
11 The QR Algorithm

11.1 QR Algorithm without Shifts

In the previous chapter (in the Maple worksheet 473 Hessenberg.mws) we investigated
two different attempts to tackling the eigenvalue problem. In the first attempt (which
we discarded) the matrix A was multiplied from the left and right by a unitary House-
holder matrix Q.

We now consider the following

Algorithm (“Pure” QR)

Initialize A(0) = A

for k = 1, 2, . . .

Compute the QR factors Q(k)R(k) = A(k−1)

Reassemble the factors A(k) = R(k)Q(k)

end

Note that R(k) =
[
Q(k)

]T
A(k−1) and so

A(k) =
[
Q(k)

]T
A(k−1)Q(k),

the similarity transform from “approach 1” mentioned above.
We recall that this algorithm will not produce a triangular (or, in our special real

symmetric case, a diagonal) matrix in one step. However, it will succeed in an iterative
setting. In fact, we will see below that the “pure” QR algorithm is equivalent to the
orthogonal simultaneous iteration algorithm presented earlier.

Remark In the next section we will discuss a “practical” QR algorithm that will use
shifts and converge cubically like the Rayleigh quotient iteration.

We now show the equivalence of the “pure” QR algorithm and orthogonal simulta-
neous iteration. Recall the orthogonal simultaneous iteration algorithm:

Initialize Q̂(0) with an arbitrary m× n matrix with orthonormal columns

for k = 1, 2, . . .

Z = AQ̂(k−1)

Compute the QR factorization Q̂(k)R̂(k) = Z

end

Now consider the special case of square (real symmetric) matrices, which is what
we will be working with in eigenvalue problems. We start the orthogonal simultaneous
iteration with

Q(0) = I ∈ Rm×m, (S1)

88

where we no longer need the hat (since the matrices are square), i.e., we will be perform-
ing full QR factorizations. The underline is used to distinguish between the Q-matrices
appearing in this algorithm and those in the “pure” QR below.

Next, we compute

Z = AQ(k−1) (S2)

Q(k)R(k) = Z (S3)

so that
A(k) =

[
Q(k)

]T
AQ(k). (S4)

For the “pure” QR algorithm, on the other hand, we have

A(0) = A (Q1)

Q(k)R(k) = A(k−1) (Q2)

A(k) = R(k)Q(k) (Q3)

For this algorithm we also define

Q(k) = Q(1)Q(2) . . . Q(k), (Q4)

and for both algorithms
R(k) = R(k)R(k−1) . . . R(1). (R5)

Here we make the convention that empty products yield the identity.

Theorem 11.1 Orthogonal simultaneous iteration (S1)–(S4) and the “pure” QR algo-
rithm (Q1)–(Q4) are equivalent, i.e., both algorithms produce identical sequences R(k),
Q(k) and A(k). In fact, the k-th power of A is given by

Ak = Q(k)R(k), (28)

and the k-th iterate by

A(k) =
[
Q(k)

]T
AQ(k). (29)

Proof The proof uses induction on k.
For k = 0 simultaneous iteration begins with Q(0) = I so that (28) (here A0 = I =

Q(0)) and (29) (here A(0) = A) are trivially satisfied with R(0) = I.
For “pure” QR the induction start is also true since we set A(0) = A, and then

Q(0) = R(0) = I.
Now let’s look at simultaneous iteration for k ≥ 1. Obviously, (29) always holds

due to (S4). We need to show that (28) also holds.
By the induction hypothesis (for (28)) we have

Ak−1 = Q(k−1)R(k−1)

so that
Ak = AAk−1 = AQ(k−1)R(k−1).

89

Using (S2), (S3), and (R5) we get

Ak (S2)
= ZR(k−1)

(S3)
= Q(k)R(k)R(k−1)

(R5)
= Q(k)R(k),

which establishes this claim.
Finally, we need to establish the induction step for “pure” QR. First we show that

(28) is true. As above we have

Ak = AQ(k−1)R(k−1). (30)

Now the induction hypothesis (for (29)) can be rephrased as follows:

A(k−1) =
[
Q(k−1)

]T
AQ(k−1) ⇐⇒ A = Q(k−1)A(k−1)

[
Q(k−1)

]T
. (31)

Combining (30) and (31) together with (Q2), (Q4) and (R5) lets us establish this part:

Ak (30)
= AQ(k−1)R(k−1)

(31)
= Q(k−1)A(k−1)

[
Q(k−1)

]T
Q(k−1)︸ ︷︷ ︸

=I

R(k−1)

= Q(k−1)A(k−1)R(k−1)

(Q2)
= Q(k−1)Q(k)R(k)R(k−1)

(Q4),(R5)
= Q(k)R(k).

The last part of the proof consists of showing that (29) holds for the “pure” QR
algorithm. First,

A(k) (Q3)
= R(k)Q(k)

(Q2)
=

[
Q(k)

]T
A(k−1)Q(k).

To finish we use the induction hypothesis for (29), i.e., A(k−1) =
[
Q(k−1)

]T
AQ(k−1).

Then
A(k) =

[
Q(k)

]T [
Q(k−1)

]T
︸ ︷︷ ︸

(Q4)
= [Q(k)]T

A Q(k−1)Q(k)︸ ︷︷ ︸
(Q4)
= Q(k)

and the proof is complete.

Let us now think about why “pure” QR iteration works. First, for power iteration
we showed that Akv(0) converges to the eigenvector corresponding to λmax. Now, (28)

90

says that Ak = Q(k)R(k), and therefore we have an orthonormal basis for Ak given by
the columns of Q(k), and the eigenvectors (to all eigenvalues) are found.

To understand this, note that we know from one of the homework problems that
Rayleigh quotients are the diagonal entries of QT AQ. In fact, (29) implies that the
Rayleigh quotients of A corresponding to Q(k) are on the diagonal of A(k). Since the
columns of Q(k) converge to the eigenvectors of A, the diagonal entries of A(k) converge
to the eigenvalues of A. More precisely we have

Theorem 11.2 For real symmetric matrices with distinct eigenvalues and for which
the leading principal minors of the eigenvector matrix Q are nonsingular we have

|a(k)
jj − λj | = O(Ck), j = 1, . . . ,m,

where C = max1≤`≤m−1
|λ`+1|
|λ`| . Moreover,

‖q(k)
j − (±qj)‖ = O(Ck), j = 1, . . . ,m.

Thus, convergence of the “pure” (unshifted) QR algorithm is linear for both the
eigenvalues and eigenvectors. We now look at the “practical” QR algorithm that will
yield cubic convergence.

11.2 Practical QR Algorithm (with shifts)

We start with noting

Theorem 11.3 Orthogonal simultaneous inverse iteration (applied to a permuted ma-
trix) and the “pure” QR algorithm are equivalent.

Proof In the previous section we saw that

Ak = Q(k)R(k)

with
Q(k) = Q(1)Q(2) . . . Q(k),

where the Q(j) are same orthogonal matrices as used by the “pure” QR algorithm. Now

A−k =
[
Q(k)R(k)

]−1
=
[
R(k)

]−1 [
Q(k)

]T
.

Since A is symmetric, so is A−k, and therefore

A−k =
[
A−k

]T
= Q(k)

[
R(k)

]−T
. (32)

We now let

P =

 1

. .
.

1

91

be the permutation that reverses the order of columns (if multiplied from the right),
and note that P 2 = I.

Therefore (32) can be rewritten as

A−k = Q(k)
[
R(k)

]−T

⇐⇒ A−kP = Q(k)PP
[
R(k)

]−T
P

= Q(k)P︸ ︷︷ ︸
orthogonal

P
[
R(k)

]−T
P︸ ︷︷ ︸

upper triangular

(33)

Since (33) consists of the product of an orthogonal with an upper triangular matrix
it is the QR factorization of A−kP . It also provides a formula for the k-th step of
orthogonal simultaneous iteration for the permuted A−1, i.e., orthogonal simultaneous
inverse iteration for the permuted A.

Now, in the previous chapter we added two features to inverse iteration to obtain
cubic convergence:

1. We added a shift.

2. We combined our algorithm with the Rayleigh quotient estimate for eigenvalues.

11.3 Adding a Shift

The main steps of the “pure” QR algorithm were

Q(k)R(k) = A(k−1)

A(k) = R(k)Q(k).

With a shift this becomes

Q(k)R(k) = A(k−1) − µ(k)I (34)
A(k) = R(k)Q(k) + µ(k)I. (35)

From (34) we get

R(k) =
[
Q(k)

]T (
A(k−1) − µ(k)I

)
,

which we insert into (35):

A(k) =
[
Q(k)

]T (
A(k−1) − µ(k)I

)
Q(k) + µ(k)I

=
[
Q(k)

]T
A(k−1)Q(k) −

[
Q(k)

]T
µ(k)IQ(k)︸ ︷︷ ︸

=µ(k)I

+µ(k)I

=
[
Q(k)

]T
A(k−1)Q(k).

92

Recursive application of this identity produces

A(k) =
[
Q(k)

]T
AQ(k),

which is the similarity transform condition (29) from Theorem 11.1.
The other condition (analogous to (28)) now becomes

(A− µI)k = Q(k)R(k)

provided we use just one uniform shift µ, or — if we use different shifts —

1∏
j=k

(
A− µ(j)I

)
= Q(k)R(k). (36)

We now connect this approach to the Rayleigh quotient. To get cubic convergence
we need to choose the shifts µ(k) as Rayleigh quotients, i.e.,

µ(k) =

(
q

(k)
m

)T
Aq

(k)
m(

q
(k)
m

)T
q

(k)
m

=
(
q(k)

m

)T
Aq(k)

m ,

where q
(k)
m is the m-th column of the orthogonal matrix Q(k). Note that using (29) this

simplifies further: (
q(k)

m

)T
Aq(k)

m = eT
m

[
Q(k)

]T
AQ(k)em

= eT
mA(k)em = A(k)

mm.

Therefore, we choose the shifts as

µ(k) = A(k)
mm.

11.4 Deflation

In order to efficiently isolate the eigenvalues one frequently uses a procedure known as
deflation. Remember that we are going to use a 2-phase algorithm such that (for real
symmetric matrices) we

1. Convert A to tridiagonal form.

2. Produce a sequence of tridiagonal matrices that converges to a diagonal T .

Consider the tridiagonal matrix A(k) (obtained in phase 1 of our eigenvalue algo-
rithm and maintained during phase 2).

If some sub-diagonal entry A
(k)
j,j+1 is less than a specified tolerance, then we set it

and its corresponding symmetric counterpart to zero, i.e., A
(k)
j,j+1 = A

(k)
j+1,j = 0. This

93

allows us to break A(k) into two tridiagonal blocks. Schematically,

A(k) =

x x 0 | 0 0
x x x | 0 0
0 x x | 0 0
− − − + − −
0 0 0 | x x
0 0 0 | x x

 ,

where the 0 entries are those set to zero in the deflation procedure.
One then applies the algorithm recursively on the two tridiagonal blocks. We will

implement this idea in one of the computer assignments.
Here is a high-level algorithm that will find all eigenvalues of a real symmetric

matrix A, and (usually) do so with cubic convergence.

Algorithm (“Practical” QR)

A(0) = tridiagonalization of A (obtained using Hessenberg reduction)

for k = 1, 2, . . .

µ(k) = A
(k−1)
mm

Q(k)R(k) = A(k−1) − µ(k)I

A(k) = R(k)Q(k) + µ(k)I

If deflation is possible

apply the algorithm recursively

end

end

11.5 Problems with the Rayleigh Quotient Shift

There are certain special configurations for which QR iteration with the Rayleigh quo-
tient shift does not converge.

Example Consider the matrix

A =
[

0 1
1 0

]
.

In this case Amm = 0, and so the shifted QR algorithm is the same as the unshifted
algorithm. Thus,

A(0) = Q(1)R(1) =
[

0 1
1 0

] [
1 0
0 1

]
,

and

A(1) = R(1)Q(1) =
[

1 0
0 1

] [
0 1
1 0

]
= A(0).

We see that nothing happens — the algorithm stalls.

94

The reason for this failure is that the eigenvalues of A, λ1,2 = ±1, are located
symmetric about the origin, and the estimate µ = 0 cannot decide which way to go.

A remedy is provided by a different shift which breaks the symmetry. One such
example is the Wilkinson shift. It is discussed, e.g., in the book [Trefethen/Bau].

In summary, a “practical” QR algorithm with Wilkinson shift (instead of the
Rayleigh quotient shift used above) for real symmetric matrices

• is backward stable,

• converges cubically for most initial guesses (otherwise it converges quadratically),

• has a computational cost of O(4
3m3) flops (with most of the computing time spent

in the tridiagonalization phase 1; phase 2 requires only O(m2) operations).

11.6 Other Eigenvalue Algorithms

Fairly recently, two competitors for the QR iteration algorithm have emerged:

1. In the 1980s so-called divide-and-conquer algorithms were proposed. They use
ideas similar to deflation and are about twice as fast as the QR algorithm if both
eigenvalues and eigenvectors are to be computed.

2. Relatively robust representation methods from the 1990s can find the eigenvalues
of a real symmetric matrix in O(m2) operations.

Both approaches are implemented in the LAPACK software library.

95

