right]$ as indicated in Chapter 6 of the classnotes. Assume that the integration nodes are equally spaced.
3. Consider a two-term numerical integration rule of the form

$$
\int_{-1}^{1} f(x) d x \approx w_{1} f\left(x_{1}\right)+w_{2} f\left(x_{2}\right)
$$

Determine the weights w_{1} and w_{2} and the nodes x_{1} and x_{2} so that the above rule is exact for the functions $f(x)=1, f(x)=x, f(x)=x^{2}$, and $f(x)=x^{3}$. This means you have to solve a system of 4 nonlinear equations in four unknowns. Feel free to use any method of your choice to do this (by hand, with Mathematica, Maple or Matlab's Symbolic Toolbox, with a numerical method such as Newton's method, etc.).

