3 Projectors

If $P \in \mathbb{C}^{m \times m}$ is a square matrix such that $P^2 = P$ then P is called a *projector*. A matrix satisfying this property is also known as an *idempotent* matrix.

Remark It should be emphasized that P need not be an orthogonal projection matrix. Moreover, P is usually not an orthogonal matrix.

Example Consider the matrix

$$P = \left[\begin{array}{cc} c^2 & cs \\ cs & s^2 \end{array} \right],$$

where $c = \cos \theta$ and $s = \sin \theta$. This matrix projects perpendicularly onto the line with inclination angle θ in \mathbb{R}^2 .

We can check that P is indeed a projector:

$$P^{2} = \begin{bmatrix} c^{2} & cs \\ cs & s^{2} \end{bmatrix} \begin{bmatrix} c^{2} & cs \\ cs & s^{2} \end{bmatrix}$$
$$= \begin{bmatrix} c^{4} + c^{2}s^{2} & c^{3}s + cs^{3} \\ c^{3}s + cs^{3} & c^{2}s^{2} + s^{4} \end{bmatrix}$$
$$= \begin{bmatrix} c^{2}(c^{2} + s^{2}) & cs(c^{2} + s^{2}) \\ cs(c^{2} + s^{2}) & s^{2}(c^{2} + s^{2}) \end{bmatrix} = P$$

Note that P is not an orthogonal matrix, i.e., $P^*P = P^2 = P \neq I$. In fact, rank(P) = 1 since points on the line are projected onto themselves.

Example The matrix

$$P = \left[\begin{array}{rrr} 1 & 1 \\ 0 & 0 \end{array} \right]$$

is clearly a projector. Since the range of P is given by all points on the x-axis, and any point (x, y) is projected to (x + y, 0), this is clearly not an orthogonal projection.

In general, for any projector P, any $v \in \operatorname{range}(P)$ is projected onto itself, i.e., v = Px for some x then

$$P\boldsymbol{v} = P(P\boldsymbol{x}) = P^2\boldsymbol{x} = P\boldsymbol{x} = \boldsymbol{v}.$$

We also have

$$P(P\boldsymbol{v}-\boldsymbol{v}) = P^2\boldsymbol{v} - P\boldsymbol{v} = P\boldsymbol{v} - P\boldsymbol{v} = \boldsymbol{0},$$

so that $P\boldsymbol{v} - \boldsymbol{v} \in \operatorname{null}(P)$.

3.1 Complementary Projectors

In fact, I - P is known as the *complementary projector* to P. It is indeed a projector since

$$(I-P)^2 = (I-P)(I-P) = I - \underbrace{IP}_{=P} - \underbrace{PI}_{=P} + \underbrace{P^2}_{=P} = I - P.$$

Lemma 3.1 If P is a projector then

$$\operatorname{range}(I - P) = \operatorname{null}(P),\tag{10}$$

$$\operatorname{null}(I - P) = \operatorname{range}(P). \tag{11}$$

Proof We show (10), then (11) will follow by applying the same arguments for P = I - (I - P). Equality of two sets is shown by mutual inclusions, i.e., A = B if $A \subseteq B$ and $B \subseteq A$.

First, we show null(P) \subseteq range(I - P). Take a vector \boldsymbol{v} such that $P\boldsymbol{v} = \boldsymbol{0}$. Then $(I - P)\boldsymbol{v} = \boldsymbol{v} - P\boldsymbol{v} = \boldsymbol{v}$. In words, any \boldsymbol{v} in the nullspace of P is also in the range of I - P.

Now, we show range $(I - P) \subseteq \text{null}(P)$. We know that any $\boldsymbol{x} \in \text{range}(I - P)$ is characterized by

$$\boldsymbol{x} = (I - P)\boldsymbol{v}$$
 for some \boldsymbol{v} .

Thus

$$\boldsymbol{x} = \boldsymbol{v} - P\boldsymbol{v} = -(P\boldsymbol{v} - \boldsymbol{v}) \in \operatorname{null}(P)$$

since we showed earlier that $P(P\boldsymbol{v}-\boldsymbol{v}) = \boldsymbol{0}$. Thus if $\boldsymbol{x} \in \operatorname{range}(I-P)$, then $\boldsymbol{x} \in \operatorname{null}(P)$.

3.2 Decomposition of a Given Vector

Using a projector and its complementary projector we can decompose any vector \boldsymbol{v} into

$$\boldsymbol{v} = P\boldsymbol{v} + (I - P)\boldsymbol{v},$$

where $P\boldsymbol{v} \in \operatorname{range}(P)$ and $(I - P)\boldsymbol{v} \in \operatorname{null}(P)$. This decomposition is *unique* since $\operatorname{range}(P) \cap \operatorname{null}(P) = \{\mathbf{0}\}$, i.e., the projectors are complementary.

3.3 Orthogonal Projectors

If $P \in \mathbb{C}^{m \times m}$ is a square matrix such that $P^2 = P$ and $P = P^*$ then P is called an *orthogonal projector*.

Remark In some books the definition of a projector already includes orthogonality. However, as before, P is in general *not* an orthogonal matrix, i.e., $P^*P = P^2 \neq I$.

3.4 Connection to Earlier Orthogonal Decomposition

Earlier we considered the orthonormal set $\{q_1, \ldots, q_n\}$, and established the decomposition

$$\boldsymbol{v} = \boldsymbol{r} + \sum_{i=1}^{n} (\boldsymbol{q}_{i}^{*} \boldsymbol{v}) \boldsymbol{q}_{i}$$
$$= \boldsymbol{r} + \sum_{i=1}^{n} (\boldsymbol{q}_{i} \boldsymbol{q}_{i}^{*}) \boldsymbol{v}$$
(12)

with r orthogonal to $\{q_1, \ldots, q_n\}$. This corresponds to the decomposition

$$\boldsymbol{v} = (I - P)\boldsymbol{v} + P\boldsymbol{v}$$

with
$$P = \sum_{i=1}^{n} (\boldsymbol{q}_i \boldsymbol{q}_i^*).$$

Note that $\sum_{i=1}^{n} (q_i q_i^*) = QQ^*$ with $Q = [q_1 q_2 \cdot \cdot q_n]$. Thus the orthogonal decomposition (12) can be rewritten as

$$\boldsymbol{v} = (I - QQ^*)\boldsymbol{v} + QQ^*\boldsymbol{v}.$$
(13)

It is easy to verify that QQ^* is indeed an orthogonal projection:

1. $(QQ^*)^2 = Q \underbrace{Q^*Q}_{=I} Q^* = QQ^*$ since Q has orthonormal columns (but not rows). 2. $(QQ^*)^* = QQ^*$.

Remark The orthogonal decomposition (13) will be important for the implementation of the QR decomposition later on. In particular we will use the rank-1 projector

$$P_q = qq^*$$

which projects onto the direction q and its complement

$$P_{\perp q} = I - qq^*$$

Thus,

$$\boldsymbol{v} = (I - \boldsymbol{q}\boldsymbol{q}^*)\boldsymbol{v} + \boldsymbol{q}\boldsymbol{q}^*\boldsymbol{v},$$

or, more generally, orthogonal projections onto an arbitrary direction a is given by

$$oldsymbol{v} = \left(I - rac{oldsymbol{a} a^*}{oldsymbol{a}^* oldsymbol{a}}
ight)oldsymbol{v} + rac{oldsymbol{a} a^*}{oldsymbol{a}^* oldsymbol{a}}oldsymbol{v},$$

where we abbreviate $P_{a} = \frac{aa^{*}}{a^{*}a}$ and $P_{\perp a} = (I - \frac{aa^{*}}{a^{*}a})$.

As a further generalization we can consider orthogonal projection onto the range of a (full-rank) matrix A. Earlier, for the orthonormal basis $\{q_1, \ldots, q_n\}$ (the columns of Q) we had $P = QQ^*$. Now we require only that $\{a_1, \ldots, a_n\}$ be linearly independent. In order to compute the projection P for this case we start with an arbitrary vector \boldsymbol{v} . We need to ensure that $P\boldsymbol{v} - \boldsymbol{v} \perp \operatorname{range}(A)$, i.e., if $P\boldsymbol{v} \in \operatorname{range}(A)$ then

$$\boldsymbol{a}_{j}^{*}(P\boldsymbol{v}-\boldsymbol{v})=0, \qquad j=1,\ldots,n.$$

Now, since $P\boldsymbol{v} \in \operatorname{range}(A)$ we know $P\boldsymbol{v} = A\boldsymbol{x}$ for some \boldsymbol{x} . Thus

$$egin{aligned} oldsymbol{a}_j^*(Aoldsymbol{x}-oldsymbol{v}) &= 0, \qquad j = 1, \dots, n \ A^*(Aoldsymbol{x}-oldsymbol{v}) &= 0 \end{aligned}$$

$$A^*A\boldsymbol{x} = A^*\boldsymbol{v}.$$

One can show that $(A^*A)^{-1}$ exists provided the columns of A are linearly independent (our assumption). Then

$$\boldsymbol{x} = (A^*A)^{-1}A^*\boldsymbol{v}.$$

Finally,

or

$$P\boldsymbol{v} = A\boldsymbol{x} = \underbrace{A(A^*A)^{-1}A^*}_{=P} \boldsymbol{v}.$$

Remark Note that this includes the earlier discussion when $\{a_1, \ldots, a_n\}$ is orthonormal since then $A^*A = I$ and $P = AA^*$ as before.