Math 350 - Homework Assignment 7, due April 21, 2011

1. (a) Use two appropriately chosen Taylor expansions to obtain the error term for the nonsymmetric derivative approximation formula

$$
f^{\prime}(x) \approx \frac{f(x+3 h)-f(x-h)}{4 h}
$$

(b) What is wrong with the following argument? If we add the following two Taylor expansions

$$
\begin{aligned}
& f(x+h)=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(x)+\frac{h^{3}}{6} f^{\prime \prime \prime}(\xi) \\
& f(x-h)=f(x)-h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(x)-\frac{h^{3}}{6} f^{\prime \prime \prime}(\xi)
\end{aligned}
$$

then we obtain the exact derivative formula

$$
f^{\prime \prime}(x)=\frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}
$$

2. In the slides I claimed that we can obtain a formula to approximate the $k^{\text {th }}$-order derivative of some unknown function f if we perform the following steps:

- Construct the degree $n-1$ (with $n>k$) Lagrange interpolating polynomial p to f at a generic set of points $x_{1}, x_{2}, \ldots, x_{n}$, i.e.,

$$
p(x)=\sum_{i=1}^{n} f\left(x_{i}\right) \prod_{j=1, j \neq i}^{n} \frac{x-x_{j}}{x_{i}-x_{j}}
$$

- Differentiate $p k$ times.
- Replace $x_{1}, x_{2}, \ldots, x_{n}$ in the formula for $p^{(k)}(x)$ by a specific set of points chosen relative to x.

Follow the above procedure with $n=3$ (quadratic polynomial), $k=2$ (second-order derivative) and $x_{1}=x-h, x_{2}=x$ and $x_{3}=x+h$ in the third step to obtain the formula

$$
D_{h}^{(2)} f(x)=\frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}
$$

for approximating $f^{\prime \prime}(x)$.
3. If you have a numerical method that satisfies the following error estimate

$$
F_{h}=F-k_{1} h^{1 / 2}-k_{2} h-k_{3} h^{3 / 2}-\ldots
$$

then how should the Richardson combination of F_{h} and $F_{\frac{h}{2}}$ be formed so that you obtain improved accuracy? How accurate is this combination?
4. Rewrite the following initial value problems so that they can be solved with one of the initialvalue problem solvers we studied:
(a) $y(t)+2 y(t) y^{\prime}(t)-y^{\prime}(t)=0, y\left(t_{0}\right)=y_{0}$,
(b) $\log y^{\prime}(t)=t^{2}-y^{2}(t), y\left(t_{0}\right)=y_{0}$,
(c) $\left(y^{\prime}(t)\right)^{2}\left(1-t^{2}\right)=y(t), y\left(t_{0}\right)=y_{0}$.
(d) $y^{\prime \prime \prime}(t)=t+y(t)+2 y^{\prime}(t)+3 y^{\prime \prime}(t), y(1)=3, y^{\prime}(1)=-7, y^{\prime \prime}(1)=4$.
(e) The system of ODEs

$$
\begin{aligned}
\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} x(t)-2 x(t) z(t) \frac{\mathrm{d}}{\mathrm{~d} t} x(t) & =3 x^{2}(t) y(t) t^{2} \\
\frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}} y(t)-e^{y(t)} \frac{\mathrm{d}}{\mathrm{~d} t} y(t) & =4 x(t) t^{2} z(t) \\
\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} z(t)-2 t \frac{\mathrm{~d}}{\mathrm{~d} t} z(t) & =2 t e^{x(t) z(t)} \\
x(1)=y(1) & =z^{\prime}(1)=3, \quad x^{\prime \prime}(1)=y^{\prime}(1)=z(1)=2
\end{aligned}
$$

5. Solve (by hand) the differential equation

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} y(t) & =-t y^{2}(t) \\
y(0) & =2
\end{aligned}
$$

at $t=-0.2$ using one step of the classical second-order Runge-Kutta method.

