
4 QR Factorization

4.1 Reduced vs. Full QR

Consider A ∈ Cm×n with m ≥ n. The reduced QR factorization of A is of the form

A = Q̂R̂,

where Q̂ ∈ Cm×n with orthonormal columns and R̂ ∈ Cn×n an upper triangular matrix
such that R̂(j, j) 6= 0, j = 1, . . . , n.

As with the SVD Q̂ provides an orthonormal basis for range(A), i.e., the columns of
A are linear combinations of the columns of Q̂. In fact, we have range(A) = range(Q̂).
This is true since Ax = Q̂R̂x = Q̂y for some y so that range(A) ⊆ range(Q̂). Moreover,
range(Q) ⊆ range(Â) since we can write AR̂−1 = Q̂ because R̂ is upper triangular with
nonzero diagonal elements. (Now we have Q̂x = AR̂−1x = Ay for some y.)

Note that any partial set of columns satisfy the same property, i.e.,

span{a1, . . . ,aj} = span{q1, . . . , qj}, j = 1, . . . , n.

In order to obtain the full QR factorization we proceed as with the SVD and extend
Q̂ to a unitary matrix Q. Then A = QR with unitary Q ∈ Cm×m and upper triangular
R ∈ Cm×n. Note that (since m ≥ n) the last m− n rows of R will be zero.

4.2 QR Factorization via Gram-Schmidt

We start by formally writing down the QR factorization A = QR as

a1 = q1r11 =⇒ q1 =
a1

r11
(14)

a2 = q1r12 + q2r22 =⇒ q2 =
a2 − r12q1

r22
(15)

...
... (16)

an = q1r1n + q2r2n + . . . + qnrnn =⇒ qn =
an −

∑n
i=1 rinqi

rnn
(17)

Note that in these formulas the columns aj of A are given and we want to determine
the columns qj of Q and entries rij of R such that Q is orthonormal, i.e.,

q∗i qj = δij , (18)

R is upper triangular and A = QR. The latter two conditions are already reflected in
the formulas above.

Using (14) in the orthogonality condition (18) we get

q∗1q1 =
a∗1a1

r2
11

= 1

so that
r11 =

√
a∗1a1 = ‖a1‖2.

36

Note that we arbitrarily chose the positive square root here (so that the factorization
becomes unique).

Next, the orthogonality condition (18) gives us

q∗1q2 = 0
q∗2q2 = 1.

Now we apply (15) to the first of these two conditions. Then

q∗1q2 =
q∗1a2 − r12q

∗
1q1

r22
= 0.

Since we ensured q∗1q1 = 1 in the previous step, the numerator yields r12 = q∗1a2 so
that

q2 =
a2 − (q∗1a2)q1

r22
.

To find r22 we normalize, i.e., demand that q∗2q2 = 1 or equivalently ‖q2‖2 = 1. This
immediately gives

r22 = ‖a2 − (q∗1a2)q1‖2.

To fully understand how the algorithm proceeds we add one more step (for n = 3).
Now we have three orthogonality conditions:

q∗1q3 = 0
q∗2q3 = 0
q∗3q3 = 1.

The first of these conditions together with (17) for n = 3 yields

q∗1q3 =
q∗1a3 − r13q

∗
1q1 − r23q

∗
1q2

r33
= 0

so that r13 = q∗1a3 due to the orthonormality of columns q1 and q2.
Similarly, the second orthogonality condition together with (17) for n = 3 yields

q∗2q3 =
q∗2a3 − r13q

∗
2q1 − r23q

∗
2q2

r33
= 0

so that r23 = q∗2a3.
Together this gives us

q3 =
a3 − (q∗1a3)q1 − (q∗2a3)q2

r33

and the last unknown, r33, is determined by normalization, i.e.,

r33 = ‖a3 − (q∗1a3)q1 − (q∗2a3)q2‖2.

37

In general we can formulate the following algorithm:

rij = q∗i aj (i 6= j)

vj = aj −
j−1∑
i=1

rijqi

rjj = ‖vj‖2
qj =

vj

rjj

We can compute the reduced QR factorization with the following (somewhat more
practical and almost Matlab implementation of the) classical Gram-Schmidt algorithm.

Algorithm (Classical Gram-Schmidt)

for j = 1 : n

vj = aj

for i = 1 : (j − 1)

rij = q∗i aj

vj = vj − rijqi

end

rjj = ‖vj‖2
qj = vj/rjj

end

Remark The classical Gram-Schmidt algorithm is not ideal for numerical calcula-
tions since it is known to be unstable. Note that, by construction, the Gram-Schmidt
algorithm yields an existence proof for the QR factorization.

Theorem 4.1 Let A ∈ Cm×n with m ≥ n. Then A has a QR factorization. Moreover,
if A is of full rank (n), then the reduced factorization A = Q̂R̂ with rjj > 0 is unique.

Example We compute the QR factorization for the matrix

A =

 1 2 0
0 1 1
1 0 1

 .

First v1 = a1 =

 1
0
1

 and r11 = ‖v1‖ =
√

2. This gives us

q1 =
v1

‖v1‖
=

1√
2

 1
0
1

 .

38

Next,

v2 = a2 − (q∗1a2)︸ ︷︷ ︸
=r12

q1

=

 2
1
0

− √
2√
2

 1
0
1

 =

 1
1
−1

 .

This calculation required that r12 = 2√
2

=
√

2. Moreover, r22 = ‖v2‖ =
√

3 and

q2 =
v2

‖v2‖
=

1√
3

 1
1
−1

 .

In the third iteration we have

v3 = a3 − (q∗1a3)︸ ︷︷ ︸
=r13

q1 − (q∗2a3)︸ ︷︷ ︸
=r23

q2

from which we first compute r13 = 1√
2

and r23 = 0. This gives us

v3 =

 0
1
1

− 1√
2

1√
2

 1
0
1

− 0 =
1
2

 −1
2
1

 .

Finally, r33 = ‖v3‖ =
√

6
2 and

q3 =
v3

‖v3‖
=

1√
6

 −1
2
1

 .

Collecting all of the information we end up with

Q =


1√
2

1√
3

−1√
6

0 1√
3

2√
6

1√
2

−1√
3

1√
6

 and R =


√

2
√

2 1√
2

0
√

3 0
0 0

√
6

2

 .

4.3 An Application of the QR Factorization

Consider solution of the linear system Ax = b with A ∈ Cm×m nonsingular. Since

Ax = b ⇐⇒ QRx = b ⇐⇒ Rx = Q∗b,

where the last equation holds since Q is unitary, we can proceed as follows:

1. Compute A = QR (which is the same as A = Q̂R̂ in this case).

2. Compute y = Q∗b.

39

3. Solve the upper triangular Rx = y

We will have more applications for the QR factorization later in the context of least
squares problems.

Remark The QR factorization (if implemented properly) yields a very stable method
for solving Ax = b. However, it is about twice as costly as Gauss elimination (or
A = LU). In fact, the QR factorization can also be applied to rectangular systems and
it is the basis of Matlab’s backslash matrix division operator. We will discuss Matlab
examples in a later section.

4.4 Modified Gram-Schmidt

The classical Gram-Schmidt algorithm is based on projections of the form

vj = aj −
j−1∑
i=1

rijqi

= aj −
j−1∑
i=1

(q∗i aj)qi.

Note that this means we are performing a sequence of vector projections. The starting
point for the modified Gram-Schmidt algorithm is to rewrite one step of the classical
Gram-Schmidt algorithm as a single matrix projection, i.e.,

vj = aj −
j−1∑
i=1

(q∗i aj)qi

= aj −
j−1∑
i=1

(qiq
∗
i)aj

= aj − Q̂j−1Q̂
∗
j−1aj

=
(
I − Q̂j−1Q̂

∗
j−1

)
︸ ︷︷ ︸

=Pj

aj ,

where Q̂j−1 = [q1q2 . . . qj−1] is the matrix formed by the column vectors qi, i =
1, . . . , j − 1.

In order to obtain the modified Gram-Schmidt algorithm we require the following
observation that the single projection Pj can also be viewed as a series of complementary
projections onto the individual columns qi, i.e.,

Lemma 4.2 If Pj = I−Q̂j−1Q̂
∗
j−1 with Q̂j−1 = [q1q2 . . . qj−1] a matrix with orthonor-

mal columns, then

Pj =
j−1∏
i=1

P⊥qi
.

40

Proof First we remember that

Pj = I − Q̂j−1Q̂
∗
j−1 = I −

j−1∑
i=1

qiq
∗
i

and that the complementary projector is defined as

P⊥qi
= I − qiq

∗
i .

Therefore, we need to show that

I −
j−1∑
i=1

qiq
∗
i =

j−1∏
i=1

(I − qiq
∗
i) .

This is done by induction. For j = 1 the sum and the product are empty and the
statement holds by the convention that an empty sum is zero and an empty product is
the identity, i.e., P1 = I.

Now we step from j − 1 to j. First

j∏
i=1

(I − qiq
∗
i) =

j−1∏
i=1

(I − qiq
∗
i)
(
I − qjq

∗
j

)
=

(
I −

j−1∑
i=1

qiq
∗
i

)(
I − qjq

∗
j

)
by the induction hypothesis. Expanding the right-hand side yields

I −
j−1∑
i=1

qiq
∗
i − qjq

∗
j +

j−1∑
i=1

qi q
∗
i qj︸︷︷︸
=0

q∗j

so that the claim is proved.

Summarizing the discussion thus far, a single step in the Gram-Schmidt algorithm
can be written as

vj = P⊥qj−1
P⊥qj−2

. . . P⊥q1aj ,

or – more algorithmically:

vj = aj

for i = 1 : (j − 1)

vj = vj − qiq
∗
i vj

end

For the final modified Gram-Schmidt algorithm the projections are arranged differ-
ently, i.e., P⊥qi

is applied to all vj with j > i. This leads to

41

Algorithm (Modified Gram-Schmidt)

for i = 1 : n

vi = ai

end

for i = 1 : n

rii = ‖vi‖2
qi = vi

rii

for j = (i + 1) : n

rij = q∗i vj

vj = vj − rijqi

end

end

We can compare the operations count, i.e., the number of basic arithmetic operations
(‘+’,‘-’,‘*’,‘/’), of the two algorithms. We give only a rough estimate (exact counts will
be part of the homework). Assuming vectors of length m, for the classical Gram-
Schmidt roughly 4m operations are performed inside the innermost loop (actually m
multiplications and m−1 additions for the inner product, and m multiplications and m
subtractions for the formula in the second line). Thus, the operations count is roughly

n∑
j=1

j−1∑
i=1

4m =
n∑

j=1

(j − 1)4m ≈ 4m
n∑

j=1

j = 4m
n(n + 1)

2
≈ 2mn2.

The innermost loop of the modified Gram-Schmidt algorithm consists formally of ex-
actly the same operations, i.e., requires also roughly 4m operations. Thus its operation
count is

n∑
i=1

n∑
j=i+1

4m =
n∑

i=1

(n− i)4m = 4m

(
n2 −

n∑
i=1

i

)
= 4m

(
n2 − n(n + 1)

2

)
≈ 2mn2.

Thus, the operations count for the two algorithms is the same. In fact, mathematically,
the two algorithms can be shown to be identical. However, we will learn later that the
modified Gram-Schmidt algorithm is to be preferred due to its better numerical stability
(see Section 4.6).

4.5 Gram-Schmidt as Triangular Orthogonalization

One can view the modified Gram-Schmidt algorithm (applied to the entire matrix A)
as

AR1R2 . . . Rn = Q̂, (19)

42

where R1, . . . , Rn are upper triangular matrices. For example,

R1 =


1/r11 −r12/r11 −r13/r11 · · · −r1m/r11

0 1 0 · · · 0
0 0 1 0
...

. . .
...

0 · · · 0 1

 ,

R2 =


1 0 · · · 0
0 1/r22 −r23/r22 · · · −r2m/r22

0 0 1 0
...

. . .
...

0 · · · 0 1


and so on.

Thus we are applying triangular transformation matrices to A to obtain a matrix Q̂
with orthonormal columns. We refer to this approach as triangular orthogonalization.

Since the inverse of an upper triangular matrix is again an upper triangular matrix,
and the product of two upper triangular matrices is also upper triangular, we can think
of the product R1R2 . . . Rn in (19) in terms of a matrix R̂−1. Thus, the (modified)
Gram-Schmidt algorithm yields a reduced QR factorization

A = Q̂R̂

of A.

4.6 Stability of CGS vs. MGS in Matlab

The following discussion is taken from [Trefethen/Bau] and illustrated by the Mat-
lab code GramSchmidt.m (whose supporting routines clgs.m and mgs.m are part of a
computer assignment).

We create a random matrix A ∈ R80×80 by selecting singular values 1
2 , 1

4 , . . . , 1
280

and generating A = UΣV ∗ with the help of (orthonormal) matrices U and V whose
entries are normally distributed random numbers (using the Matlab command randn).
Then we compute the QR factorization A = QR using both the classical and modified
Gram-Schmidt algorithms. The program then plots the diagonal elements of R together
with the singular values.

First we note that

A =
80∑
i=1

σiuiv
T
i

so that

aj = A(:, j) =
80∑
i=1

σiuivji.

Next, V is a normally distributed random unitary matrix, and therefore the entries in
one of its columns satisfy

|vji| ≈
1√
80
≈ 0.1.

43

Now from the (classical) Gram-Schmidt algorithm we know that

r11 = ‖a1‖2 = ‖
80∑
i=1

σ1v1iui‖2.

Since the singular values were chosen to decrease exponentially only the first one really
matters, i.e.,

r11 ≈ ‖σ1v11u1‖2 = σ1v11 ≈
1
2

1√
80

(since ‖u1‖2 = 1).
Similar arguments result in the general relationship

rjj ≈
1√
80

σj

(the latter of which we know). The plot produced by GramSchmidt.m shows how
accurately the diagonal elements of R are computed. We can observe that the classical
Gram-Schmidt algorithm is stable up to σj ≈

√
eps (where eps is the machine epsilon),

whereas the modified Gram-Schmidt method is stable all the way up to σj ≈ eps.

Remark In spite of the superior stability of the modified Gram-Schmidt algorithm it
still may not produce “good” orthogonality. Househoulder reflections – studied in the
next chapter – work better (see an example in [Trefethen/Bau]).

4.7 Householder Triangularization

Recall that we interpreted the Gram-Schmidt algorithm as triangular orthogonalization

AR1R2 . . . Rn = Q̂

leading to the reduced QR factorization of an m × n matrix A. Now we will consider
an alternative approach to computing the (full) QR factorization corresponding to
orthogonal triangularization:

QnQn−1 . . . Q2Q1A = R,

where the matrices Qj are unitary.
The idea here is to design matrices Q1, . . . , Qn such that A is successively trans-

formed to upper triangular form, i.e.,

A =


x x x
x x x
x x x
x x x

 −→ Q1A =


x x x
0 x x
0 x x
0 x x



−→ Q2Q1A =


x x x
0 x x
0 0 x
0 0 x

 −→ Q3Q2Q1A =


x x x
0 x x
0 0 x
0 0 0

 ,

44

where x stands for a generally nonzero entry. From this we note that Qk needs to
operate on rows k : m and not change the first k − 1 rows and columns. Therefore it
will be of the form

Qk =
[

Ik−1 O
O F

]
,

where Ik−1 is a (k − 1)× (k − 1) identity matrix and F has the effect that

Fx = ‖x‖e1

in order to introduce zeros in the lower part of column k. We will call F a Householder
reflector.

Graphically, we can use either a rotation (Givens rotation) or a reflection about the
bisector of x and e1 to transform x to ‖x‖e1.

Recall from an earlier homework assignment that given a projector P , then (I−2P)
is also a projector. In fact, (I−2P) is a reflector. Therefore, if we choose v = ‖x‖e1−x
and define P = vv∗

v∗v , then

F = I − 2P = I − 2
vv∗

v∗v

is our desired Householder reflector. Since it is easy to see that F is Hermitian, so is
Qk. Note that Fx can be computed as

Fx =
(

I − 2
vv∗

v∗v

)
x = x− 2

vv∗

v∗v︸︷︷︸
matrix

x = x− 2v
v∗x

v∗v︸︷︷︸
scalar

.

In fact, we have two choices for the reflection Fx: v+ = −x + sign(x(1))‖x‖e1

and v− = −x− sign(x(1))‖x‖e1. Here x(1) denotes the first component of the vector
x. These choices are illustrated in Figure 4. A numerically more stable algorithm

Figure 4: Graphical interpretation of Householder reflections.

(that will avoid cancellation of significant digits) will be guaranteed by choosing that
reflection which moves x further. Therefore we pick

v = x + sign(x(1))‖x‖e1,

which is the same (except for orientation) as v−.
The resulting algorithm is

45

Algorithm (Householder QR)

for k = 1 : n (sum over columns)

x = A(k : m, k)

vk = x + sign(x(1))‖x‖2e1

vk = vk/‖vk‖2
A(k : m, k : n) = A(k : m, k : n)− 2vk (v∗kA(k : m, k : n))

end

Note that the statement in the last line of the algorithm performs the reflection
simultaneously for all remaining columns of the matrix A. On completion of this
algorithm the matrix A contains the matrix R of the QR factorization, and the vectors
v1, . . . ,vn are the reflection vectors. They will be used to calculate matrix-vector
products of the form Qx and Q∗b later on. The matrix Q itself is not output. It can
be constructed by computing special matrix-vector products Qx with x = e1, . . . ,en.

Example We apply Householder reflection to x = [2, 1, 2]T .
First we compute

v = x + sign(x(1))‖x‖2e1

=

 2
1
2

+ 3

 1
0
0

 =

 5
1
2

 .

Next we form Fx = x− 2v v∗x
v∗v . To this end we note that v∗x = 15 and v∗v = 30.

Thus

Fx =

 2
1
2

 23

 5
1
2

 15
30

=

 −3
0
0

 .

This vector contains the desired zero.

For many applications only products of the form Q∗b or Qx are needed. For
example, if we want to solve the linear system Ax = b then we can do this with the
QR factorization by first computing y = Q∗b and then solving Rx = y. Therefore, we
list the respective algorithms for these two types of matrix vector products.

For the first algorithm we need to remember that

Qn . . . Q2Q1︸ ︷︷ ︸
=Q∗

A = R,

so that we can apply exactly the same steps that were applied to the matrix A in the
Householder QR algorithm:

Algorithm (Compute Q∗b)

for k = 1 : n

46

b(k : m) = b(k : m)− 2vk (v∗kb(k : m))

end

For the second algorithm we use Q = Q1Q2 . . . Qn (since Q∗
i = Qi), so that the

following algorithm simply performs the reflection operations in reverse order:

Algorithm (Compute Qx)

for k = n : −1 : 1

x(k : m) = x(k : m)− 2vk (v∗kx(k : m))

end

The operations counts for the three algorithms listed above are

Householder QR: O
(
2mn2 − 2

3n3
)

Q∗b, Qx: O(mn)

47

