
6 Conditioning and Stability

A computing problem is well-posed if

1. a solution exists (e.g., we want to rule out situations that lead to division by
zero),

2. the computed solution is unique,

3. the solution depends continuously on the data, i.e., a small change in the data
should result in a small change in the answer. This phenomenon is referred to as
stability of the problem.

Example Consider the following three different recursion algorithms to compute xn =(
1
3

)n:

1. x0 = 1, xn = 1
3xn−1 for n ≥ 1,

2. y0 = 1, y1 = 1
3 , yn+1 = 4

3yn − 1
3yn−1 for n ≥ 1,

3. z0 = 1, z1 = 1
3 , zn+1 = 10

3 zn − zn−1 for n ≥ 1.

The validity of the latter two approaches can be proved by induction. We illustrate
these algorithms with the Maple worksheet 477 577 stability.mws. Use of slightly
perturbed initial values shows us that the first algorithm yields stable errors throughout.
The second algorithm has stable errors, but unstable relative errors. And the third
algorithm is unstable in either sense.

6.1 The Condition Number of a Matrix

Consider solution of the linear system Ax = b, with exact answer x and computed
answer x̃. Thus, we expect an error

e = x− x̃.

Since x is not known to us in general we often judge the accuracy of the solution by
looking at the residual

r = b−Ax̃ = Ax−Ax̃ = Ae

and hope that a small residual guarantees a small error.

Example We consider Ax = b with

A =
[

1.01 0.99
0.99 1.01

]
, b =

[
2
2

]
,

and exact solution x = [1, 1]T .

1. (a) Let’s assume we computed a solution of x̃ = [1.01, 1.01]T . Then the error

e = x− x̃ =
[
−0.01
−0.01

]
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is small, and the residual

r = b−Ax =
[

2
2

]
−
[

2.02
2.02

]
=
[
−0.02
−0.02

]
is also small. Everything looks good.

2. (b) Now, let’s assume that we computed a solution of x̃ = [2, 0]T . This “solutions”
is obviously not a good one. Its error is

e =
[
−1
1

]
,

which is quite large. However, the residual is

r =
[

2
2

]
−
[

2.02
1.98

]
=
[
−0.02
0.02

]
,

which is still small. This is not good. This shows that the residual is not a reliable
indicator of the accuracy of the solution.

3. (c) If we change the right-hand side of the problem to b = [2,−2]T so that the
exact solution becomes x = [100,−100]T , then things behave “wrong” again.
Let’s assume we computed a solution x̃ = [101,−99]T with a relatively small
error of e = [−1,−1]T . However, the residual now is

r =
[

2
−2

]
−
[

4
0

]
=
[
−2
−2

]
,

which is relatively large. So again, the residual is not an accurate indicator of
the error.

What is the explanation for the phenomenon we’re observing? The answer is, the
matrix A is ill-conditioned.

Let’s try to get a better understanding of how the error and the residual are related
for the problem Ax = b. We will use the notation

e = x− x̃, r = b−Ax̃ = b− b̃.

Thus,

‖e‖ = ‖x− x̃‖ = ‖A−1b−A−1b̃‖ = ‖A−1(b− b̃)‖
≤ ‖A−1‖‖b− b̃‖ = ‖A−1‖‖r‖.

Therefore, the absolute error satisfies

‖e‖ ≤ ‖A−1‖‖r‖.
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Often, however, it is better to consider the relative error, i.e., ‖e‖
‖x‖ (and ‖r‖

‖b‖ ):

‖e‖ ≤ ‖A−1‖‖r‖ ‖Ax‖
‖b‖︸ ︷︷ ︸
=1

≤ ‖A−1‖‖A‖‖x‖‖r‖
‖b‖

.

This yields the bound

‖e‖
‖x‖

≤ ‖A−1‖‖A‖‖r‖
‖b‖

= κ(A)
‖r‖
‖b‖

, (23)

where κ(A) = ‖A−1‖‖A‖ is called the condition number of A.

Remark The condition number depends on the type of norm used. For the 2-norm of
a nonsingular m×m matrix A we know ‖A‖2 = σ1 (the largest singular values of A),
and ‖A−1‖2 = 1

σm
. If A is singular then κ(A) = ∞.

Also note that κ(A) = σ1
σm
≥ 1. In fact, this holds for any norm.

How should we interpret the bound (23)? If κ(A) is large (i.e., the matrix is ill-
conditioned), then relatively small perturbations of the right-hand side b (and therefore
the residual) may lead to large errors; an instability.

For well-conditioned problems (i.e., κ(A) ≈ 1) we can also get a useful bound telling
us what sort of relative error ‖x−x̃‖

‖x‖ we should at least expect. Consider

‖r‖‖x‖ = ‖b− b̃‖‖x‖
= ‖Ax−Ax̃‖‖x‖ = ‖A(x− x̃)‖‖x‖
= ‖Ae‖‖x‖
= ‖Ae‖‖A−1b‖ ≤ ‖A‖‖e‖‖A−1‖‖b‖,

so that
1

κ(A)
‖r‖
‖b‖

≤ ‖e‖
‖x‖

. (24)

Of course, we can combine (23) and (24) to obtain

1
κ(A)

‖r‖
‖b‖

≤ ‖x− x̃‖
‖x‖

≤ κ(A)
‖r‖
‖b‖

. (25)

These bounds are true for any A, but show that the residual is a good indicator of the
error only if A is well-conditioned.

We now return to our

Example The SVD of the matrix A reveals

A =
[

1.01 0.99
0.99 1.01

]
=

[ √
2

2

√
2

2√
2

2 −
√

2
2

] [
2 0
0 0.02

][ √
2

2

√
2

2√
2

2 −
√

2
2

]
,
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which implies

κ(A) =
σ1

σ2
=

2
0.02

= 100.

For a 2× 2 matrix this is an indication that A is fairly ill-conditioned. We see that the
bounds (25) allow for large variations:

1
100

‖r‖
‖b‖

≤ ‖x− x̃‖
‖x‖

≤ 100
‖r‖
‖b‖

.

Thus the relative residual is not a good error indicator (as we saw in our initial calcu-
lations).

6.2 The Effect of Changes in A on the Relative Error

We again consider the linear system Ax = b. But now A may be perturbed to Ã =
A + δA. We denote by x the exact solution of Ax = b, and by x̃ the exact solution of
Ãx̃ = b, i.e., x̃ = x + δx.

This implies

Ãx̃ = b ⇐⇒ (A + δA) (x + δx) = b

⇐⇒ Ax− b︸ ︷︷ ︸
=0

+(δA)x + A(δx) + (δA)(δx) = 0.

If we neglect the term with the product of the deltas then we get

(δA)x + A(δx) = 0 or (δx) = −A−1(δA)x.

Taking norms this yields

‖δx‖ ≤ ‖A−1‖‖δA‖‖x‖ ⇐⇒ ‖δx‖ ≤ ‖A−1‖‖A‖‖δA‖
‖A‖

‖x‖

or
‖x− x̃‖
‖x‖

≤ κ(A)
‖A− Ã‖
‖A‖

. (26)

We can interpret (26) as follows: For ill-conditioned matrices a small perturbation
of the entries can lead to large changes in the solution of the linear system. This is also
evidence of an instability.

Example We consider

A =
[

1.01 0.99
0.99 1.01

]
with δA =

[
−0.01 0.01
0.01 −0.01

]
.

Now

Ã = A + δA =
[

1 1
1 1

]
which is even singular, so that Ãx̃ = b with b = [2,−2]T has no solution at all.

Remark For matrices with condition number κ(A) one can expect to lose log10 κ(A)
digits when solving Ax = b.
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6.3 Backward Stability

In light of the estimate (26) we say that an algorithm for solving Ax = b is backward
stable if

‖x− x̃‖
‖x‖

= O(κ(A)εmachine),

i.e., if the significance of the error produced by the algorithm is due only to the condi-
tioning of the matrix.

Remark We can view a backward stable algorithm as one which delivers the “right
answer to a perturbed problem”, namely Ãx̃ = b, with perturbation of the order
‖A− eA‖
‖A‖ = O(εmachine).

Without providing any details (for more information see Chapter 18 in [Trefethen/Bau]),
for least-squares problems the estimate (26) becomes

‖x− x̃‖
‖x‖

≤
(

κ(A) +
κ2(A) tan θ

η

)
‖A− Ã‖
‖A‖

, (27)

where κ(A) = ‖A‖‖A−1‖, θ = cos−1 ‖Ax‖
‖b‖ , and η = ‖A‖‖x‖

‖Ax‖ .

6.4 Stability of Least Squares Algorithms

We perform the following Matlab experiment (see the Matlab codes LSQ Stability.m
and LSQ Stability book.m).

Example Use Householder QR factorization, modified Gram-Schmidt, stabilized mod-
ified Gram-Schmidt, the normal equations, and the SVD to solve the following least
squares problem:

Fit a polynomial of degree 14 to 100 equally spaced samples taken from either

f(x) =
1

1 + x2
on [−5, 5],

or from
f(x) = esin 4x on [0, 1].

Since the least squares conditioning of this problem is given by (27) we can expect to
lose about 10 digits (even for a stable algorithm).

The following observations can be made from the Matlab example: Householder QR,
stabilized modified Gram-Schmidt and the SVD are stable, the normal equations (whose
system matrix A∗A has condition number κ(A∗A) = κ2(A)), and the regular modified
Gram-Schmidt (where we encounter some loss of orthogonality when computing Q) are
both unstable.
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6.5 Stabilization of Modified Gram-Schmidt

In order to be able to obtain Q with better orthogonality properties we apply the QR
factorization directly to the augmented system, i.e., compute[

A b
]

= Q2R2.

Then the last column of R2 contains the product Q̂∗b, i.e.,

R2 =
[

R̂ Q̂∗b
O 0

]
and R̂x = Q̂∗b can be solved. However, now Q̂∗b is more accurate than if obtained via
the QR factorization of A alone.

A lot more details for the stabilization and the previous example are provided in
Chapter 19 of [Trefethen/Bau].
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