
3 Projectors

If P ∈ Cm×m is a square matrix such that P 2 = P then P is called a projector. A
matrix satisfying this property is also known as an idempotent matrix.

Remark It should be emphasized that P need not be an orthogonal projection matrix.
Moreover, P is usually not an orthogonal matrix.

Example Consider the matrix

P =
[

c2 cs
cs s2

]
,

where c = cos θ and s = sin θ. This matrix projects perpendicularly onto the line with
inclination angle θ in R2.

We can check that P is indeed a projector:

P 2 =
[

c2 cs
cs s2

] [
c2 cs
cs s2

]
=

[
c4 + c2s2 c3s + cs3

c3s + cs3 c2s2 + s4

]
=

[
c2(c2 + s2) cs(c2 + s2)
cs(c2 + s2) s2(c2 + s2)

]
= P.

Note that P is not an orthogonal matrix, i.e., P ∗P = P 2 = P 6= I. In fact, rank(P ) = 1
since points on the line are projected onto themselves.

Example The matrix

P =
[

1 1
0 0

]
is clearly a projector. Since the range of P is given by all points on the x-axis, and any
point (x, y) is projected to (x + y, 0), this is clearly not an orthogonal projection.

In general, for any projector P , any v ∈ range(P ) is projected onto itself, i.e.,
v = Px for some x then

Pv = P (Px) = P 2x = Px = v.

We also have
P (Pv − v) = P 2v − Pv = Pv − Pv = 0,

so that Pv − v ∈ null(P ).

3.1 Complementary Projectors

In fact, I − P is known as the complementary projector to P . It is indeed a projector
since

(I − P )2 = (I − P )(I − P ) = I − IP︸︷︷︸
=P

− PI︸︷︷︸
=P

+ P 2︸︷︷︸
=P

= I − P.
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Lemma 3.1 If P is a projector then

range(I − P ) = null(P ), (10)

null(I − P ) = range(P ). (11)

Proof We show (10), then (11) will follow by applying the same arguments for P =
I − (I − P ). Equality of two sets is shown by mutual inclusions, i.e., A = B if A ⊆ B
and B ⊆ A.

First, we show null(P ) ⊆ range(I − P ). Take a vector v such that Pv = 0. Then
(I − P )v = v − Pv = v. In words, any v in the nullspace of P is also in the range of
I − P .

Now, we show range(I − P ) ⊆ null(P ). We know that any x ∈ range(I − P ) is
characterized by

x = (I − P )v for some v.

Thus
x = v − Pv = −(Pv − v) ∈ null(P )

since we showed earlier that P (Pv−v) = 0. Thus if x ∈ range(I−P ), then x ∈ null(P ).

3.2 Decomposition of a Given Vector

Using a projector and its complementary projector we can decompose any vector v into

v = Pv + (I − P )v,

where Pv ∈ range(P ) and (I − P )v ∈ null(P ). This decomposition is unique since
range(P ) ∩ null(P ) = {0}, i.e., the projectors are complementary.

3.3 Orthogonal Projectors

If P ∈ Cm×m is a square matrix such that P 2 = P and P = P ∗ then P is called an
orthogonal projector.

Remark In some books the definition of a projector already includes orthogonality.
However, as before, P is in general not an orthogonal matrix, i.e., P ∗P = P 2 6= I.

3.4 Connection to Earlier Orthogonal Decomposition

Earlier we considered the orthonormal set {q1, . . . , qn}, and established the decompo-
sition

v = r +
n∑

i=1

(q∗i v)qi

= r +
n∑

i=1

(qiq
∗
i )v (12)
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with r orthogonal to {q1, . . . , qn}. This corresponds to the decomposition

v = (I − P )v + Pv

with P =
n∑

i=1

(qiq
∗
i ).

Note that
∑n

i=1(qiq
∗
i ) = QQ∗ with Q = [q1q2

. . . qn]. Thus the orthogonal decom-
position (12) can be rewritten as

v = (I −QQ∗)v + QQ∗v. (13)

It is easy to verify that QQ∗ is indeed an orthogonal projection:

1. (QQ∗)2 = QQ∗Q︸︷︷︸
=I

Q∗ = QQ∗ since Q has orthonormal columns (but not rows).

2. (QQ∗)∗ = QQ∗.

Remark The orthogonal decomposition (13) will be important for the implementation
of the QR decomposition later on. In particular we will use the rank-1 projector

Pq = qq∗

which projects onto the direction q and its complement

P⊥q = I − qq∗.

Thus,
v = (I − qq∗)v + qq∗v,

or, more generally, orthogonal projections onto an arbitrary direction a is given by

v =
(

I − aa∗

a∗a

)
v +

aa∗

a∗a
v,

where we abbreviate Pa = aa∗

a∗a and P⊥a = (I − aa∗

a∗a).

As a further generalization we can consider orthogonal projection onto the range of
a (full-rank) matrix A. Earlier, for the orthonormal basis {q1, . . . , qn} (the columns of
Q) we had P = QQ∗. Now we require only that {a1, . . . ,an} be linearly independent.
In order to compute the projection P for this case we start with an arbitrary vector v.
We need to ensure that Pv − v ⊥ range(A), i.e., if Pv ∈ range(A) then

a∗j (Pv − v) = 0, j = 1, . . . , n.

Now, since Pv ∈ range(A) we know Pv = Ax for some x. Thus

a∗j (Ax− v) = 0, j = 1, . . . , n

A∗(Ax− v) = 0
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or
A∗Ax = A∗v.

One can show that (A∗A)−1 exists provided the columns of A are linearly independent
(our assumption). Then

x = (A∗A)−1A∗v.

Finally,
Pv = Ax = A(A∗A)−1A∗︸ ︷︷ ︸

=P

v.

Remark Note that this includes the earlier discussion when {a1, . . . ,an} is orthonor-
mal since then A∗A = I and P = AA∗ as before.
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