
8 Eigenvalue Problems

8.1 Motivation and Definition

Matrices can be used to represent linear transformations. Their effects can be: rotation,
reflection, translation, scaling, permutation, etc., and combinations thereof. These
transformations can be rather complicated, and therefore we often want to decompose
a transformation into a few simple actions that we can better understand. Finding
singular values and associated singular vectors is one such approach. In engineering,
one often speaks of principal component analysis.

A more basic approach is to consider eigenvalues and eigenvectors.

Definition 8.1 Let A ∈ Cm×m. If for some pair (λ, x), λ ∈ C, x(6= 0) ∈ Cm we have

Ax = λx,

then λ is called an eigenvalue and x the associated eigenvector of A.

Remark Eigenvectors specify the directions in which the matrix action is simple: any
vector parallel to an eigenvector is changed only in length and/or orientation by the
matrix A.

In practical applications, eigenvalues and eigenvectors are used to find modes of
vibrations (e.g., in acoustics or mechanics), i.e., instabilities of structures can be inves-
tigated via an eigenanalysis.

In theoretical applications, eigenvalues often play an important role in the analysis
of convergence of iterative algorithms (for solving linear systems), long-term behavior
of dynamical systems, or stability of numerical solvers for differential equations.

8.2 Other Basic Facts

Some other terminology that will be used includes the eigenspace Eλ, i.e., the vector
space of all eigenvectors corresponding to λ:

Eλ = span{x : Ax = λx, λ ∈ C}.

Note that this vector space includes the zero vector — even though 0 is not an eigen-
vector.

The set of all eigenvalues of A is known as the spectrum of A, denoted by Λ(A).
The spectral radius of A is defined as

ρ(A) = max{|λ| : λ ∈ Λ(A)}.

8.2.1 The Characteristic Polynomial

The definition of eigenpairs Ax = λx is equivalent to

(A− λI) x = 0.

Thus, λ is an eigenvalue of A if and only if the linear system (A − λI)x = 0 has a
nontrivial (i.e., x 6= 0) solution.
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This, in turn, is equivalent to det(A−λI) = 0. Therefore we define the characteristic
polynomial of A as

pA(z) = det(zI −A).

Then we get

Theorem 8.2 λ is an eigenvalue of A if and only if pA(λ) = 0.

Proof See above.

Remark This definition of pA ensures that the coefficient of zm is +1, i.e., pA is a
monic polynomial.

Example It is well known that even real matrices can have complex eigenvalues. For
instance,

A =
[

0 1
−1 0

]
has a characteristic polynomial

pA(z) =
∣∣∣∣ z −1

1 z

∣∣∣∣ = z2 + 1,

so that its eigenvalues are λ1,2 = ±i with associated eigenvectors

x1 =
[

1
i

]
and x2 =

[
i
1

]
.

However, if A is symmetric (or Hermitian), then all its eigenvalues are real. More-
over, the eigenvectors to distinct eigenvalues are linearly independent, and eigenvectors
to distinct eigenvalues of a symmetric/Hermitian matrix are orthogonal.

Remark Since the eigenvalues of an m×m matrix are given by the roots of a degree-m
polynomial, it is clear that for problems with m > 4 we will have to use iterative (i.e.,
numerical) methods to find the eigenvalues.

8.2.2 Geometric and Algebraic Multiplicities

The number of linearly independent eigenvectors associated with a given eigenvalue λ,
i.e., the dimension of Eλ is called the geometric multiplicity of λ.

The power of the factor (z − λ) in the characteristic polynomial pA is called the
algebraic multiplicity of λ.

Theorem 8.3 Any A ∈ Cm×m has m eigenvalues provided we count the algebraic mul-
tiplicities. In particular, if the roots of pA are simple, the A has m distinct eigenvalues.

Example Take

A =

 1 0 0
1 1 1
0 0 1

 ,
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so that pA(z) = (z− 1)3. Thus, λ = 1 is an eigenvalue (in fact, the only one) of A with
algebraic multiplicity 3. To determine its geometric multiplicity we need to find the
associated eigenvectors.

To this end we solve (A − λI)x = 0 for the special case λ = 1. This yields the
augmented matrix  0 0 0 | 0

1 0 1 | 0
0 0 0 | 0


so that x1 = −x3 or

x =

 α
β
−α

 = α

 1
0
−1

+ β

 0
1
0

 ,

and therefore the geometric multiplicity of λ = 1 is only 2.

In general one can prove the following

Theorem 8.4 The algebraic multiplicity of λ is always greater than or equal its geo-
metric multiplicity.

This prompts

Definition 8.5 If the geometric multiplicity of λ is less than its algebraic multiplicity,
then λ is called defective.

Example As a continuation of the previous example we see that the matrix

B =

 1 0 0
0 1 0
0 0 1

 ,

has the same characteristic polynomial as before, i.e., pB(z) = (z − 1)3, and λ =
1 is again an eigenvalue with algebraic multiplicity 3. To determine its geometric
multiplicity we solve (B − I)x = 0, i.e., look at 0 0 0 | 0

0 0 0 | 0
0 0 0 | 0

 .

Now there is no restriction on the components of x and we have

x =

 α
β
γ

 = α

 1
0
0

+ β

 0
1
0

+ γ

 0
0
1

 ,

so that the geometric multiplicity of λ = 1 is 3 in this case.
At the other extreme, the matrix

C =

 1 1 0
0 1 1
0 0 1

 ,
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also has the characteristic polynomial pC(z) = (z − 1)3, so that λ = 1 has algebraic
multiplicity 3. However, now the solution of (C − I)x = 0, leads to 0 1 0 | 0

0 0 1 | 0
0 0 0 | 0

 ,

so that x2 = x3 = 0 and we get

x = α

 1
0
0

 .

This means that the geometric multiplicity of λ = 1 now is 1.

8.3 Determinant and Trace

The trace of a matrix A, tr(A), is given by the sum of its diagonal elements, i.e.,

tr(A) =
m∑

j=1

ajj.

Theorem 8.6 If A ∈ Cm×m with eigenvalues λ1, . . . , λm, then

1. det(A) =
m∏

j=1

λj,

2. tr(A) =
m∑

j=1

λj.

Proof Recall that the definition of the characteristic polynomial, pA(z) = det(zI−A),
so that

pA(0) = det(−A) = (−1)mdet(A).

On the other hand, we also know that we also have pA(z) =
m∏

j=1

(z − λj) which implies

pA(0) =
m∏

j=1

(−λj) = (−1)m
m∏

j=1

λj .

Comparing the two representations of pA(0) yields the first formula.
For the second one one can show that the coefficient of zm−1 in the representation

det(zI − A) of the characteristic polynomial is −tr(A). On the other hand, the co-

efficient of zm−1 in the representation
m∏

j=1

(z − λj) is −
∑m

j=1 λj . Together we get the

desired formula.
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8.4 Similarity and Diagonalization

Consider two matrices A,B ∈ Cm×m. A and B are called similar if

B = X−1AX

for some nonsingular X ∈ Cm×m.

Theorem 8.7 Similar matrices have the same characteristic polynomial, eigenvalues,
algebraic and geometric multiplicities. The eigenvectors, however, are in general dif-
ferent.

Theorem 8.8 A matrix A ∈ Cm×m is nondefective, i.e., has no defective eigenvalues,
if and only if A is similar to a diagonal matrix, i.e.,

A = XΛX−1,

where X = [x1,x2, . . . ,xm] is the matrix formed with the eigenvectors of A as its
columns, and Λ = diag(λ1, λ2, . . . , λm) contains the eigenvalues.

Remark Due to this theorem, nondefective matrices are diagonalizable. Also note
that nondefective matrices have linearly independent eigenvectors.

Remark The factorization
A = XΛX−1

is called the eigenvalue (or eigen-) decomposition of A. We can interpret this decom-
position as a change of basis by which a coupled linear system is transformed to a
decoupled diagonal system. This means

Ax = b ⇐⇒ XΛX−1x = b

⇐⇒ Λ X−1x︸ ︷︷ ︸
=x̂

= X−1b︸ ︷︷ ︸
=b̂

.

This shows that x̂ and b̂ correspond to x and b as viewed in the basis of eigenvectors
(i.e., columns of X).

If the eigenvectors of A are not only linearly independent, but also orthogonal, then
we can factor A as

A = QΛQ∗

with a unitary matrix Q of eigenvectors. Thus, A is called unitarily diagonalizable.

Theorem 8.9 If A is Hermitian, then A is unitarily diagonalizable. Moreover, Λ is
real.

More generally, A is called normal if

AA∗ = A∗A,

and we have

Theorem 8.10 A is unitarily diagonalizable if and only if A is normal.
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8.5 Schur Factorization

The most useful linear algebra fact summarized here for numerical analysis purposes is

Theorem 8.11 Every square matrix A ∈ Cm×m has a Schur factorization

A = QTQ∗,

with unitary matrix Q and upper triangular matrix T such that diag(T ) contains the
eigenvalues of A.

Remark Note the similarity of this result to the singular value decomposition. The
Schur factorization is quite general in that it exists for every, albeit only square, matrix.
Also, the matrix T contains the eigenvalues (instead of the singular values), and it is
upper triangular (i.e., not quite as nice as diagonal). On the other hand, only one
unitary matrix is used.

Remark By using nonunitary matrices for the similarity transform one can obtain the
Jordan normal form of a matrix in which T is bidiagonal.

Remark Both the Schur factorization and the Jordan form are considered not appro-
priate for numerical/practical computations because of the possibility of complex terms
occurring in the matrix factors (even for real A). The SVD is preferred since all of its
factors are real.

Proof We use induction on m. For m = 1 we have

A = (a11), Q = (1), T = (a11),

and the claim is clearly true.
For m ≥ 2 we assume x is a normalized eigenvector of A, i.e., ‖x‖2 = 1. Then we

form
U =

[
x Û

]
∈ Cm×m

to be unitary by augmenting the first column, x, by appropriate columns in Û . This
gives us

U∗AU =
[

x∗

Û∗

]
A
[

x Û
]

=
[

x∗Ax x∗AÛ

ÛAx Û∗AÛ

]
.

Since x is an eigenvector of A we have Ax = λx, and after multiplication by x∗

x∗Ax = λ x∗x︸︷︷︸
=‖x‖22=1

= λ.

Similarly,
Û∗Ax = Û∗(λx) = λÛ∗x = 0

since Û∗x = 0 because U is unitary.
Therefore, U∗AU simplifies to

U∗AU =
[

λ b∗

0 C

]
,
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where we have used the abbreviations b∗ = x∗AÛ and C = Û∗AÛ ∈ C(m−1)×(m−1).
Now, by the induction hypothesis, C has a Schur factorization

C = V T̂V ∗

with unitary V and triangular T̂ .
To finish the proof we can define

Q = U

[
1 0T

0 V

]
and observe that

Q∗AQ =
[

1 0T

0 V ∗

]
U∗AU︸ ︷︷ ︸

=

2
4 λ b∗

0 C

3
5

[
1 0T

0 V

]

=
[

λ b∗V
0 V ∗CV

]
.

This last block matrix, however, is the desired upper triangular matrix T with the
eigenvalues of A on its diagonal since V ∗CV = T̂ and the induction hypothesis ensures
T̂ already has the desired properties.

To summarize this section we can say

1. A ∈ Cm×m is diagonalizable, i.e., A = XΛX−1, if and only if A is nondefective.

2. A ∈ Cm×m is unitarily diagonalizable, i.e., A = QΛQ∗, if and only if A is normal.

3. A ∈ Cm×m is unitarily triangularizable, i.e., A = QTQ∗ for any square A.
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