3 Projectors

If $P \in \mathbb{C}^{m \times m}$ is a square matrix such that $P^{2}=P$ then P is called a projector. A matrix satisfying this property is also known as an idempotent matrix.

Remark It should be emphasized that P need not be an orthogonal projection matrix. Moreover, P is usually not an orthogonal matrix.

Example Consider the matrix

$$
P=\left[\begin{array}{ll}
c^{2} & c s \\
c s & s^{2}
\end{array}\right],
$$

where $c=\cos \theta$ and $s=\sin \theta$. This matrix projects perpendicularly onto the line with inclination angle θ in \mathbb{R}^{2}.

We can check that P is indeed a projector:

$$
\begin{aligned}
P^{2} & =\left[\begin{array}{ll}
c^{2} & c s \\
c s & s^{2}
\end{array}\right]\left[\begin{array}{ll}
c^{2} & c s \\
c s & s^{2}
\end{array}\right] \\
& =\left[\begin{array}{ll}
c^{4}+c^{2} s^{2} & c^{3} s+c s^{3} \\
c^{3} s+c s^{3} & c^{2} s^{2}+s^{4}
\end{array}\right] \\
& =\left[\begin{array}{ll}
c^{2}\left(c^{2}+s^{2}\right) & c s\left(c^{2}+s^{2}\right) \\
c s\left(c^{2}+s^{2}\right) & s^{2}\left(c^{2}+s^{2}\right)
\end{array}\right]=P .
\end{aligned}
$$

Note that P is not an orthogonal matrix, i.e., $P^{*} P=P^{2}=P \neq I$. In fact, $\operatorname{rank}(P)=1$ since points on the line are projected onto themselves.

Example The matrix

$$
P=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]
$$

is clearly a projector. Since the range of P is given by all points on the x-axis, and any point (x, y) is projected to $(x+y, 0)$, this is clearly not an orthogonal projection.

In general, for any projector P, any $v \in \operatorname{range}(P)$ is projected onto itself, i.e., $\boldsymbol{v}=P \boldsymbol{x}$ for some \boldsymbol{x} then

$$
P \boldsymbol{v}=P(P \boldsymbol{x})=P^{2} \boldsymbol{x}=P \boldsymbol{x}=\boldsymbol{v}
$$

We also have

$$
P(P \boldsymbol{v}-\boldsymbol{v})=P^{2} \boldsymbol{v}-P \boldsymbol{v}=P \boldsymbol{v}-P \boldsymbol{v}=\mathbf{0}
$$

so that $P \boldsymbol{v}-\boldsymbol{v} \in \operatorname{null}(P)$.

3.1 Complementary Projectors

In fact, $I-P$ is known as the complementary projector to P. It is indeed a projector since

$$
(I-P)^{2}=(I-P)(I-P)=I-\underbrace{I P}_{=P}-\underbrace{P I}_{=P}+\underbrace{P^{2}}_{=P}=I-P .
$$

Lemma 3.1 If P is a projector then

$$
\begin{align*}
& \operatorname{range}(I-P)=\operatorname{null}(P), \tag{10}\\
& \operatorname{null}(I-P)=\operatorname{range}(P) . \tag{11}
\end{align*}
$$

Proof We show (10), then (11) will follow by applying the same arguments for $P=$ $I-(I-P)$. Equality of two sets is shown by mutual inclusions, i.e., $A=B$ if $A \subseteq B$ and $B \subseteq A$.

First, we show null $(P) \subseteq \operatorname{range}(I-P)$. Take a vector \boldsymbol{v} such that $P \boldsymbol{v}=\mathbf{0}$. Then $(I-P) \boldsymbol{v}=\boldsymbol{v}-P \boldsymbol{v}=\boldsymbol{v}$. In words, any \boldsymbol{v} in the nullspace of P is also in the range of $I-P$.

Now, we show range $(I-P) \subseteq \operatorname{null}(P)$. We know that any $\boldsymbol{x} \in \operatorname{range}(I-P)$ is characterized by

$$
\boldsymbol{x}=(I-P) \boldsymbol{v} \quad \text { for some } \boldsymbol{v} .
$$

Thus

$$
\boldsymbol{x}=\boldsymbol{v}-P \boldsymbol{v}=-(P \boldsymbol{v}-\boldsymbol{v}) \in \operatorname{null}(P)
$$

since we showed earlier that $P(P \boldsymbol{v}-\boldsymbol{v})=\mathbf{0}$. Thus if $\boldsymbol{x} \in \operatorname{range}(I-P)$, then $\boldsymbol{x} \in \operatorname{null}(P)$.

3.2 Decomposition of a Given Vector

Using a projector and its complementary projector we can decompose any vector \boldsymbol{v} into

$$
\boldsymbol{v}=P \boldsymbol{v}+(I-P) \boldsymbol{v},
$$

where $P \boldsymbol{v} \in \operatorname{range}(P)$ and $(I-P) \boldsymbol{v} \in \operatorname{null}(P)$. This decomposition is unique since $\operatorname{range}(P) \cap \operatorname{null}(P)=\{\mathbf{0}\}$, i.e., the projectors are complementary.

3.3 Orthogonal Projectors

If $P \in \mathbb{C}^{m \times m}$ is a square matrix such that $P^{2}=P$ and $P=P^{*}$ then P is called an orthogonal projector.

Remark In some books the definition of a projector already includes orthogonality. However, as before, P is in general not an orthogonal matrix, i.e., $P^{*} P=P^{2} \neq I$.

3.4 Connection to Earlier Orthogonal Decomposition

Earlier we considered the orthonormal set $\left\{\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{n}\right\}$, and established the decomposition

$$
\begin{align*}
\boldsymbol{v} & =\boldsymbol{r}+\sum_{i=1}^{n}\left(\boldsymbol{q}_{i}^{*} \boldsymbol{v}\right) \boldsymbol{q}_{i} \\
& =\boldsymbol{r}+\sum_{i=1}^{n}\left(\boldsymbol{q}_{i} \boldsymbol{q}_{i}^{*}\right) \boldsymbol{v} \tag{12}
\end{align*}
$$

with \boldsymbol{r} orthogonal to $\left\{\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{n}\right\}$. This corresponds to the decomposition

$$
\boldsymbol{v}=(I-P) \boldsymbol{v}+P \boldsymbol{v}
$$

with $P=\sum_{i=1}^{n}\left(\boldsymbol{q}_{i} \boldsymbol{q}_{i}^{*}\right)$.
Note that $\sum_{i=1}^{n}\left(\boldsymbol{q}_{i} \boldsymbol{q}_{i}^{*}\right)=Q Q^{*}$ with $Q=\left[\boldsymbol{q}_{1} \boldsymbol{q}_{2} \cdot \cdot \boldsymbol{q}_{n}\right]$. Thus the orthogonal decomposition (12) can be rewritten as

$$
\begin{equation*}
\boldsymbol{v}=\left(I-Q Q^{*}\right) \boldsymbol{v}+Q Q^{*} \boldsymbol{v} \tag{13}
\end{equation*}
$$

It is easy to verify that $Q Q^{*}$ is indeed an orthogonal projection:

1. $\left(Q Q^{*}\right)^{2}=Q \underbrace{Q^{*} Q}_{=I} Q^{*}=Q Q^{*}$ since Q has orthonormal columns (but not rows).
2. $\left(Q Q^{*}\right)^{*}=Q Q^{*}$.

Remark The orthogonal decomposition (13) will be important for the implementation of the QR decomposition later on. In particular we will use the rank-1 projector

$$
P_{\boldsymbol{q}}=\boldsymbol{q} \boldsymbol{q}^{*}
$$

which projects onto the direction \boldsymbol{q} and its complement

$$
P_{\perp \boldsymbol{q}}=I-\boldsymbol{q} \boldsymbol{q}^{*} .
$$

Thus,

$$
\boldsymbol{v}=\left(I-\boldsymbol{q} \boldsymbol{q}^{*}\right) \boldsymbol{v}+\boldsymbol{q} \boldsymbol{q}^{*} \boldsymbol{v}
$$

or, more generally, orthogonal projections onto an arbitrary direction \boldsymbol{a} is given by

$$
\boldsymbol{v}=\left(I-\frac{\boldsymbol{a} \boldsymbol{a}^{*}}{\boldsymbol{a}^{*} \boldsymbol{a}}\right) \boldsymbol{v}+\frac{\boldsymbol{a} \boldsymbol{a}^{*}}{\boldsymbol{a}^{*} \boldsymbol{a}} \boldsymbol{v}
$$

where we abbreviate $P_{\boldsymbol{a}}=\frac{\boldsymbol{a} \boldsymbol{a}^{*}}{\boldsymbol{a}^{*} \boldsymbol{a}}$ and $P_{\perp \boldsymbol{a}}=\left(I-\frac{\boldsymbol{a} \boldsymbol{a}^{*}}{\boldsymbol{a}^{*} \boldsymbol{a}}\right)$.
As a further generalization we can consider orthogonal projection onto the range of a (full-rank) matrix A. Earlier, for the orthonormal basis $\left\{\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{n}\right\}$ (the columns of Q) we had $P=Q Q^{*}$. Now we require only that $\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right\}$ be linearly independent. In order to compute the projection P for this case we start with an arbitrary vector \boldsymbol{v}. We need to ensure that $P \boldsymbol{v}-\boldsymbol{v} \perp \operatorname{range}(A)$, i.e., if $P \boldsymbol{v} \in \operatorname{range}(A)$ then

$$
\boldsymbol{a}_{j}^{*}(P \boldsymbol{v}-\boldsymbol{v})=0, \quad j=1, \ldots, n
$$

Now, since $P \boldsymbol{v} \in \operatorname{range}(A)$ we know $P \boldsymbol{v}=A \boldsymbol{x}$ for some \boldsymbol{x}. Thus

$$
\begin{gathered}
\boldsymbol{a}_{j}^{*}(A \boldsymbol{x}-\boldsymbol{v})=0, \quad j=1, \ldots, n \\
A^{*}(A \boldsymbol{x}-\boldsymbol{v})=0
\end{gathered}
$$

or

$$
A^{*} A \boldsymbol{x}=A^{*} \boldsymbol{v}
$$

One can show that $\left(A^{*} A\right)^{-1}$ exists provided the columns of A are linearly independent (our assumption). Then

$$
\boldsymbol{x}=\left(A^{*} A\right)^{-1} A^{*} \boldsymbol{v}
$$

Finally,

$$
P \boldsymbol{v}=A \boldsymbol{x}=\underbrace{A\left(A^{*} A\right)^{-1} A^{*}}_{=P} \boldsymbol{v}
$$

Remark Note that this includes the earlier discussion when $\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right\}$ is orthonormal since then $A^{*} A=I$ and $P=A A^{*}$ as before.

